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Transversal magnetoresistance is calculated for numerous metal cases on the basis of simple elec-
tron theory. Any metal can be represented by a single band of states having a closed Fermi surface
which is assumed to be similar in shape to a sphere. In an external electromagnetic field the electron
transport seems to be regulated by two kinds of relaxation times. The first one is due to the electric
field, and its size is not appreciably influenced by that field. On the other hand, electron motion in the
magnetic field is associated with a relaxation time that is strongly dependent on the strength of that
field. Both time parameters combine to an effective relaxation time according to Matthiessen’s rule.
A good agreement between experiment and theory is obtained for Li, Cu, Ag, Au and Pd, Pt metals.
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1. Introduction

The well-known experimental problem of magne-
toresistance in metals seems to have never been ap-
proached using a satisfactory computational theory.
The main data involved in calculations, and affecting
the results, should be the intensity of the magnetic field
and the band-structure parameters characterizing the
metal. Nevertheless, the temperature at which the ex-
periments were performed also plays an important role.
The aim of the present paper is to suggest a simple
theory of magnetoresistance in which all the phenom-
ena mentioned above are taken into account simultane-
ously. The properties of the band-structure effect can
be simplified with the use of a semiclassical approach.
Here, in the first step, the electron orbits induced by the
magnetic field on the Fermi surface of a metal should
be noted [1, 2]. For the sake of simplicity only a sin-
gle band of the electron states can be assumed. The
Fermi surface of such a metal is considered to be al-
most a closed entity that is similar in shape to a sphere.
It will be demonstrated that the description of electron
magnetotransport in this metal model is not a difficult
task. It should be noted that a former theory of mag-
netoresistance did not give any numerical insight into
the resistance properties of individual metals. Only a
general form of dependence of the magnetoresistance
on the magnetic induction has been examined with no
calculation of the temperature dependence of the metal
data [3 – 12].
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2. The Basic Formulae

When there is no magnetic field (the magnetic in-
duction B = 0) acting on a metal, which is assumed
to be isotropic with respect to the Cartesian coordinate
system, the electric resistance ρ is represented by a ten-
sor

¯̄ρ(0) =
m

nse2τ(0)


 1 0 0

0 1 0
0 0 1


, (1)

where m is the electron mass, ns is the concentration
of electron carriers, and τ(0) the relaxation time due
to the response of the metal system to the electric field
alone. τ(0) is a heavily temperature-dependent para-
meter.

In the next step, when the magnetic field (B �= 0) is
acting in parallel to the z-axis on a metal having the
resistance (1), the resistance tensor becomes [13]

¯̄ρ(B) =
m

nse2τ(B)


 1 −ξ 0

ξ 1 0
0 0 1


, (2)

where

ξ = τ(B)Ω0. (2a)

Here, τ(B) is the relaxation time in the presence of a
non-zero magnetic field induction B, and

Ω0 =
eB
mc

(3)

is the frequency of the electron gyration.
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It is important to note that when the tensor (2) acts
on some column vector, the presence of τ(B) com-
ing from the non-diagonal terms in (2) [see (2a)] is
cancelled because of τ(B) entering the denominator
in (2). This property does not apply to the diagonal
terms of (2). The reciprocal values of τ(B) coming
from these terms remain present in the transformed
vector.

In numerous cases, especially those concerning
semiconductors, the mass m entering (3) is considered
to be very different from that of free electrons, but in
many metals these differences are less dramatic.

Our attention is now focused on the relaxation time
parameter τ(B). Usually it is assumed, less or more
tacitly, that τ(B) is relatively similar to τ(0). However,
this point of view will be reconsidered in the present
paper. In fact, the properties of τ(B) should be consid-
ered quite different from those of τ(0).

Experimentally, in examining the magnetoresis-
tance, the change ∆ρ of the electric resistance due to
the magnetic field B is measured first, and is next re-
ferred to the original resistance ρ(0). Our aim is to
show that only a cooperation of both relaxation times,
τ(0) and τ(B), can lead to a proper estimate of the ratio

∆ρ
ρ(0)

(4)

characteristic for the magnetoresistance effect.

3. Electron Scattering in the Magnetic Field

Beginning with the action of the electric field alone,
the electron motion accelerated by that field is changed
because some defects meet electrons and force them to
change their momentum. Many of these scattering pro-
cesses change the momentum direction exactly, or al-
most exactly, into the opposite of the original momen-
tum direction. However, the same kind of the momen-
tum change is obtained precisely because of the action
of the magnetic field alone. For, in the course of elec-
tron circulation in the magnetic field, the journey of an
electron in some direction that began at a certain orbit
point is changed into a journey in the opposite direc-
tion from the opposite point of the same planar orbit.
This process is repeated periodically with a period reg-
ulated by a (constant) frequency Ω0.

Let the orbit approximate a circle having the ra-
dius R. Then, a change of direction into the opposite
direction is obtained in any orbit when half of the elec-

tron circulation is performed. The length l of a free
path in a chosen direction is approximately

l = 2R. (5)

This path is covered in course of the time interval
Tper/2, where Tper is a full period of the electron cir-
culation.

Evidently, because of (3), the period Tper depends
on B:

Tper =
2π
Ω0

=
2πmc

eB
. (6)

The relaxation time τ is, in general, defined as the
time necessary for an electron to travel a free path of
length l. In the present case, this is

τ = τ(B) =
Tper

2
=

π
Ω0

. (7)

Therefore, in view of (6), the relaxation time τ(B) is in-
versely proportional to B. On the other hand, because
of (7), the product τΩ0 is a constant number that ap-
proaches

ξ = τ(B)Ω0 = π . (8)

In the next section (Section 4), the constant property
of ξ is confirmed by a direct quantum-mechanical cal-
culation.

4. ξξξ Calculated from Equations for the Electron
Magnetotransport

The transport properties of an individual electron are
described by the motion of an electron in a viscous
medium with the friction coefficient χ . The motion is
performed upon the Lorentz force due to the action of a
coupled electric and magnetic field. The parameter χ is
next considered as a reciprocal value of the relaxation
time τ of the charge carriers (see e. g. [14]):

χ =
1
τ
. (9)

If a contribution of the electric field �E is neglected, and
only the magnetic field �B remains of importance [15],
so τ = τ(B), the equation for the velocity vector�v be-
comes [13, 16]:

m
(

d�v
dt

+
�v
τ

)
=

e
c
(�v×�B). (10)
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Equation (10) is examined below when the quan-
tum properties of�v and d�v

dt are taken into account. This
means that dynamical variables of (10) are transformed
into a quantum-mechanical operator form. A classical
free-electron Hamiltonian is [17]

H =
1
2

m(v2
x + v2

y + v2
z) (11)

in which, for the magnetic field taken along the z-axis,
we have

vx =
1
m

(
px − eB

2c
y
)
, (12)

vy =
1
m

(
py +

eB
2c

x
)
, (13)

vz =
1
m

pz. (14)

Simultaneously, because of

Bx = By = 0, (15)

equation (10) can be extended to the equation pair:

m
(

dvx

dt
+

vx

τ

)
=

e
c

vyB, (16)

m
(

dvy

dt
+

vy

τ

)
=−e

c
vxB. (17)

The quantum operators of velocity are

v̂x ≡ dx̂
dt

=
1
ih̄
(xĤ − Ĥx) =

1
m

(
p̂x − eB

2c
y
)
, (12a)

v̂y ≡ dŷ
dt

=
1
ih̄
(yĤ− Ĥy) =

1
m

(
p̂y +

eB
2c

x
)
, (12b)

v̂z ≡ dẑ
dt

=
1
ih̄
(zĤ − Ĥz) =

1
m

p̂z, (12c)

where according to (11)

Ĥ =
1
2

m(v̂2
x + v̂2

y + v̂2
z). (18)

The quantum operators of acceleration, which are

dv̂x

dt
=

1
ih̄
(v̂xĤ − Ĥv̂x), (19)

dv̂y

dt
=

1
ih̄
(v̂yĤ − Ĥv̂y), (20)

can be calculated on the basis of the following commu-
tators [18]:

p̂xĤ − Ĥ p̂x =
eB

2mc
p̂y(p̂xx− xp̂x)

+
1

2m

(
eB
2c

)2

(p̂xx2 − x2 p̂x)

=− eB
2mc

p̂yih̄+
1

2m

(
eB
2c

)2

(−2ih̄x),

(21a)

yĤ − Ĥy =
1

2m

[
yp̂2

y − p̂2
yy+

eB
c

x(yp̂y − p̂yy)
]

= ih̄
p̂y

m
+

1
2m

eB
c

ih̄x,
(21b)

applied in the case of operator (19) due to (12a),
whereas

p̂yĤ − Ĥ p̂y =− eB
2mc

p̂x(p̂yy− yp̂y)

+
1

2m

(
eB
2c

)2

(p̂yy2 − y2 p̂y)

=
eB

2mc
p̂xih̄+

1
2m

(
eB
2c

)2

(−2ih̄y),

(22a)

xĤ − Ĥx =
1

2m

[
− eB

c
y(xp̂x − p̂xx)+ xp̂2

x − p̂2
xx
]

= ih̄
p̂x

m
− 1

2m
eB
c

ih̄y, (22b)

are applied in the case of operator (20) due to (12b).
Evidently, the term

1
2

mv̂2
z =

1
2m

p̂2
z (23)

present in Ĥ does not provide any contribution to the
commutators.

Because of (12a) and from (21a) and (21b), the fol-
lowing result is obtained for commutator (19):

dv̂x

dt
=

1
ih̄m

[
(p̂xĤ − Ĥ p̂x)− eB

2c
(yĤ − Ĥy)

]

=
1

ih̄m

[
− eB

2mc
p̂yih̄− 1

m

(
eB
2c

)2

ih̄x

− eB
2c

(
ih̄

p̂y

m
+

eB
2mc

ih̄x
)]

=
1
m

[
− eB

mc
p̂y − 2

m

(
eB
2c

)2

x

]

=− eB
cm2

(
p̂y +

eB
2c

x
)
.

(24)
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For the next step, because of (13a), the results of (22a)
and (22b) produce the commutator in (20)

dv̂y

dt
=

1
ih̄m

[
(p̂yĤ − Ĥ p̂y)+

eB
2c

(xĤ − Ĥx)
]

=
1

ih̄m

[
ih̄p̂x

eB
2mc

− 1
m

(
eB
2c

)2

ih̄y

+
eB
2c

(
ih̄

p̂x

m
− eB

2mc
ih̄y

)]

=
1
m

[
eB
mc

p̂x − 2
m

(
eB
2c

)2

y
]

=
eB

cm2

(
p̂x − eB

2c
y
)
.

(25)

The next transformation can be carried out by con-
sidering (3). Based on (12b) and (3), the result in (24)
is simplified to

dv̂x

dt
=−Ω0v̂y, (26)

whereas, based on (12a) and (3), the result in (25) is
simplified to:

dv̂y

dt
= Ω0v̂x. (27)

Expressions (26) and (27) can be used next in the
quantized formulae for the transport equations (16)
and (17) which become

m
(

dv̂x

dt
+

v̂x

τ

)
= m

(
−Ω0v̂y+

v̂x

τ

)
=

e
c

v̂yB, (28)

m
(

dv̂y

dt
+

v̂y

τ

)
= m

(
Ω0v̂x +

v̂y

τ

)
=−e

c
v̂xB. (29)

By taking into account (3) and (26), we have,
from (28), the equation

−Ω0v̂y +
v̂x

τ
=

eB
mc

v̂y = Ω0v̂y (30)

or

v̂x

τ
= 2Ω0v̂y. (30a)

In the same way, (29) can be transformed into

Ω0v̂x +
v̂y

τ
=− eB

mc
v̂x =−Ω0v̂x (31)

v̂y

τ
=−2Ω0v̂x. (31a)

The squared values of (30a) and (31a) can be calcu-
lated and added together. These give the equation

1
τ2 (v̂

2
x + v̂2

y) = 4Ω 2
0 (v̂

2
x + v̂2

y) (32)

from which we obtain

1
τ2Ω 2

0
= 4. (33)

Therefore, the product

ξ = τΩ0 =
1
2

(34)

is a definite quantity independent of the strength of the
field B entering the expression for the frequency Ω0
in (3). Similar ξ can be obtained for the electron trans-
port considered quantum-mechanically in crystal lat-
tices having high point-group symmetry. The physical
consequences of this fact are discussed below.

5. The Tensor of Magnetoresistance Modified by
the Effect of a Constant ξξξ

In numerous experiments, the attention is focused
on a transversal magnetoresistance which means that
the current is measured in a plane that is normal to
the magnetic field. In the present paper, explicit cal-
culations are limited to this case. In view of Sections 3
and 4, two relaxation times should be distinguished.
One, labeled by τ(0), exists in the absence of the mag-
netic field (B = 0) and regulates the electron trans-
port that is due to the electric field alone. This τ(0) is
completely different from another relaxation time, la-
beled τ(B), which regulates the motion in the magnetic
field and enters a part of the magnetoresistance ten-
sor, depending effectively on B. Both relaxation times
are assumed to satisfy the Matthiessen rule. Therefore,
they add up to an effective relaxation time according to
the formula

1
τeff

=
1

τ(0)
+

1
τ(B)

. (35)

A constant ξ , for example that of (8) or (34), implies
the relation

1
τ(B)

=
Ω0

ξ
. (36)

Assuming for ¯̄ρ(0) the isotropic tensor of (1) and for
¯̄ρ(Bz) the magnetoresistance tensor represented in (2),
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Table 1. Transversal magnetoresistance of Ia group (alkali)
metals calculated from the formula (39) compared with the
experimental data [19]. The empirical correcting factor r [19]
fits τ(0) taken from Table 10 to the values corresponding
with the temperature of the measurements.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Li, polycrystal:

78 0.137 100 0.036 0.02
78 0.137 200 0.072 0.08
78 0.137 300 0.108 0.15

20.4 0.0243 30.4 0.062 0.11

Na, polycrystal:
80 0.2 300 0.269 0.07

Na, single crystal:
20.4 0.0043 16 0.667 0.08
20.4 0.0043 25 1.042 0.11
20.4 0.0043 31.1 1.297 0.15
20.4 0.0043 39.5 1.647 0.19

Na, polycrystal:
20.4 0.00675 9.36 0.249 0.07
20.4 0.00675 15.6 0.414 0.15
20.4 0.00675 22 0.584 0.23
20.4 0.00675 31.5 0.837 0.41
20.4 0.00675 35.1 0.932 0.50

K, polycrystal:
20.4 0.0247 15.45 0.144 0.018
20.4 0.0247 22.2 0.206 0.029
20.4 0.0247 31.3 0.291 0.43
20.4 0.0247 35.1 0.326 0.50

Rb, polycrystal:
14 0.0339 40 0.185 0.004

Cs, polycrystal:
20.4 0.0746 40 0.063 0.03

we obtain for a full tensor of magnetoresistance in the
field B = Bz the expression

¯̄ρ tot(B) = ¯̄ρ(0)+ ¯̄ρ(B) =

m
nse2τ(0)


1 0 0

0 1 0
0 0 1


+

m
nse2τ(B)


1 −ξ 0

ξ 1 0
0 0 1


.

(37)

Because a constant ξ is established for the electron
transport in the (x,y)-plane, the practical applications
of formula (37) to the transversal magnetoresistance
can be limited only to that plane. In this case, (37) is
reduced to

¯̄ρ tot(B) =
m

nse2τ(0)

(
1 0
0 1

)
+

m
nse2τ(B)

(
1 −ξ
ξ 1

)

=
m

nse2τ(0)

(
1 0
0 1

)
+

Bz

nseξ c

(
1 −ξ
ξ 1

)
.

(38)

In the second step of (38), the reciprocal value of τ(B)

Table 2. Transversal magnetoresistance of IIa group met-
als calculated from the formula (39) compared with the ex-
perimental data [19]. The empirical correcting factor r [19]
fits τ(0) taken from Table 10 to the values corresponding
with the temperature of the measurements.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Be, polycrystal:

291 1 100 0.003 0.1
291 1 200 0.006 0.35
291 1 300 0.009 0.66
78 0.33 100 0.009 0.4
78 0.33 200 0.017 1.3
78 0.33 300 0.026 2.3

Mg, polycrystal:
291 1 100 0.006 0.02
291 1 200 0.012 0.08
291 1 300 0.018 0.17
195 0.68 100 0.009 0.05
195 0.68 200 0.018 0.17
195 0.68 300 0.027 0.3
4.21 0.00516 5 0.06 1.9
4.21 0.00516 10 0.119 4.7
4.21 0.00516 15 0.179 8.0
4.21 0.00516 20 0.239 11.9

Ba, polycrystal:
20.4 0.0275 8.5 0.003 0.04
20.4 0.0275 18 0.007 0.14
20.4 0.0275 26.9 0.01 0.28
20.4 0.0275 33.2 0.013 0.41
14 0.0152 17.63 0.012 0.34
14 0.0152 23.3 0.016 0.54
14 0.0152 26.6 0.019 0.66
14 0.0152 33.2 0.023 0.96

Ba, polycrystal:
4.22 0.0079 4.5 0.006 0.11
4.22 0.0079 8.6 0.012 0.36
4.22 0.0079 15 0.02 0.80
4.22 0.0079 23.7 0.032 1.64
4.22 0.0079 27.8 0.037 2.11
4.22 0.0079 31 0.042 2.57
4.22 0.0079 33.9 0.046 3.02
1.85 0.0071 29.4 0.044 2.39
1.85 0.0071 33.9 0.051 3.08

is replaced by ξ defined in (8) and combined with (3)
for B = Bz.

An examination of the ratio (4) can be reduced,
for example, to only one diagonal component of the
transversal magnetoresistance. In this case we obtain
from (38)

∆ρxx

ρxx(0)
=

ρ tot
xx (B)−ρxx(0)

ρxx(0)
=

1
τ(0) +

1
τ(B) − 1

τ(0)
1

τ(0)
=

τ(0)
τ(B)

=
Bz

nseξ c
nse2τ(0)

m
=

eBz

cm
τ(0)

ξ
=

Ω0τ(0)
ξ

.

(39)

This is a very simple result and its use is demonstrated
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Table 3. Transversal magnetoresistance of one IIIa group
metal (Al) calculated from (39) compared with the experi-
mental data [19]. The meaning of the empirical correcting
factor r is the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Al, single crystal:

20 0.00184 5 0.122 0.77
20 0.00184 10 0.244 1.22
20 0.00184 20 0.487 1.81
20 0.00184 30 0.731 1.96
20 0.00184 34 0.828 2.06
14 0.00141 5 0.159 0.93
14 0.00141 10 0.318 1.48
14 0.00141 15 0.477 1.74
14 0.00141 20 0.636 1.91

Al, polycrystal:
77.2 0.161 5.2 0.0014 0.0008
77.2 0.161 10.3 0.0029 0.0025
77.2 0.161 14.6 0.0041 0.0048
77.2 0.161 20.1 0.0056 0.0087
77.2 0.161 23.5 0.0065 0.011
20.4 0.0675 4.1 0.0027 0.003
20.4 0.0675 10.3 0.0068 0.017
20.4 0.0675 14.6 0.0097 0.031
20.4 0.0675 20.1 0.0133 0.051
20.4 0.0675 23.5 0.0156 0.064

below in comparing the experimental data [19] with
those calculated from (39); see Table 1 – 9. Formally,
a formula similar to (39) is found in a study of a two-
dimensional electron gas scattered by a random ensem-
ble of antidots supplemented by a smooth random po-
tential. In this case the magnetoresistance is a ratio of
the transport time for the scattering of the antidot ar-
ray and the transport scattering time by the long-range
disorder [20].

The ratios (39) are usually considered at some tem-
perature T that influences τ(0). A factor of r, depend-
ing on T , couples τ(0) = τ(B = 0,T ) with τ(B =
0,T = 273K), which is the relaxation time at T = 273K
listed in Table 10 [21, 22]. We have for T < 273K [19]

1
r

τ(B = 0;T = 273K) = τ(B = 0;T ). (40)

Because we regularly have r < 1 (see [19], exception
are some cases of r = 1), the time τ(0) increases with
a decrease of T . In fact, two kinds of r, one referring
to zero degrees Celsius and the other referring to room
temperature (∼ 17 degrees Celsius), are used in [19].
In our treatment, we consider both kinds of r on equal
footing.

An application of (39) is facilitated if we note that
the field of 1 Gauss (1 G) causes the cyclotron fre-

Table 4. Theoretical transversal magnetoresistance [see (39)]
of one Va group metal (Nb) and two VIIIa group metals (Pd,
Pt) compared with the experimental data [19]. The meaning
of the correcting factor r is the same as in the aformentioned
tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Nb, polycrystal:

20.4 0.0682 40 0.014 0.0014

Pd, polycrystal:
78 0.17 100 0.030 0.02
78 0.17 200 0.061 0.06
78 0.17 300 0.091 0.10

Pt, polycrystal:
78 0.185 100 0.027 0.008
78 0.185 200 0.055 0.037
78 0.185 300 0.082 0.072

20.4 0.0067 8 0.06 0.04
20.4 0.0067 19.5 0.15 0.15
20.4 0.0067 26.4 0.20 0.23
20.4 0.0067 30.7 0.23 0.28
20.4 0.0067 35.8 0.27 0.35
20.4 0.0067 40.1 0.30 0.42

Pt, polycrystal:
14 0.0034 8 0.12 0.12
14 0.0034 19.5 0.29 0.40
14 0.0034 26.4 0.39 0.59
14 0.0034 30.7 0.46 0.72
14 0.0034 35.8 0.53 0.89
14 0.0034 40.1 0.60 1.07

4.22 0.0022 8 0.18 0.23
4.22 0.0022 19.5 0.45 0.75
4.22 0.0022 26.4 0.61 1.1
4.22 0.0022 30.7 0.70 1.3
4.22 0.0022 35.8 0.82 1.7
4.22 0.0022 40.1 0.92 2.0

quency

Ω 1G
0

∼= 1.76× 107s−1, (40a)

in which the number is expressed in radians. In the
examined metals, we assumed that the magnetic field
strength of 1 Oersted causes the induction strength al-
most equal to 1 Gauss [23]. Moreover, no corrections
for the effective electron mass are considered in this
paper.

Two values of ξ , equal to an elementary ξ obtained
in (8) and a quantum-mechanical ξ of (34), respec-
tively, can be applied. Computational practice – espe-
cially for alkali metals – shows, however, that gener-
ally ξ of (8) fits the experimental data much better, and
only the theoretical results based on ξ of (8) are listed
in the tables. The results corresponding to ξ of (34) can
be obtained from the tables by multiplying the theoret-
ical data by a factor of
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Table 5. Theoretical transversal magnetoresistance of the Ib
group (noble) metals [see (39)] compared with experimental
data [19]. The meaning of the empirical correcting factor r is
the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Cu, polycrystal:

78 0.141 100 0.11 0.1
78 0.141 200 0.21 0.3
78 0.141 300 0.32 0.5

77.2 0.148 23.6 0.024 0.01
63.8 0.094 23.6 0.038 0.02
20.4 0.02 23.6 0.178 0.19
14.2 0.02 23.6 0.178 0.19

Cu, polycrystal:
4.2 0.0089 30 0.51 0.5
4.2 0.0089 60 1.02 1.1
4.2 0.0089 90 1.53 2.0
4.2 0.0089 120 2.04 3.2
4.2 0.0089 150 2.55 4.6

Ag, polycrystal:
78 0.181 100 0.12 0.09
78 0.181 200 0.25 0.23
78 0.181 300 0.37 0.37

Ag, rough crystal state:
20.4 0.00293 4.58 0.35 0.51
20.4 0.00293 8.81 0.67 1.01
20.4 0.00293 10.85 0.83 1.33

Au, polycrystal:
79 0.219 18.5 0.014 0.005
79 0.219 25.5 0.02 0.010
79 0.219 31.5 0.024 0.012
79 0.219 35.8 0.027 0.018
79 0.219 40.1 0.031 0.018

20.4 0.0071 7.84 0.19 0.25
20.4 0.0071 15.3 0.36 0.59
20.4 0.0071 26 0.62 1.08
20.4 0.0071 33.9 0.80 1.43
20.4 0.0071 39.8 0.94 1.71

Au, polycrystal:
14 0.0023 7.84 0.57 0.9
14 0.0023 15.3 1.1 1.9
14 0.0023 26 1.9 3.2
14 0.0023 33.9 2.5 4.2
14 0.0023 39.8 2.9 5.0

4.22 0.00085 8 1.6 2.2
4.22 0.00085 15.8 3.1 4.5
4.22 0.00085 26.5 5.2 7.6
4.22 0.00085 34.2 6.8 9.7
4.22 0.00085 40.1 7.9 11.2

ξ elementary/ξ quantum = 2π (41)

which is the ratio of ξ calculated in (8) and (34).

6. Discussion

A general result obtained in the present calculations
is a systematic linear increase of the transversal mag-

Table 6. Theoretical transversal magnetoresistance of the
IIb group metals [see (39)] compared with experimental
data [19]. The meaning of the empirical correcting factor r
is the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Zn, polycrystal:

291 1 300 0.008 0.06
195 0.68 300 0.012 0.12
78 0.19 100 0.014 0.18
78 0.19 200 0.029 0.57
78 0.19 300 0.043 0.93

77.2 0.202 23.6 0.003 0.02
20.4 0.0125 5.2 0.011 0.21
20.4 0.0125 10.3 0.023 0.49
20.4 0.0125 14.6 0.032 0.75
20.4 0.0125 20.1 0.044 1.12
20.4 0.0125 23.6 0.052 1.38
14.2 0.007 5.2 0.02 0.4
14.2 0.007 10.3 0.04 1.0
14.2 0.007 14.6 0.057 1.6
14.2 0.007 20.1 0.079 2.5
14.2 0.007 23.6 0.093 3.1

Cd, polycrystal:
291 1 300 0.009 0.08
195 0.68 300 0.014 0.19
78 0.22 100 0.014 0.24
78 0.22 200 0.029 0.58
78 0.22 300 0.043 0.93

77.2 0.2513 2.1 0.0003 0.0004
77.2 0.2513 4.1 0.0005 0.002
77.2 0.2513 10.3 0.0013 0.010
77.2 0.2513 14.6 0.0018 0.018
77.2 0.2513 23.6 0.0029 0.038

Cd, polycrystal:
20.4 0.023 2.1 0.0029 0.042
20.4 0.023 4.1 0.0056 0.12
20.4 0.023 10.3 0.014 0.43
20.4 0.023 14.6 0.020 0.66
20.4 0.023 23.6 0.032 1.16
14.2 0.0081 2.1 0.008 0.2
14.2 0.0081 4.1 0.016 0.5
14.2 0.0081 10.3 0.04 1.5
14.2 0.0081 14.6 0.057 2.2
14.2 0.0081 23.6 0.091 4.1

Cd, single crystal:
14 0.00645 16.3 0.08 1.8
14 0.00645 24.3 0.12 3.6
14 0.00645 29.4 0.14 5.0
14 0.00645 32.2 0.16 5.9
14 0.00645 35.1 0.17 6.9

netoresistance (4) with the strength B of the magnetic
field. This behaviour, dictated theoretically by the for-
mula (39), is roughly confirmed by the experimental
data listed in Tables 1 – 9.

A very accurate linear increase of magnetoresis-
tance with an increase of the field B has been ob-
tained experimentally for various samples of metal-
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Table 6 (continued).
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Cd, single crystal:

20.4 0.0193 5.7 0.009 0.38
20.4 0.0193 11.2 0.018 0.85
20.4 0.0193 18.4 0.03 1.5
20.4 0.0193 24.3 0.04 2.0
20.4 0.0193 30.4 0.05 2.5
20.4 0.0193 36.6 0.06 2.9
14 0.0063 5.7 0.028 0.92
14 0.0063 11.2 0.056 2.01
14 0.0063 18.4 0.092 3.7
14 0.0063 24.3 0.12 5.3
14 0.0063 30.4 0.15 7.5
14 0.0063 36.6 0.18 9.4

4.22 0.00051 5.7 0.35 42
4.22 0.00051 11.2 0.69 151
4.22 0.00051 17.7 1.09 404
4.22 0.00051 24.6 1.51 677
4.22 0.00051 30 1.85 1020
4.22 0.00051 36.2 2.23 1425

Cd, single crystal:
14 0.00645 16.3 0.08 1.8
14 0.00645 24.3 0.12 3.6
14 0.00645 29.4 0.14 5.0
14 0.00645 32.2 0.16 5.9
14 0.00645 35.1 0.17 6.9

Table 7. Theoretical transversal magnetoresistance of the
IIIb group metals [see (39)] compared with experimental
data [19]. The meaning of the empirical correcting factor r
is the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Ga, polycrystal:

195 0.65 100 0.0015 0.033
195 0.65 200 0.0029 0.12
195 0.65 300 0.004 0.17
80 0.21 100 0.005 0.28
80 0.21 200 0.009 0.58
80 0.21 300 0.014 0.87

Ga, polycrystal:
165 0.63 300 0.01 0.03
80 0.22 100 0.01 0.01
80 0.22 200 0.019 0.06
80 0.22 300 0.029 0.14
78 0.2171 10 0.001 0.0006
78 0.2171 15 0.0015 0.001
78 0.2171 20 0.002 0.002
78 0.2171 25 0.0025 0.003
78 0.2171 30 0.0029 0.004
78 0.2171 35 0.0034 0.006
78 0.2171 40 0.0039 0.008

20.4 0.023 10 0.009 0.02
20.4 0.023 15 0.014 0.04
20.4 0.023 20 0.019 0.06
20.4 0.023 25 0.023 0.08
20.4 0.023 30 0.028 0.11
20.4 0.023 35 0.032 0.14
20.4 0.023 40 0.037 0.17

Table 7 (continued).
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
In, polycrystal:

14 0.00855 10 0.025 0.09
14 0.00855 15 0.037 0.16
14 0.00855 20 0.050 0.23
14 0.00855 25 0.062 0.30
14 0.00855 30 0.075 0.38
14 0.00855 35 0.087 0.45
14 0.00855 40 0.10 0.52

4.22 0.00119 10 0.18 0.84
4.22 0.00119 15 0.27 1.02
4.22 0.00119 20 0.36 1.12
4.22 0.00119 25 0.45 1.19
4.22 0.00119 30 0.54 1.25
4.22 0.00119 35 0.63 1.28

Tl, polycrystal:
80 0.23 100 0.0054 0.025
80 0.23 200 0.011 0.087
80 0.23 300 0.016 0.159

Table 8. Theoretical transversal magnetoresistance of the
IVb group metals [see (39)] compared with experimental
data [19]. The meaning of the empirical correcting factor r
is the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Sn, polycrystal:

291 1 300 0.0039 0.02
80 0.22 100 0.0059 0.043
80 0.22 200 0.012 0.13
80 0.22 300 0.018 0.23

Pb, polycrystal:
291 1 300 0.0024 0.01
80 0.25 300 0.0094 0.05

20.4 0.02965 8 0.0021 0.0026
20.4 0.02965 15.8 0.0042 0.0078
20.4 0.02965 24.4 0.0065 0.018
20.4 0.02965 31.9 0.0084 0.031
20.4 0.02965 39.8 0.011 0.047
14 0.01052 8 0.006 0.017
14 0.01052 15.8 0.012 0.060
14 0.01052 24.4 0.018 0.12
14 0.01052 31.9 0.024 0.19
14 0.01052 39.8 0.03 0.27

4.22 0.000175 8.0 0.36 12
4.22 0.000175 15.8 0.71 37
4.22 0.000175 24.4 1.1 74
4.22 0.000175 31.8 1.4 116
4.22 0.000175 40 1.8 174

lic potassium [24]. The observed ∆ρ changed linearly
with B, especially for high B, with no tendency of sat-
uration expected by the former theories [25]. This be-
haviour has been confirmed experimentally not only
for polycrystalline but also for monocrystalline potas-
sium samples [26].
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Table 9. Theoretical transversal magnetoresistance of the
IVb group metals [see (39)] compared with experimental
data [19]. The meaning of the empirical correcting factor r
is the same as in the aformentioned tables.
temperature correcting field intensity theoretical experimental

(in K) factor r B (in kG) ∆ρ/ρ(0) ∆ρ/ρ(0)
Sb, polycrystal:

291 1 100 0.0003 0.8
291 1 200 0.0006 2.2
291 1 300 0.0009 3.5
195 0.67 100 0.0005 1.7
195 0.67 200 0.0009 4.8
195 0.67 300 0.0014 8.0

Sb, polycrystal:
80 0.3 100 0.001 7
80 0.3 200 0.0021 23
80 0.3 300 0.0031 40

Sb, single crystal:
79.2 0.1895 3.43 0.0001 0.15
79.2 0.1895 6.75 0.0001 0.40
79.2 0.1895 10.1 0.0002 0.74
79.2 0.1895 12.1 0.0002 1.01

Sb, single crystal:
78.1 0.1826 3.43 0.0001 0.15
78.1 0.1826 6.75 0.0001 0.43
78.1 0.1826 10.1 0.0002 0.81
78.1 0.1826 12.1 0.0002 1.11

Sb, single crystal:
77.8 0.1763 3.43 0.0001 0.11
77.8 0.1763 6.75 0.0001 0.31
77.8 0.1763 10.1 0.0002 0.60
77.8 0.1763 12.1 0.0002 0.81

Bi, polycrystal:
291 1 300 0.0004 37
195 0.67 300 0.0006 196
80 0.346 300 0.0011 1360

Bi, single crystal:
14.15 0.024 4.0 0.0002 260
14.15 0.024 10.1 0.0005 1506
14.15 0.024 15.1 0.0008 3544
14.15 0.024 20.3 0.0011 4655
14.15 0.024 25.0 0.0013 5483
14.15 0.024 30.8 0.0017 11954

In Table 11, we calculated the average value (the
arithmetical mean) of the ratio

s =
(∆ρ/ρ(0))theor

(∆ρ/ρ(0))exp (42)

for the metals examined in Tables 1 – 9. Only metals
for which several measurements were taken into ac-
count are considered in these kind of statistics. The ra-
tios presented in Table 11 give a sense of the accuracy
of the theory developed in the present paper.

Metals like Li, Pd, Pt, Cu, Ag, Au, and Al have their
average ratio s from (42) within, or at the limit, of the

Table 10. Relaxation times τ(0) (in 10−14 s) from [21]
and [22] applied in Tables 1 – 9. These τ(0) refer to the tem-
perature 273 K and are corrected for the measurements tem-
peratures by dividing τ(0) by the empirical factor r given in
Tables 1 – 9.
Li 0.88 Be 0.51 Pd 0.92
Na 3.2 Mg 1.1 Pt 0.9
K 4.1 Ba 0.19 Cu 2.7
Rb 2.8 Al 0.8 Ag 4.0
Cs 2.1 Nb 0.42 Au 3.0

Zn 0.49 Ga 0.17 Sn 0.23
Cd 0.56 In 0.38 Pb 0.14

Tl 0.22

Sb 0.055 Bi 0.023

Table 11. A control of the accuracy of the theory: the aver-
age value of the ratio s of the formula (42) calculated for the
metal cases presented in Tables 1 – 9.
Li Na K
1.0 5.2 4.1
Be Mg Ba
0.017 0.10 0.03
Pd Pt
1.15 0.91
Cu Ag Au
1.04 0.91 1.02
Zn Cd
0.06 0.09
Al Ga In Tl
0.50 0.02 0.45 0.15
Sn Pb
0.12 0.22
Sb Bi
3.0×10−4 1.7×10−6

interval

0.5 < sav < 1.5 (43)

which indicates good agreement between experiment
and theory. Less agreement is found for the metals
whose average s is either within

0.1 < sav < 0.5 (44a)

(Mg, In, Tl, Sn, Pb) or

0.01 < sav < 0.1 (44b)

(Be, Ba, Zn, Ca, Ga). Special cases of sav concern Sb
and Bi. The sav in these metals differ by several orders
from the lower limit of (44a), indicating a predomi-
nantly open character of the electron orbits. The largest
theoretical magnetoresistance (4) presented in the ta-
bles is 7.9 for Au (T = 4.22 K and B= 40.1 kG). Its ex-
perimental counterpart amounts to 11.2. In calculating
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the theoretical data for Au only polycrystalline sam-
ples were taken into account: the monocrystals of Au
seem to make sav very much outside the interval (43)
and this can be connected with special properties (giant
fluctuations) of the magnetoresistance observed with
the direction changes of the magnetic field [27], which
are not considered in the present paper.

From the individual metal cases examined in Ta-
bles 1 – 9 Rb gives the ratio s in (42) far above the
upper limit of the interval in (43). The same property
characterizes s of Nb, but Cs has its s rather close to
the upper limit of (43).

7. Summary

A method is presented in which the transversal mag-
netoresistance in metals is calculated and is compared
with experimental data. Numerous metal cases, corre-
sponding to various magnetic field strengths and mea-
surement temperatures, were examined. To the best of
our knowledge, no comparison of a similar extent us-
ing magnetoresistance data has been previously under-
taken.

The theory is based on an assumption that two kinds
of relaxation time, one due to a stationary electric field
and another one corresponding to the action of the
magnetic field alone, should be taken into account. Si-
multaneously, the band structure of a metal is simpli-
fied to a single band of states for which no particular
effective mass is incorporated into the formalism. In
addition, the problem of preparing the metal samples,
which can be an important factor in searching for rea-
sons for the disagreement between the experiment (see
e. g. [24]) and theory, has been neglected.

Agreement between the results of the present
method and the experimental data depends strongly
on the kind of metal examined. The best agreement is
found for metals like Li, Pd, Pt, and noble metals (Cu,
Ag, Au). Fair agreement is attained for Al and In.

Metals like Sb and Bi are found to be beyond of
the area of approach provided by the present theory.
A reason for that is a predominantly open character of
the electron orbits on the Fermi surfaces; see e. g. [13].

Preliminary calculations leading to the properties of
the relaxation time in the presence of the magnetic field
similar to those applied in the present paper have been
done in [28 – 31].
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