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The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted
from below through porous medium is considered in the presence of a uniform vertical magnetic
field. Following the linearized stability theory and normal mode analysis, the dispersion relation is
obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and
couple-stress postpone the onset of convection whereas medium permeability hastens the onset of
convection. Graphs have been plotted by giving numerical values to the parameters to depict the
stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes
in the system, which were non-existent in their absence. A condition for the system to be stable is
obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of
overstability are also obtained.
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Porous Medium.

1. Introduction

The investigation of double-diffusive convection is
motivated by its interesting complexities as a double-
diffusion phenomena as well as its direct relevance
to geophysics and astrophysics. The conditions under
which convective motion in double-diffusive convec-
tion are important (e. g. in lower parts of the Earth’s
atmosphere, astrophysics, and several geophysical sit-
uations) are usually far removed from the considera-
tion of a single component fluid and rigid boundaries
and therefore it is desirable to consider a fluid acted on
by a solute gradient and free boundaries.

When the fluids are compressible, the equations
governing the system become quite complicated.
Spiegel and Veronis [1] have simplified the set of equa-
tions governing the flow of compressible fluids under
the assumptions that (a) the depth of the fluid layer is
much less than the scale height, as defined by them,
and (b) the fluctuations in temperature, density, and
pressure, introduced due to motion, do not exceed their
total static variations.

Under the above approximations, the flow equations
are the same as those for incompressible fluids, except
that the static temperature gradient is replaced by its
excess over the adiabatic one and Cv is replaced by Cp.
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With the growing importance of non-Newtonian flu-
ids in modern technology and industry, the investiga-
tions of such fluids are desirable. The theory of couple-
stress fluids has been formulated by Stokes [2]. One of
the applications of couple-stress fluids is the study of
the mechanisms of lubrication of synovial joints. The
normal synovial fluid is a viscous, non-Newtonian fluid
and is generally clear or yellowish. The theory due to
Stokes [2] allows for polar effects such as the presence
of couple stresses and body couples. According to this
theory, couple stresses are found to appear in notice-
able magnitudes in fluids with very large molecules.
Since the long-chain hyaluronic acid molecules are
found as additives in synovial fluid, Walicki and Wal-
icka [3] modelled the synovial fluid as couple-stress
fluid in human joints. The synovial fluid is the natu-
ral lubricant of joints of the vertebrates. The detailed
description of the joint lubrication has very important
practical applications. Practically all diseases of joints
are caused by or connected with a malfunction of the
lubrication. The efficiency of the physiological joint lu-
brication is caused by several mechanisms. The syn-
ovial fluid is, due to its content of the hyaluronic acid,
a fluid of high viscosity, near to a gel.

Thermosolutal convection in a couple-stress fluid
in presence of a magnetic field and rotation, sep-
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arately, has been investigated by Kumar and Singh
[4, 5]. The problem of thermal instability of a com-
pressible, electrically conducting couple-stress fluid in
the presence of a uniform magnetic field has been con-
sidered by Singh and Kumar [6]. Magnetic fields are
used for clinical purposes in detection and treatment
of certain diseases with the help of magnetic field de-
vices/instruments.

In recent years, the investigations of flow of fluids
through porous media have become an important topic
due to the recovery of crude oil from the pores of reser-
voir rocks.

Keeping in mind the importance in geophysics,
soil sciences, ground water hydrology, astrophysics,
chemical technology, industry, and biomechanics (e. g.
physiotherapy), the double-diffusive convection in a
compressible couple-stress fluid in the presence of a
magnetic field through porous medium has been con-
sidered in the present paper.

2. Formulation of the Problem and Perturbation
Equations

Here we consider an infinite, horizontal, compress-
ible, electrically conducting couple-stress fluid layer
of thickness d in a porous medium, heated and so-
luted from below so that the temperatures, densities,
and solute concentrations at the bottom surface z = 0
are T0, ρ0, and C0, and at the upper surface z = d
are Td, ρd, and Cd, respectively, with the z-axis be-
ing taken as vertical, and that a uniform temperature
gradient β (= |dT/dz|) and a uniform solute gradient
β ′ (= |dC/dz|) are maintained. This layer is acted on
by a uniform vertical magnetic field �H(0,0,H) and the
gravity field �g(0,0,−g).

Assume that Xm is the constant space distribution of
X , X0 is the variation in X in the absence of motion
and X ′ (x, y, z, t) is the fluctuation in X due to the mo-
tion of the fluid. Spiegel and Veronis [1] defined X as
any of the state variables (pressure (p), density (ρ) or
temperature (T )) and expressed these in the form

X (x, y, z, t) = Xm +X0 (z)+X ′ (x, y, z, t) . (1)

The initial state is, therefore, a state in which the fluid
velocity, temperature, solute concentration, pressure,
and density at any point in the fluid are given by

�q= 0, T = T (z), C =C(z), p= p(z), ρ = ρ(z), (2)

respectively, where

T (z) = T0 −β z, C(z) =C0 −β ′z,

p(z) = pm − g
∫ z

0
(ρm +ρ0)dz,

ρ(z) = ρm
[
1−αm(T −Tm)

+α ′
m(C−Cm)+Km(p− pm)

]
,

(3)

and

αm =−
(

1
ρ

∂ρ
∂T

)
m
(= α, say),

α ′
m =−

(
1
ρ

∂ρ
∂C

)
m
(= α ′, say),

Km =

(
1
ρ

∂ρ
∂ p

)
m
.

Let δ p, δρ , θ , γ ,�q(u,v,w) and�h(hx,hy,hz) denote, re-
spectively, the perturbations in pressure p, density ρ ,
temperature T , solute concentration C, fluid veloc-
ity �q(0,0,0) and magnetic field �H(0,0,H). The lin-
earized hydromagnetic perturbation equations, rele-
vant to the problem, are

1
ε

∂�q
∂ t

=− 1
ρm

δ p−�g(αθ −α ′γ)

− 1
k1

(
ν − µ ′

ρm

2
)
�q+

µe

4πρm
( ×�h)× �H,

(4)

·�q = 0, (5)

E
∂θ
∂ t

=

(
β − g

Cp

)
w+κ 2θ , (6)

E ′ ∂γ
∂ t

= β ′w+κ ′ 2γ, (7)

·�h = 0, (8)

ε
∂�h
∂ t

=
(

�H·
)
�q+ εη 2�h. (9)

Here g
Cp

is the adiabatic gradient; ν (= µ/ρm), µ ′, κ ,
κ ′, ε , and k1 stand for kinematic viscosity, couple-
stress viscosity, thermal diffusivity, solute diffusivity,
medium porosity, and medium permeability, respec-
tively. E = ε +(1− ε)(ρsCs/ρ0C) is a constant and E ′ is
a constant analogous to E but corresponding to the so-
lute rather to the heat; ρs, Cs and ρ0, C stand for density
and heat capacity of the solid (porous matrix) material
and the fluid, respectively.

The equation of state is

ρ = ρm[1−α(T −T0)+α ′(C−C0)], (10)
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where α is the coefficient of thermal expansion and α ′
analogous the solute coefficient. The suffix zero refers
to the values at the reference level z = 0. The change in
density δρ caused mainly by the perturbations θ and γ
in temperature and concentration, is given by

δρ =−ρm
(
αθ −α ′γ

)
. (11)

In writing (4), use has been made of (11).
Writing the scalar components of (4) and (9) and

eliminating u, v, hx, hy, and δ p by using (5) and (8),
we obtain[

1
ε

∂
∂ t

+
1
k1

(
ν − µ

ρm

2
)]

2w

−g
(

∂ 2

∂x2 +
∂ 2

∂y2

)
(αθ −α ′γ)− µeH

4πρm

∂
∂ z

2hz = 0,

(12)

(
E

∂
∂ t

−κ 2
)

θ =

(
β − g

Cp

)
w, (13)

(
E ′ ∂

∂ t
−κ ′ 2

)
γ = β w, (14)

ε
(

∂
∂ t

−η 2
)

hz = H
∂w
∂ z

. (15)

Considering the case in which both the boundaries are
free and the temperatures, concentrations at the bound-
aries are kept constant, then the boundary conditions
appropriate to the problem are

w =
∂ 2w
∂ z2 = 0, θ = 0,

γ = 0 at z = 0 and z = d.
(16)

The constitutive equations for the couple-stress fluid
are

τi j = (2µ − 2µ ′ 2)ei j;

ei j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
.

(17)

The conditions on a free surface are the vanishing of
tangential stresses τxz and τyz, which yield

τxz = (µ − µ ′ 2)

(
∂u
∂ z

+
∂w
∂x

)
= 0, (18)

τyz = (µ − µ ′ 2)

(
∂v
∂ z

+
∂w
∂y

)
= 0. (19)

Since w vanishes for all x and y on the bounding sur-
face, it follows from (18) and (19) that

(
µ −µ ′ 2

)
∂u
∂ z

= 0,
(

µ −µ ′ 2
)

∂v
∂ z

= 0. (20)

From the equation of continuity (5) and differentiated
with respect to z, we conclude that

[
µ − µ ′

(
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)]
∂ 2w
∂ z2 = 0, (21)

which on using (12) and (16) implies that

∂ 4w
∂ z4 = 0 at z = 0 and z = d. (22)

Equations (12) and (15), using (16) and (21), yield

∂hz

∂ z
= 0 at z = 0 and z = d. (23)

3. Dispersion Relation

We now analyze the disturbances into normal
modes, assuming that the perturbation quantities are of
the form

[w,θ ,γ,hz] = [W (z),Θ(z),Γ (z),K(z)]

· exp(ikxx+ ikyy+ nt),
(24)

where kx, ky are the wave numbers along x- and y-

directions, respectively, k
(
=
√

k2
x + k2

y

)
is the resul-

tant wave number and n is the growth rate which is, in
general, a complex constant.

Using expression (24), (12) – (15), in non-dimen-
sional form, they become
[

σ
ε
+

1
Pl

{
1−F

(
D2 − a2)}](D2 − a2)W

+
ga2d2

ν
(
αΘ −α ′Γ

)− µeHd
4πρ0ν

(
D2 − a2)DK = 0,

(25)

(
D2 − a2 −E p1σ

)
Θ =−d2

κ
g

Cp
(G− 1)W, (26)

(
D2 − a2 −Eqσ

)
Γ =−β ′d2

κ ′ W, (27)

(
D2 − a2 − p2σ

)
K =−Hd

εη
DW, (28)



P. Kumar and H. Mohan · Double-Diffusive Magneto Convection in Compressible Couple-Stress Fluid 307

where we have put a = kd, σ = nd2

ν , x = x∗ d, y = y∗ d,
z = z∗ d, and D = d

dz∗ . Here p1 =
ν
κ is the Prandtl num-

ber, p2 = ν
η is the magnetic Prandtl number, q = ν

κ ′

is the Schmidt number, Pl =
k1
d2 is the dimensionless

permeability, F = µ ′
ρ0d2ν is the dimensionless couple-

stress parameter, and G =
Cpβ

g is the dimensionless
compressibility parameter. We shall suppress the star
(*) for convenience hereafter. Eliminating Θ , Γ , and K
between (25) – (28), we obtain
(
D2 − a2 −E p1σ

)[{σ
ε
+

1
Pl
(1−FD2 − a2)

}

· (D2 − a2)(D2 − a2 −E ′qσ
)(

D2−a2−p2σ
)
+

Q
ε

D2

· (D2−a2)(D2−a2−E ′qσ
)
+ Sa2(D2−a2−p2σ

)]
W

= Ra2 G−1
G

(
D2−a2−p2σ

)(
D2−a2−E ′qσ

)
W, (29)

where R = gαβ d4

vκ is the Rayleigh number, S = gα ′β ′d4

νκ ′

is the solute Rayleigh number, and Q = µeH2d2

4πρ0νη is the
Chandrasekhar number.

The boundary conditions (16), (22), and (23), in
non-dimensional form, using expression (24) trans-
form to

W = D2W = 0, Θ = 0, Γ = 0,

DK = 0 at z = 0 and z = 1.
(30)

Using the boundary conditions (30), it can be shown
with the help of (25) – (28) that all the even-order
derivatives of W must vanish at z = 0 and z = 1. Hence,
the proper solution of W characterizing the lowest
mode is

W =W0 sinπz, (31)

where W0 is a constant. Substituting the proper solution
(31) in (29), we obtain the dispersion relation

R1 =
G

G− 1

(
1+ x+E p1

σ
π2

)[{
σ

π2ε
+

1
P
(1+π2

·F1+ x)
}
(1+ x)

(
1+ x+E ′q

σ
π2

)(
1+ x+ p2

σ
π2

)

+
Q1

ε
(1+ x)

(
1+ x+E ′q

σ
π2

)
+ S1x

(
1+ x+ p2

σ
π2

)]

·
[

x
(

1+ x+ p2
σ
π2

)(
1+ x+E ′q

σ
π2

)]−1

, (32)

where R1 = R
π4 , S1 = S

π4 , Q1 = Q
π2 , P = π2Pl, and

x = a2

π2 .

4. The Stationary Convection

When the instability sets in as stationary convec-
tion, the marginal state will be characterized by σ = 0.
Putting σ = 0, the dispersion relation (32) reduces to

R1 =
G

G− 1

[
1+ x

x

{
1+ x

P
(1+π2F1+x)+

Q1

ε

}
+ S1

]
.

(33)

Equation (33) expresses the modified Rayleigh number
R1 as a function of the dimensionless wave number x
and the parameters G, P, F , Q1, and S1. For fixed P, F ,
Q1, and S1, let G (accounting for the compressibility
effects) also be kept fixed.

Then we find that

R̄C =

(
G

G− 1

)
RC, (34)

where R̄C and RC denote, respectively, the critical
Rayleigh numbers in the presence and absence of com-
pressibility. G> 1 is relevant here. The cases G< 1 and
G = 1 correspond to negative and infinite values of the
critical Rayleigh numbers in the presence of compress-
ibility, which are not relevant in the present study. The
effect of compressibility is thus to postpone the onset
of double-diffusive convection.

Equation (33) yields

dR1

dS1
=

G
G− 1

, (35)

dR1

dQ1
=

G
G− 1

(1+ x)
εx

, (36)

dR1

dF
=

G
G− 1

π2(1+ x)3

Px
, (37)

dR1

dP
=− G

G− 1
(1+ x)2(1+π2F1+ x)

xP2 , (38)

which imply that stable solute gradient, magnetic field,
and couple-stress postpone the onset of convection
whereas medium permeability hastens the onset of
convection. A result derived by Singh and Kumar [6]
and Kumar [8]. This is in contrast to the result derived
by Kumar and Singh [5] in which couple-stress has
both stabilizing and destabilizing effects. Graphs have
been plotted between R1 and x for various values of S1,
Q1, F1, and P. It is also evident from Figures 1 – 4 that
stable solute gradient, magnetic field, and couple-stress
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Fig. 1. Variation of R1 with x for a fixed G = 10, P = 2,
F1 = 5, Q1 = 25, ε = 0.5 for different values of S1 (= 10, 15,
20).

Fig. 2. Variation of R1 with x for a fixed G = 10, P = 2,
F1 = 5, ε = 0.5, S1 = 10 for different values of Q1 (= 25, 50,
75).

postpone the onset of convection whereas medium per-
meability hastens the onset of convection in a com-
pressible couple-stress fluid heated and soluted from
below through porous medium in hydromagnetics.

5. Some Important Theorems

Theorem 1: The system is stable for G < 1.

Proof: Multiplying (25) by W ∗, the complex conju-
gate of W , integrating over the range of z, and using
(26) – (28) together with the boundary conditions (30),
we obtain

(
σ
ε
+

1
Pl

)
I1 +

F
Pl

I2 − 1
G− 1

Cpακa2

ν
(I3 +E p1σ∗I4)

+
gα ′κ ′a2

νβ ′ (I5 +E ′qσ∗I6)
µeεη

4πρ0ν
(I7 + p2σ∗I8) = 0,

(39)

Fig. 3. Variation of R1 with x for a fixed G = 10, P = 2,
Q1 = 25, S1 = 10, ε = 0.5 for different values of F1 (= 5, 10,
15).

Fig. 4. Variation of R1 with x for a fixed G = 10, F1 = 5,
Q1 = 25, S1 = 10, ε = 0.5 for different values of P (= 2, 4,
6).

where σ∗ is the complex conjugate of σ and the inte-
grals I1 – I8 are all positive definite.

Putting σ = σr + iσi in (39) and equating real and
imaginary parts, we obtain

σr

(
I1

ε
− 1

G− 1
Cpακa2

ν
E p1I4 +

gα ′κ ′a2

νβ ′ E ′qI6

+
µeεη

4πρ0ν
p2I8

)
=−

(
I1

Pl
+

F
Pl

I2

− 1
G− 1

Cpακa2

ν
I3 +

gα ′κ ′a2

νβ ′ I5 +
µeεη

4πρ0ν
I7

)
(40)

and

σi

(
I1

ε
+

1
G− 1

Cpακa2

ν
E p1I4

−gα ′κ ′a2

νβ ′ E ′qI6 − µeεη
4πρ0ν

p2I8

)
= 0.

(41)

It is evident from (40) that if G < 1, σr is negative
meaning thereby the stability of the system, a result de-
rived by Singh and Kumar [6] for non-porous medium.
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Theorem 2: The modes may be oscillatory or non-
oscillatory in contrast to the case of no magnetic field
and in absence of stable solute gradient where modes
are non-oscillatory, for G > 1.

Proof: Equation (41) yields that σi = 0 or σi �= 0,
which means that modes may be non-oscillatory or os-
cillatory. In the absence of stable solute gradient and
magnetic field, (41) gives

σi

(
I1

ε
+

1
G− 1

Cpακa2

ν
E p1I4

)
= 0, (42)

and the terms in brackets are positive definite when
G > 1. Thus σi = 0, which means that oscillatory
modes are not allowed and the principle of exchange
of stabilities is satisfied for a porous medium in com-
pressible, couple-stress fluid in the absence of stable
solute gradient and magnetic field, a result derived by
Sharma and Sharma [7]. This result is true for com-
pressible, couple-stress fluids as well as for incom-
pressible Newtonian fluids (Chandrasekhar [9]) in the
absence of a magnetic field. The presence of each, the
stable solute gradient and the magnetic field, brings os-
cillatory modes (as σi may not be zero) which were
non-existent in their absence.

Theorem 3: The system is stable for 1
G−1

Cpακ
ν ≤

4π2

Pl

[
1+ 27π2F

16

]
and under the condition 1

G−1
Cpακ

ν >

4π2

Pl

[
1+ 27π2F

16

]
, the system becomes unstable.

Proof: From (42) it is clear that σi is zero when the
quantity multiplying it is not zero and arbitrary when
this quantity is zero.

If σi �= 0, equation (40) upon utilizing (41) and the
Rayleigh-Ritz inequality gives

[
4π2

Pl

(
1+

27π2F
16

)
− 1

G− 1
Cpακ

ν

]∫ 1

0
|W |2dz

+
π2 + a2

a2

{
gα ′κ ′a2

νβ ′ I5 +
µeεη

4πρ0ν
I7 +

2σr

ε
I1

}
≤ 0,

(43)

since the minimum values of (π2+a2)
3

a2 and (π2+a2)
2

a2

with respect to a2 are 27π4

4 and 4π2, respectively.
Now, let σr ≥ 0, we necessarily have from inequality

(43) that

1
G− 1

Cpακ
ν

>
4π2

Pl

(
1+

27π2F
16

)
. (44)

Hence, if

1
G− 1

Cpακ
ν

≤ 4π2

Pl

(
1+

27π2F
16

)
, (45)

then σr < 0. Therefore, the system is stable.
Therefore, under condition (45), the system is stable

and under condition (44) the system becomes unstable.

Theorem 4: E p1 > p2 and E p1 > E ′q, are the suffi-
cient conditions for the non-existence of overstability.

Proof: For overstability, we put σ
π2 = iσ1 where σ1

is real, (32) can be written as

R1 =
G

G− 1
(1+ x+ iE p1σ1)

[{
iσ1

ε
+

1
P
(1+π2

·F1+ x)
}
(1+ x)(1+ x+ iE ′qσ1)(1+ x+ ip2σ1)

+
Q1

ε
(1+ x)(1+ x+ iE ′qσ1)+ S1x(1+ x+ ip2σ1)

]

·
[

x(1+ x+ ip2σ1)(1+ x+ iE ′qσ1)

]−1

. (46)

Since for overstability, we wish to determine the crit-
ical Rayleigh number for the onset of instability via a
state of pure oscillations, it is suffice to find conditions
for which (46) will admit of solutions with σ1 real.
Equating the real and imaginary parts of (46) and elim-
inating R1 between them and setting c1 =σ2

1 , b= 1+x,
we obtain

A2c2
1 +A1c1 +A0 = 0, (47)

where

A2 =
q2 p2

2E ′2b2

ε
+

q2 p1 p2
2EE ′2b
P

(l+π2Fb),

A1 =
q2E ′2b3(E p1 − p2)+ p1p2

2b3E
P

(q2E ′2 +P2)

·
{

b4
(

1
ε
+

E p11+π2F
P

)}
Q1

ε
q2E ′2b2(E p1 − p2)

+ S1b(b− 1)p2
2(E p1 −E ′q),

A0=b5
[

b
ε
+

E p11+π2Fb
P

]
+

Fπ2b5

P
(b−1)(E ′q+p2)

+
Q1

ε
b4(E p1 − p2)+ S1xb3(E p1 −E ′q). (48)

Since σ1 is real for overstability, both the values of
c1(= σ2

1 ) are positive. Equation (47) is quadratic in c1
and does not involve any of its roots to be positive, if

E p1 > p2 and E p1 > E ′q. (49)



310 P. Kumar and H. Mohan · Double-Diffusive Magneto Convection in Compressible Couple-Stress Fluid

Thus E p1 > p2 and E p1 > E ′q, are the sufficient
conditions for the non-existence of overstability, the
violation of which does not necessarily imply the
occurrence of overstability.

Acknowledgement
The authors are grateful to the learned referee for his

critical and technical comments, which led to a signif-
icant improvement of the paper.

[1] E. A. Spiegel and G. Veronis, Astrophys. J. 131, 442
(1960).

[2] V. K. Stokes, Phys. Fluids 9, 1709 (1966).
[3] E. Walicki and A. Walicka, Appl. Mech. Eng. 4, 363

(1999).
[4] P. Kumar and M. Singh, Ganita Sandesh, India 22, 147

(2008).
[5] P. Kumar and M. Singh, Z. Naturforsch. 64a, 448

(2009).

[6] M. Singh and P. Kumar, Z. Naturforsch. 65a, 215
(2010).

[7] R. C. Sharma and S. Sharma, Ind. J. Phys. 75B, 137
(2001).

[8] P. Kumar, Italian J. Pure Appl. Math. (in press).
[9] S. Chandrasekhar, Hydrodynamic and Hydromagnetic

Stability, Dover Publication, New York 1981.


