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In this paper two different methods are presented to approximate the solution of the Black-Scholes
equation for valuation of barrier option. These techniques can be applied directly for all types of dif-
ferential equations, homogeneous or inhomogeneous. The use of these methods provides the solution
of the problem in a closed form while the mesh point techniques provide the approximation at mesh
points only. Also, the two schemes need less computational work in comparison with the traditional
methods. These techniques can be employed for problems with initial condition. In this paper we use
the variational iteration and homotopy perturbation methods for solving the Black-Scholes equation
with terminal condition. Numerical results are compared with theoretical solutions in order to con-
firm the validity of the presented procedures.
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1. Introduction

The pricing of options is an important subject in the
quantitative finance. It is of both theoretical and prac-
tical importance since the use of options thrives in the
finance industry recently [1]. As said in [2] the interest
in pricing financial derivative – including pricing op-
tions – arises from the fact that financial derivatives can
be used to minimize losses caused by price fluctuations
of the underlying assets [2]. In the early 1970s Fischer
Black and Myron Scholes made an important discov-
ery in the pricing of stock options. This involved the
development of what has become known as the Black-
Scholes model [3, 4]. Now we follow [4] to present the
assumptions in the following form:

1. The price of asset follows a geometric Brown-
ian motion W (t), meaning that s satisfies the following
stochastic differential equation:

ds(t) = µs(t)dt +σs(t)dW (t).

2. The trend or drift µ (measures the average of
growth of the asset price) and volatility σ (measures
the standard deviation of the returns) are constant for
0 ≤ t ≤ T .
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3. There are no transactions costs or taxes. All se-
curities are perfectly divisible, i. e. the market is fric-
tionless.

4. There are no dividends on the stock during the
life of the option.

5. There are no riskless arbitrage opportunities.
6. Security trading is continuous.
7. Investors can borrow or lend at the same risk-free

rate of interest.
8. The short-term risk-free rate of interest r is con-

stant.

Also we refer the interested reader to [2, 3, 5].
Some of these assumptions have been relaxed by
other researchers. For example variations on the Black-
Scholes formula can be used when r and σ are func-
tions of time [4, 6]. Some of the option prices can be
determined by analytically solving the so-called Black-
Scholes equation. The exact solution of barrier op-
tion is obtained in [7]. Since the other option prices
can not be found analytically, many researchers have
used the numerical schemes to find the solution of the
Black-Scholes equation [2, 6, 8 – 10]. As is said in [11]
some kind of analytical techniques for valuation of
the American options have been proposed by Barone-
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Adesi [12], MacMillan [13] and Johnson [14]. These
techniques basically transform the free boundary value
problem to an integral equation whose analytical for-
mula is obtained by either assuming a numerical ap-
proximation of the unknown optimal exercise bound-
ary or a polynomial expansion of the unknown inte-
grand [11]. Cortes and his co-authors in [8] proposed
a method based on the Mellin transform for solving
the Black-Scholes matrix equation. Company and his
co-authors [9] used a delta-defining sequence of the
involved generalized Dirac delta function and applied
the Mellin transform and obtained the solution of the
modified Black-Scholes equation with jump conditions
for discrete dividend payments and then they used the
Gauss-Hermite approach and the composite Simpson’s
rule for numerical approximations. Authors of [15] by
using the Mellin transform of a class of weak functions
obtained a candidate integral formula for the solution
of the problem and then proved it was a rigorous so-
lution. Recently, Ballester and his co-authors [16] by
applying a semidiscretization technique on the asset,
proposed a numerical solution for the partial differ-
ential equation modelling option with a discrete divi-
dend payment. Finite element approximations are em-
ployed in [17] to solve this equation. A semi-discrete
Galerkin formulation combined with high-order La-
grangian finite elements was used to solve this equa-
tion [18]. Binomial methods, integral equation method,
penalty methods, and Monte-Carlo technique is em-
ployed in [19 – 22], respectively. Lattice approach is
introduced to value path dependent options in [23]. If
an option is constructed with many assets, huge com-
puter memory is necessary in the penalty method. The
binomial and lattice methods also have similar features
as the penalty method. Therefore, if the option is con-
structed with many assets, the Monte-Carlo method
is more effective, but the computational accuracy of
the Monte-Carlo method depends on the quality of
the algorithm to generate random numbers [6]. An-
other popular method is the projected successive over-
relaxation method (PSOR) [5] but the iterative proce-
dure converges slowly. Hon and Mao in [10] utilized
the multi-quadric method to solve this equation. They
proposed the global radial basis functions [6], partic-
ularly Hardly’s multi-quadratic, as a special approxi-
mation for the numerical solution of the option value
and its derivatives in the Black-Scholes equation. They
transformed the Black-Scholes equation into a system
of first-order equations in time. Thus the American
options can then be solved by using the fourth-order

Runge-Kutta formula [24]. Authors of [25] solved
this equation by the linear programming method. Au-
thors of [26] used the homotopy perturbation method
to solve stochastic equations. We refer the interested
reader to the books [4, 5, 7] for more information about
this equation.

The approach in the current paper is different as we
use the semi-analytical techniques [27, 28].

2. The Main Approach
(A Semi-Analytic Approach)

In this paper we use the variational iteration method
(VIM) and the homotopy perturbation method (HPM)
which were proposed by the Chinese researcher J. H.
He [29, 30]. These methods have been employed to
solve a large class of problems with approximations
converging rapidly to accurate solutions [31]. VIM
is employed in [32] to solve the parabolic inverse
problem. He employed VIM for solving the Duff-
ing equation, the problem of mathematical pendulum,
and the equation of eardrum vibrations [31]. Also
He applied VIM to solve fractional differential equa-
tions [33]. VIM is an effective method for search-
ing for various wave solutions including periodic so-
lutions, solitons, and compacton solutions without lin-
earization or weak nonlinearity assumptions [34]. He
applied VIM to autonomous ordinary differential sys-
tems [35] and nonlinear equations with convolution
product nonlinearity [36]. Wazwaz [37] used VIM to
determine rational solutions for the Korteweg-de Vries
(KdV), K(2,2), Burgers, and cubic Boussinesq equa-
tions. In [38] VIM is compared with the Adomian
decomposition method for homogeneous and non-
homogeneous advection problems. The Fokker-Planck
equation is solved in [39] using the variational itera-
tion method. This method is employed in [40] to solve
a model which describes the biological species living
together. Also a partial integro-differential equation
which arises in the modelling of the heat conduction
in materials with memory is investigated in [41]. This
technique is used in [42] to solve an initial-boundary
value problem that combines Neumann and integral
conditions for the wave equation. Author of [43] em-
ployed this method to solve the nonlinear Goursat
problem. The VIM is investigated in [44] to solve some
problems in calculus of variations. The variation iter-
ation method is used to solve the Kawahara equation
arising in the modelling of water waves [45]. The con-
vergence of VIM is investigated in [46].
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Our second procedure in the semi-analytical ap-
proach is based on the homotopy perturbation method.
Authors of [47] used HPM to approximate the gen-
eralized Emden-Fowler equations. HPM was applied
to solve the Klein-Gordon and Sine-Gordon equa-
tions [48]. Odibat and Momani [49] applied HPM to
solve quadratic Riccati differential equation of frac-
tional order. Ramos in [50] presented HPM for the
solution of the Lane-Emden equation which provides
series solutions to this equation. Authors of [51] used
an application of the multistage homotopy perturbation
method for the solutions of the Chen system. Belendez
and his co-authors in [52] applied HPM for an anti-
symmetric nonlinear oscillator. Authors of [53] inves-
tigated the solution of nonlinear integral equations and
employed the homotopy perturbation method to solve
them. This method is modified in [54] to compute the
periodic solutions of a nonlinear oscillator with discon-
tinuities for which the elastic force term is proportional
to sgn(x). It is modified by truncating the infinite series
corresponding to the first-order approximate solution
before introducing this solution in the second-order
linear differential equation. Delay differential equa-
tions are solved in [55] using the homotopy perturba-
tion method. The HPM is proposed in [56] to solve the
inverse problem of the diffusion equation. Also a non-
linear system of differential equations is solved in [57]
using this method. HPM was successfully applied to
many other problems. The interested reader can see the
references [27, 28, 58 – 63]. The remaining of this pa-
per is organized as follows. In Section 3, the option
contracts are described. Variational iteration method,
homotopy perturbation method and their numerical re-
sults are presented in Sections 4 and 5, respectively.
Finally, the conclusions are summarized in Section 6.

3. Different Types of Options

As is said in [4] there are two basic types of options.
A call option gives the holder of the option the right
(not the obligation) to buy an asset by a certain date for
a certain price. A put option gives the holder the right
(not the obligation) to sell an asset by a certain date
for a certain price. The date specified in the contract
is known as the expiration date or maturity. The price
specified in the contract is known as the exercise price
or strike price [3, 4]. Options can be either American or
European, American options can be exercised at any
time during the life of the option, whereas European
options can be exercised exactly at the maturity [5, 7].

In this paper, we will focus on the barrier options.
These options are only weekly path-dependent (an op-
tion whose payoff at exercise or expiry depends, in
some non-trivial way, on the past history of the under-
lying asset price as well as its price at exercise or ex-
piry) and satisfy the Black-Scholes equation. Calls or
puts barrier options are categorized as follows [6, 7]:

1. up-and-in: the option expires worthless unless
the barrier s = B is reached from below before expiry;

2. down-and-in: the option expires worthless unless
the barrier s = B is reached from above before expiry;

3. up-and-out: the option expires worthless if the
barrier s = B is reached from below before expiry;

4. down-and-out: the option expires worthless if the
barrier s = B is reached from above before expiry.

Here, we shall consider the down-and-out option
that is constructed with only one asset. Let s be the cur-
rent stock price, σ the volatility of the stock, and r the
risk-free interest rate. Let V be the price of a barrier
option at time t with expiration date T , exercise price
E , and barrier B. As is mentioned in [6] this option be-
comes invalid if the asset price s reaches the barrier B
from above the barrier during the day of purchase and
the expiration date. Unless the asset price s reaches the
barrier B (s > B) the option is an European call op-
tion [6]. The option price of the down-and-out option
is governed with the Black-Scholes equation [5 – 7]

∂V (s, t)
∂ t

+
σ2

2
s2 ∂ 2V (s, t)

∂ s2 + rs
∂V
∂ s

− rV = 0, if s > B,

V = 0, if s ≤ B, (1)

where σ and r are constant. The terminal condition
on T is given as

V (s,T ) = max(s(T )−E,0). (2)

If s reaches B, the option is invalid, i. e. V (B, t) = 0.
We refer the interested reader to [2] for more discus-

sion.

4. Variational Iteration Method

To illustrate the basic idea of the variational iter-
ation method [29, 31, 32, 34, 35, 37 – 44], we consider
the following equation:

LV (s, t)+NV (s, t) = g(s, t), V (s,0) = f (s), (3)

where L is a linear operator, N is a nonlinear operator,
and g(s, t) is an inhomogeneous term. Then using the
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Fig. 1 (colour online). Plot of absolute
error by VIM.

variational iteration method, the following correction
functional is constructed:

Vn+1 =Vn +
∫ t

0
λ (ξ )(LVn +NṼn − g)dξ , (4)

where λ is the Lagrange multiplier which can be iden-
tified optimally via variational theory. The subscript n
denotes the nth approximation, Ṽn is a restricted vari-
ation. Making the correction functional (4) station-
ary [30, 64] and noticing that δ (0) = 0, λ can be iden-
tified. For linear problems its exact solution can be ob-
tained by only one iteration step due to the fact that
the Lagrange multiplier can be exactly identified. In
nonlinear problems, in order to determine the Lagrange
multiplier in a simple manner, the nonlinear terms have
to be considered as restricted variations [31]. For ap-
plying VIM on (1) – (2), we have proposed this method
in the following form:

Vn+1 =Vn

+
∫ T

t
λ (ξ )

(
∂Vn

∂ξ
+

σ2

2
s2 ∂ 2Ṽn

∂ s2 + rs
∂Ṽn

∂ s
− rVn

)
dξ .

(5)

Taking the variation from both sides of (5) with respect
to Vn, we have

δVn+1 = δVn

+ δ
∫ T

t
λ (ξ )

(
∂Vn

∂ξ
+

σ2

2
s2 ∂ 2Ṽn

∂ s2 + rs
∂Ṽn

∂ s
− rVn

)
dξ =

δVn +
∫ T

t λ (ξ )δV ′
ndξ − ∫ T

t rλ (ξ )δVndξ = 0.

Using integration by parts and considering δVn(T ) =
0, we can write

Table 1. Comparison between the analytical and VIM solu-
tions for the down-and-out option, E = 10, B = 9, σ = 0.05,
r = 0.05, and t = 0.

s Analytical VIM Absolute error
T = 0.25,0.5
1 0 0 0
3 0 0 0
5 0 0 0
7 0 0 0
9 0 0 0

T = 0.25
11 1.12422244 1.12422199 4.456863 ·10−7

13 3.12422199 3.12422199 8.88178 ·10−16

15 5.12422199 5.12422199 8.88178 ·10−16

17 7.12422199 7.12422199 2.664535 ·10−15

19 9.12422199 9.12422199 1.776357 ·10−15

RMSE = 4.456863 ·10−8

T = 0.5
11 1.24693225 1.24690087 3.13765 ·10−5

13 3.24690087 3.24690087 4.441 ·10−16

15 5.24690087 5.24690087 1.7764 ·10−15

17 7.24690087 7.24690087 1.7764 ·10−14

19 9.24690087 9.24690087 0
RMSE = 3.137655 ·10−6

δVn+1 = δVn −λ (ξ )δVn|ξ=t −
∫ T

t
λ ′(ξ )δVndξ

−
∫ T

t
rλ (ξ )δVndξ = 0,

which yields the following stationary conditions:

1−λ (ξ )|ξ=t = 0, (6)

λ ′(ξ )+ rλ (ξ ) = 0. (7)
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Therefore we have λ (ξ ) = exp(−r(ξ −t)). We find the
following iteration formula:

Vn+1 =Vn +
∫ T

t
exp(−r(ξ − t))

(
∂Vn

∂ξ
+

σ2

2
s2 ∂ 2Ṽn

∂ s2

+ rs
∂Ṽn

∂ s
− rVn

)
dξ .

(8)

We take the initial approximation V0 = V (s,T ) =

max(s(T )−E,0) = |s(T )−E|+(s(T)−E)
2 . The next itera-

tion can easily be obtained from (8). The numerical
results are shown in Table 1 and Figure 1. The root-
mean-square-error (RMSE) defined by

RMSE=
1
n

√
n

∑
i=1

(VVIM(si,0)−VAnalytical(si,0))2, (9)

in which si are the stock values in Table 1, is computed
for T = 0.25 and T = 0.5.

It is worth to point out that the variational iteration
algorithms were summarized in the following review
article [65]. Also note that the variational iteration al-
gorithm presented in this paper is the variational itera-
tion algorithm-I, there are other algorithms, i. e., vari-
ational iteration algorithm-II and variational iteration
algorithm-III, which can be used.

5. Homotopy Perturbation Method

To illustrate the basic concepts of the homotopy
perturbation method [47 – 52, 54 – 57], we consider the
following equation:

L(V )+N(V)− g(r) = 0, r ∈ Ω ,

with boundary condition

B
(

V,
∂V
∂n

)
= 0, r ∈ Γ ,

where L and N are linear and nonlinear operators, re-
spectively, B is a boundary operator, g(r) is a known
analytical function, and Γ is the boundary of the do-
main Ω . Homotopy perturbation structure is

H(ν, p) = (1− p)[L(ν)−L(ν0)]

+ p[L(ν)+N(ν)− g(r)] = 0,
ν(r, p) : Ω × [0,1]−→R,

(10)

where p is an embedding parameter and ν0 is the first
approximation that satisfies the boundary condition.

Table 2. Comparison between the analytical and HPM solu-
tions for the down-and-out option, E = 10, B = 9, σ = 0.05,
r = 0.05, and t = 0.

s Analytical HPM Absolute error
T = 0.25,0.5
1 0 0 0
3 0 0 0
5 0 0 0
7 0 0 0
9 0 0 0

T = 0.25
11 1.12422244 1.12421875 3.690747 ·10−6

13 3.12422199 3.12421875 3.245061 ·10−6

15 5.12422199 5.12421875 3.245061 ·10−6

17 7.12422199 7.12421875 3.245061 ·10−6

19 9.12422199 9.12421875 3.245061 ·10−6

RMSE = 7.466143 ·10−7

T = 0.5
11 1.24693225 1.24687500 5.725627 ·10−5

13 3.24690087 3.24687500 2.587971 ·10−5

15 5.24690087 5.24687500 2.587971 ·10−5

17 7.24690087 7.24687500 2.587971 ·10−5

19 9.24690087 9.24687499 2.587971 ·10−5

RMSE = 7.718367 ·10−6

As p increases from 0 to 1 the solution of (10) varies
from the initial guess ν0 to the solution ν . Expanding ν
in Taylor series with respect to the embedding para-
meter p, we have

ν = ν0 + pν1 + p2ν2 + . . . . (11)

The series (11) converges at p = 1 and is discussed
in [29]. As an approximation for the solution we con-
sider

V = lim
p→1

ν = ν0 +ν1 +ν2 + . . . . (12)

For applying HPM on (1) and (2), we use a simple
transformation τ = T − t:

∂V
∂τ

− σ2

2
s2 ∂ 2V

∂ s2 − rs
∂V
∂ s

+ rV = 0, if s > B,

V = 0, if s ≤ B,
V (s,0) = max(s(T )−E,0).

(13)

From (10) we have

H(ν, p) =
∂V
∂τ

− σ2

2
p2s2 ∂ 2V

∂ s2 − rps
∂V
∂ s

+ rpV

= 0.
(14)

Substituting ν from (12) into (13) and rearranging
based on powers of p-terms, we have:

∂ν0

∂τ
= 0, (15)



294 M. Dehghan and S. Pourghanbar · Solution of the Black-Scholes Equation for Pricing of Barrier Option

Fig. 2 (colour online). Plot of absolute
error by HPM.

∂ν1

∂τ
− σ2

2
s2 ∂ 2ν0

∂ s2 − rs
∂ν0

∂ s
+ rν0 = 0, (16)

∂ν2

∂τ
− σ2

2
s2 ∂ 2ν1

∂ s2 − rs
∂ν1

∂ s
+ rν1 = 0, (17)

therefore we can write

ν0(s,τ) = s−E, (18)

ν1(s,τ) = rEτ, (19)

ν2(s,τ) =− r2

2
Eτ2. (20)

The solution of (13) when p → 1 will be as follows:

V (s,τ) = ν0(s,τ)+ν1(s,τ)+ν2(s,τ)

= s+E
(
− 1+ rτ − r2

2
τ2
)
.

(21)

The numerical results are shown in Table 2 and Fig-
ure 2.

It is worth to note that in the standard Black-Scholes
model of option pricing, the volatility is assumed to be
known. This strong assumption is incompatible with
that of the market price movement. As is said in [66]
in fact, the phenomenon so-called volatility skew or
smile exists in all the major stock index markets today.

Very recently authors of [66] investigated the solution
for uncertain volatility model in option pricing. They
proposed a computational technique to solve it. Their
method is based on a fitted finite volume method. We
would like to mention that for the algorithm, the choice
of initial solution is of utter importance, we refer the
interested reader to [67, 68].

6. Conclusions

In this work we have studied the barrier option with
variational iteration and homotopy perturbation meth-
ods. Application of these methods is easy and cal-
culation of approximations is direct and straight for-
ward. The two new schemes provide the solution of the
problem in a closed from while the mesh point tech-
niques [2, 69] provide the approximation at mesh point
only. Both VIM and HPM obtain accurate approxima-
tion for the given problem. Also the presented meth-
ods do not provide any linear or nonlinear system of
equations, thus these procedures reduce the volume of
calculations by not requiring the solution of linear or
nonlinear systems.
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