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The homotopy perturbation method is used to find an approximate analytic solution of the problem
involving a space-time fractional diffusion equation with a moving boundary. This mathematical
technique is used to solve the problem which performs extremely well in terms of efficiency and
simplicity. Numerical solutions of the problem reveal that only a few iterations are needed to obtain
accurate approximate analytical solutions. The results obtained are presented graphically.
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1. Introduction

Moving boundary problems are one of the impor-
tant areas of partial differential equations which have a
long history going back to nineteenth century and early
work by Lame, Neumann, and Stefan. They provide
the correct quantitative description of a wide range
of physically interesting phenomena of systems with
two phases. The classical moving boundary problem
is concerned with the melting or freezing of a ma-
terial occupying a semi infinite region, the boundary
of which is subjected to an imposed temperature that
brings about the instantaneous change of phase. How-
ever, since the boundary between these phases is de-
pendent implicitly on the behaviour of the rest of the
system, they provide deep mathematical challenges in
the areas of existence, uniqueness, and regularity. The
analytical and numerical treatment of moving bound-
ary cases pose great difficulty when the solution is re-
quired for the application oriented problems in engi-
neering e. g., inverse problem, solidification, etc. Due
to the presence of moving interface and nonlinearity,
the exact solutions of these problems are limited and
restricted only for a few specific cases [1 – 3]. Very
few analytical solutions to the solidification problems
are available. Hill [4] summarized some techniques for
analytical solutions and series solutions for solidifica-
tion problems. Some approximate analytical solutions
for inward solidification in cylindrical/spherical region
are discussed in [5 – 8]. In 2008, Yao [9] developed a
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model of solute redistribution for a spherical geometry
which is applicable for solidification for the determi-
nation of growth kinetics under moving boundary con-
ditions.

During the last two decades, fractional diffusion
equations have been widely used by the researchers.
However, fractional calculus has scarcely been ap-
plied to moving-boundary problems due to their non-
linear nature and difficulties faced while confronting
the problems with fractional derivatives (space or time
or both). In 2004, Liu and Xu [10] first presented a
mathematical model of the moving-boundary problem
with fractional anomalous diffusion in drug release de-
vices. They have used a time fractional diffusion equa-
tion and presented an exact solution. Li et al. [11]
have developed a space-time fractional diffusion equa-
tion to describe the process of a solute release from
a polymer matrix in which the initial solute loading
is higher than the solubility and presented the exact
solution in term of the Fox-H function. Li et al. [12]
gave a similar solution of the partial differential equa-
tions of fractional order with a moving-boundary con-
dition in terms of a generalized Wright function. Liu
and Xu [13] discussed some exact solutions to Stefan
problems with fractional differential equations. The
exact solutions of the moving-boundary problems with
fractional derivatives are limited. Hence, many ap-
proximate analytical methods have been used to solve
moving-boundary problems with the fractional deriva-
tive. In 2009, Li et al. [14] used the homotopy pertur-
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bation method (HPM) to solve a time-fractional dif-
fusion equation with a moving boundary condition.
Later, Cao et al. [15] solved an even more complex
moving boundary problem with fractional derivative
using the same method. Recently, Das and Rajeev [16]
have solved a similar type of problem using the vari-
ational iteration method and the Adomian decompo-
sition method. But to the best of the author’s knowl-
edge, the moving-boundary problem with both space-
time fractional derivatives by HPM has not yet been
solved.

The rapid development in the field of nonlinear sci-
ences during the last two decades invoked an increas-
ing interest of mathematicians and engineers in these
subjects who were stimulated to explore the analyt-
ical techniques for solving nonlinear problems. Ear-
lier, the most commonly used methods were pertur-
bation methods, which suffer from limitations due to
the small parameter assumptions that may sometimes
have an adverse effect on the solution. Although a con-
siderable amount of research work had already hap-
pened before no such analytical method was avail-
able for solving these equations. In 1998, the varia-
tional iteration method (VIM) proposed by He [17 –
20] was the first analytical method which was success-
fully implemented to solve linear and nonlinear differ-
ential equations of fractional order by Shawagfeh [21],
Ates and Yildirim [22], Momani and Odibat [23], and
Das [24, 25]. Recently, an application to discrete lat-
tice equations by using VIM has been solved by He
et al. [26]. The differential transform method is an-
other mathematical tool which has caught much atten-
tion recently for solving fractional differential equa-
tions [27, 28].

The HPM is the new approach for finding the
approximate analytical solution of linear and non-
linear problems. The method was first proposed by
He [29, 30] and was successfully applied to solve
the nonlinear wave equation by He [31 – 35], bound-
ary value problems by He [36], predator prey model
and linear fractional diffusion equation by Das et
al. [37, 38], Navier-Stokes equation with fractional
derivative by Khan et al. [39], linear partial differ-
ence equations (PDEs) of fractional order by Mon-
ami and Odibat [40], Darvishi and Khani [41], Be-
lendez et al. [42], Mousa and Ragab [43], Das et
al. [44] etc. In 1998, He [45] used this method to obtain
the approximate analytical solution for seepage flow
with fractional derivative in porous media. Recently,
this method has been successfully used by Mousa and

Kaltalev [46] for solving some initial value problems
associated with the fractional Fokker-Planck equation.
The basic difference of this method from the other per-
turbation techniques is that it does not require small
parameters in the equation which overcomes the limi-
tations of the traditional perturbation techniques.

In this paper, HPM has been successfully applied
to obtain the approximate analytical solutions of the
space-time fractional diffusion equation governing the
process of a solute release from a polymer matrix in
which initial solute loading is higher than the solu-
bility. The expressions of the diffusion front and frac-
tional releases for different Brownian motions and for
different values of the ratio of initial concentration of
the solute and solubility of the solvent are calculated
numerically and presented through graphs. The ele-
gance of the method can be attributed to its simplistic
approach in seeking the approximate analytical solu-
tion of the problem.

2. Mathematical Formulation of the Problem

Here, the diffusion release of a solute from a pla-
nar polymer matrix into a perfect sink fluid is consid-
ered. The diffusion coefficient is assumed to be con-
stant. The initial drug loading (C0) is taken higher
than the solubility (Cs) of the drug in the tissue fluid
and only the early stages of loss before the diffusion
front moves to R is considered, where R is the scale
of the polymer matrix. The moving interface position
S(t) divides each matrix into two regions: the surface
zone 0 < x < S(t), in which all solute is dissolved
and S(t) < x < R, which contains undissolved solute.
Here, we consider the model of a space-time fractional
anomalous diffusion equation given as

∂ α

∂ tα C(x, t) = D
∂ β

∂xβ C(x, t),

0 < x < S(t), 0 < α ≤ 1, 1 < β ≤ 2,
(1)

C(x, t) = 0 at x = 0, (2)

C(x, t) =Cs at x = S(t), (3)

(C0−Cs)
∂ α

∂ tα S(t)=D
∂ β−1

∂xβ−1 C(x, t) at x= S(t), (4)

S(t) = 0 for t = 0, (5)

where C(x, t) and D are the concentration and diffusiv-
ity of the drug in the matrix. The operators ∂ α

∂ tα and ∂ β

∂xβ
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are the Caputo fractional derivatives of order α and β ,
respectively.

Using dimensionless variables defined as

ξ =
x
R
, τ =

(
D
Rβ

) 1
α

t, θ =
C
Cs

, s(τ) =
S(t)

R
, (6)

the equations (1) – (5) become

∂ α

∂τα θ (ξ ,τ) =
∂ β

∂ξ β θ (ξ ,τ), 0 < x < s(τ), (7)

θ (ξ ,τ) = 0 at ξ = 0, (8)

θ (ξ ,τ) = 1 at ξ = s(τ), (9)

η
∂ α

∂τα s(τ) =
∂ β−1

∂ξ β−1 θ (ξ ,τ) at ξ = s(τ), (10)

s(τ) = 0 for τ = 0, (11)

where η = C0
Cs

− 1.
Considering only the early stages of loss before the

diffusion front moves to R, (7) in the semi-infinite
space satisfies θ (0,τ) = 0 and θ (ξ ,0) = constant. As
a result, if θ0 and s0 be the initial approximations, then
we may easily obtain the differential equation

∂ β θ0

∂ξ β = 0 (12)

with the boundary conditions

θ0(0,τ) = 0, (13)

θ0(s0,τ) = 1, (14)

∂ β−1θ0

∂ξ β−1 = η
∂ α s0

∂τα at ξ = s0, (15)

s0(0) = 0. (16)

Equation (12) with the aid of (13) and (14) gives rise
to

θ0 = s−(β−1)
0 ξ β−1. (17)

Equation (15) with the help of (16) and (17) gives

s0 = a0τα/β , (18)

where

a0 =


Γ

(
1−α + α

β

)
ηΓ

(
1+ α

β

)



1
β

. (19)

3. Solution of the Problem by the Homotopy
Perturbation Method

In this section we will solve (7) by applying the ini-
tial approximation obtained from (17) and (18) as

θ (0,τ) =
1

aβ−1
0

τ−
α
β (β−1)ξ β−1. (20)

Now (7) can be written in the operator form as

Dβ
ξ θ (ξ ,τ) = Dα

τ θ (ξ ,τ), (21)

where Dβ
ξ ≡ ∂ β

∂ξ β and Dα
τ ≡ ∂ α

∂τα .
According to HPM, we construct the following ho-

motopy:

Dβ
ξ θ (ξ ,τ) = pDα

τ θ (ξ ,τ), (22)

where the homotopy parameter p is considered to be
small, 0 ≤ p ≤ 1.

Now applying the classical perturbation technique,
(22) can be expressed as a power series of p as

θ (ξ ,τ) = θ0(ξ ,τ)+ pθ1(ξ ,τ)
+ p2θ2(ξ ,τ)+ p3θ3(ξ ,τ)+ · · · . (23)

When p → 1, (23) becomes the approximate solution
of (7). Substituting (23) into (22) and equating the
terms with identical powers of p, we obtain the fol-
lowing set of linear differential equations:

p0 : Dβ
ξ θ0(ξ ,τ) = 0, (24)

p1 : Dβ
ξ θ1(ξ ,τ) = Dα

τ θ0(ξ ,τ), (25)

p2 : Dβ
ξ θ2(ξ ,τ) = Dα

τ θ1(ξ ,τ), (26)

p3 : Dβ
ξ θ3(ξ ,τ) = Dα

τ θ2(ξ ,τ), (27)

p4 : Dβ
ξ θ4(ξ ,τ) = Dα

τ θ3(ξ ,τ), (28)

and so on.
The method is based on applying the operator Jβ

ξ

(the inverse of Caputo operator Dβ
ξ ) on both sides

of (24) – (28), we obtain the solutions of θi(ξ ,τ), i ≥ 0,
as

θ0(ξ ,τ) =
1

aβ−1
0

τ
α
β −α ξ β−1,
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θ1(ξ ,τ) =
1

aβ−1
0

Γ
(

α
β −α + 1

)
Γ
(

α
β − 2α + 1

) Γ(β )
Γ(2β )

τ
α
β −2α ξ 2β−1,

θ2(ξ ,τ) =
1

aβ−1
0

Γ
(

α
β −α + 1

)
Γ
(

α
β − 3α + 1

) Γ(β )
Γ(3β )

τ
α
β −3α ξ 3β−1,

θ3(ξ ,τ) =
1

aβ−1
0

Γ
(

α
β −α + 1

)
Γ
(

α
β − 4α + 1

) Γ(β )
Γ(4β )

τ
α
β −4α ξ 4β−1,

θ4(ξ ,τ) =
1

aβ−1
0

Γ
(

α
β −α + 1

)
Γ
(

α
β − 5α + 1

) Γ(β )
Γ(5β )

τ
α
β −5α ξ 5β−1.

Finally, the expression of θ (ξ ,τ) is

θ (ξ ,τ)=θ0(ξ ,τ)+θ1(ξ ,τ)+θ2(ξ ,τ)+θ3(ξ ,τ)+· · ·

= H
∞

∑
n=0

(
ξ

τα/β

)(n+1)β−1

Γ (nβ +β )Γ
(

1− (n+ 1)α+ α
β

) , (29)

where

H ≡ 1

aβ−1
0

Γ (β )Γ
(

1−α +
α
β

)
.

Now (10) can be rewritten as

η
∂ s(τ)

∂τ
=

∂ 1−α

∂τ1−α

[
∂ β−1

∂τβ−1 θ (ξ ,τ)

]
ξ=s(τ)

. (30)

Taking the initial approximation s0(τ) = a0τα/β and
using HPM in (30), we get

s1(τ) =H1τα/β , s2(τ) =H2τα/β , s3(τ) =H3τα/β ,

and so on, where

H1 =
H
η

∞

∑
n=0

anβ
0

Γ (nβ + 1)Γ
(

1− (n+ 1)α+ α
β

) ,

H2 =

(
H
η

)2 ∞

∑
n=0

nβ a2nβ−1
0(

Γ (nβ + 1)Γ
(
1− (n+ 1)α+ α

β

))2 ,

and

H3 =

(
H
η

)3 ∞

∑
n=0

nβ
2 (3nβ − 1)a3nβ−2

0(
Γ(nβ + 1)Γ

(
1− (n+ 1)α+ α

β

))3 .

Finally, we get the analytical expression of s(τ) as

s(τ) =
∞

∑
n=0

sn(τ) = Mτα/β , (31)

where M = a0 +H1 +H2 +H3 + · · · .
Equations (29) and (31) with the aid of (9) and (10)

give rise to

H
∞

∑
n=0

M(n+1)β−1

Γ (nβ +β )Γ
(

1− (n+ 1)α+ α
β

) = 1 (32)

and

H
∞

∑
n=0

Mnβ

Γ (nβ + 1)Γ
(

1− (n+ 1)α+ α
β

) =

Mη
Γ
(

1+ α
β

)
Γ
(

1−α + α
β

) .
(33)

These are the exact solutions of (7) – (11) and are in
complete agreement with the result of Li et al. [12].

Now, the amount of drug release per unit area at
time t is given by

Mt =C0s(τ)−
∫ s(τ)

0
C(x, t)dx. (34)

The dimensionless form of the fractional release rate is
obtained as

Mt

M∞
= s(τ)− Cs

C0

∫ s(τ)

0
θ (ξ ,τ)dξ =

(
M− H

η + 1

·
∞

∑
n=0

M(n+1)β

Γ ((n+ 1)β + 1)Γ
(
1− (n+ 1)α+ α

β

))τ
α
β ,

(35)

where M∞ =CR is the total amount of drug release per
unit area at infinite time.

4. Particular Cases

Case i: When α = 1 and β = 2, the govern-
ing (7) reduces to the standard diffusion equation.
Equation (29) gives

θ (ξ , t) = H
∞

∑
n=0

(
ξ√
τ

)2n+1

Γ (2n+ 2)Γ
( 1

2 − n
)

=
2H√

π

∞

∑
n=0

(−1)n
(

ξ
2
√

τ

)2n+1

n!(2n+ 1)
= 1+ erf

(
ξ

2
√

τ

)
,

(36)

where H =
√

π
a0

and erf(.) is the error function.
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Equation (32) and (33) reduce to

H erf
(

M
2

)
= 1

and

H√
π

e
−M2

4 =
Mη

2
.

From the above equations, we get the following rela-
tion for the determination of M:

√
π

M
2

erf
(

M
2

)
e

M2
4 =

1
η
, (37)

which is similar to the solution given by Paul and
McSpadden [47].

Case ii: When β = 2 and 0 < α < 1 (7) represents
the time-fractional diffusion equation.

In this case (29) gives

θ (ξ , t) = H
∞

∑
n=0

(
ξ

τα/2

)2n+1

Γ (2n+ 2)Γ
(
1− 2n+1

2 α
) , (38)

where H =
Γ (1− α

2 )
a0

.
Equation (32) and (33) reduce to

H
∞

∑
n=0

M2n+1

Γ (2n+ 2)Γ
(
1− 2n+1

2 α
) = 1 (39)

and

H
∞

∑
n=0

M2n

Γ (2n+1)Γ
(
1− 2n+1

2 α
) =Mη

Γ
(
1+ α

2

)
Γ
(
1− α

2

) . (40)

The result is in complete agreement with the result of
Das and Rajeev [16].

5. Numerical Results and Discussion

In this section, numerical results of the diffusion
front position s(τ) and fractional solute release Mt

M∞
for

different α = 1
3 ,

1
2 ,

2
3 ,1 and β = 4

3 ,
3
2 ,

5
3 ,2 are calculated

for various values of τ at different solute loading levels
η = 3,5,10, and these results are depicted through Fig-
ures 1 – 12. All the computations and simulations have
been made by using Mathematica Software.

It is observed from Figures 1 – 3 that s(τ) increases
with the increase in τ for all values of α and η . But the

Fig. 1. Plot of s(τ) vs. τ at β = 2 and η = 3.

Fig. 2. Plot of s(τ) vs. τ at β = 2 and η = 5.

Fig. 3. Plot of s(τ) vs. τ at β = 2 and η = 10.

Fig. 4. Plot of s(τ) vs. τ at α = 1 and η = 3.
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Fig. 5. Plot of s(τ) vs. τ at α = 1 and η = 5.

Fig. 6. Plot of s(τ) vs. τ at α = 1 and η = 10.

Fig. 7. Plot of Mt/M∞ vs. τ at β = 2 and η = 3.

Fig. 8. Plot of Mt/M∞ vs. τ at β = 2 and η = 5.

Fig. 9. Plot of Mt/M∞ vs. τ at β = 2 and η = 10.

Fig. 10. Plot of Mt/M∞ vs. τ at α = 1 and η = 3.

Fig. 11. Plot of Mt/M∞ vs. τ at α = 1 and η = 5.

Fig. 12. Plot of Mt/M∞ vs. τ at α = 1 and η = 10.
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rate of increase of s(τ) decreases with the increase of α
which confirms the exponential decay of the regular
Brownian motion. This result is in complete agreement
with the model developed by Das [25] and Giona and
Roman [48]. It can be seen from Figures 1 – 6 that s(τ)
require longer time to reach R for higher initial solute
loading level. This result shows that this model is con-
sistent and in complete agreement with the model de-
veloped by Liu and Xu [10].

Figures 7 – 12 represent the dependence of frac-
tional solute release in dimensionless form with di-
mensionless time for different solute loading levels.
It is seen from the figures that the fractional drug re-
lease takes more time with the increase of solute load-
ing level for any value of α and β .

6. Conclusion

It is difficult to get the exact solutions to the moving
boundary problems. The problem becomes more com-
plicated when both time and space are considered to be

Caputo fractional derivatives. Here the homotopy per-
turbation method is successfully applied to solve the
problem. For illustration purposes two different cases
are considered here. After applying the method suc-
cessfully to investigate the solution of the present evo-
lution equations, it may be concluded that the method
is powerful and efficient for finding approximate an-
alytical solutions for wide classes of fractional differ-
ential equations. It provides more realistic series solu-
tions that converge rapidly in real world physical prob-
lems. The study shows that the method gives quanti-
tavely reliable results with less computational work.
The authors strongly believe that the present study of
space-time fractional diffusion equation with a mov-
ing boundary condition constitutes a significant change
from the classical approach, and it will considerably
benefit the researchers working in this field.
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