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When a circular jet of liquid strikes a sphere normal to the tangent plane at a point, a liquid film is
formed on the surface of the sphere. This is a new problem. The flow in the liquid film is studied by
means of boundary layer theory for laminar flow. The governing equations are Prandtl’s momentum
boundary layer equation and the continuity equation. To solve the problem completely a conserved
quantity is required as well as boundary conditions. The conserved quantity for the film of liquid on
the sphere is derived with the help of a conserved vector. Two conservation laws for the system have
been obtained by Naeem and Naz (Int. J. Nonlin. Sci. 7, 149 (2009)), and one of these is used to
derive the conserved quantity for the liquid film. A stream function is introduced which reduces the
system to a single third-order partial differential equation. The group invariant solution for this partial
differential equation is constructed by considering a linear combination of its Lie point symmetries.
The velocity profile of the liquid film on the sphere is investigated.
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1. Introduction

A new problem for liquid film flow on a body of revo-
lution is formulated in this paper. The sphere is the body
of revolution and a film of liquid is formed on its surface.
Riley [1] considered the wall jet on a hemi-spherical
shell and derived the similarity solution. Naeem and
Naz [2] constructed the group invariant solution for the
same problem and they showed that the similarity so-
lution derived by Riley is the group invariant solution.
An axisymmetric liquid film on the surface of a sphere
is formed when a circular jet of liquid strikes the sphere
normal to the tangent plane at that point and spreads
over the surface. The difference between the liquid film
and the wall jet is that the liquid film impacts directly
on the surface of the sphere while the wall jet impacts
on a layer of fluid at rest on the surface. Some of this
fluid is entrained or carried along with the wall jet by
viscous drag at the outer edge of the jet.

Prandtl [3] introduced the concept of a boundary
layer in large Reynolds number flow in 1904, and he
also showed how the Navier–Stokes equation could
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be simplified to yield approximate solutions. Prandtl’s
boundary layer equations consist of the momentum
balance equation which can be expressed in terms
of a stream function and the continuity equation. The
Navier–Stokes equation in cylindrical polar coordinates
is used to derive the boundary layer equations for ra-
dial and axisymmetric jets. The radial jet is obtained if
the primary motion of the jet is in the radial direction.
When the primary motion of the jet is axially directed
then an axisymmetric jet is formed. The boundary layer
equations in cylinderical polar coordinates will be used
in this paper.

Glauert [4] studied the problem of two-dimensional
and radial wall jets. In [5], Watson studied the problem
of two-dimensional and radial liquid jets. The problems
of axisymmetric free and wall jets were attempted in [6]
and [7]. In all these jet problems a conserved quantity
was required in the solution process. The conserved
quantity is used to determine the unknown exponent
in the similarity solution which cannot be obtained
from the boundary conditions because they are ho-
mogeneous. The conserved quantities for laminar jets
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were established either from physical arguments or by
integrating Prandtl’s momentum boundary layer equa-
tion across the jet and using the boundary conditions
and the continuity equation. Recently Naz et al. [8]
presented a new method of constructing the conserved
quantities for jet flows by using conservation laws.
Conserved quantities for two-dimensional and radial
jets were rederived.

The concept of the liquid jet was introduced by
Watson [5]. He derived the similarity solution for two-
dimensional and radial liquid jets for the system con-
sisting of the momentum and continuity equations.
Riley [9] derived the similarity solution for the ra-
dial liquid jet by transforming the system to a single
third-order partial differential equation for the stream
function. The third-order partial differential equation
was transformed to a third-order ordinary differential
equation in terms of the similarity variables. The ana-
lytical solution of the third-order ordinary differential
equation was constructed in [9]. Later, the symmetry
solution for the third-order ordinary differential equa-
tion was derived [10]. By using certain transformations
for the two-dimensional liquid jet the same third-order
ordinary differential equation can be obtained as for
the radial liquid jet.

The liquid film on the surface of a sphere studied
here also falls into the category of flows which need
a conserved quantity to complete the solution. The con-
served quantity for the liquid film will be derived by
using a conserved vector. The boundary layer equations
for the liquid film are the same as derived by Riley [1]
for the wall jet on a hemi-spherical shell. The conser-
vation laws for these boundary layer equations were
derived in [2] by utilizing the variational derivative ap-
proach [11 – 14]. Two conservation laws were obtained
for the system of equations for the velocity components
and one of these is used here to construct the conserved
quantity for the liquid film on the sphere. The stream
function is introduced to transform the system of equa-
tions for the velocity components to a single third-order
partial differential equation for the stream function.
The Lie-point symmetry generators for this third-order
partial differential equation were constructed in [2].
Using the approach introduced by Kara and Mahomed
[15], we find the symmetry associated with the con-
served vector and this is used to derive the conserved
quantity for the liquid jet. This symmetry also gener-
ates the group invariant solution [16]. It is interesting
that the third-order partial differential equation derived
here for the liquid film on the sphere transforms to the

same third-order ordinary differential equation which
arises in two-dimensional and radial laminar liquid jets.
Therefore, the velocity profile plotted against the sim-
ilarity variable for a film of liquid on a sphere is the
same as the velocity profile for two-dimensional and
radial liquid jets.

The detailed outline of the paper is as follows: In Sec-
tion 2, the mathematical formulation for a liquid film
on the surface of a sphere is presented. The conserved
quantity for the liquid film is derived with the help of
a conservation law. The group invariant solution for the
liquid film is derived in Section 3. In Section 4, the anal-
ysis of the results is presented. Finally the conclusions
are summarized in Section 5.

2. Mathematical Formulation

An axisymmetric circular jet of liquid strikes a sphere
normal to the tangent plane at point O on the surface
and spreads out over the surface as shown in Figure 1.
The point O is a stagnation point. It is assumed that the
Reynolds number of the impinging jet is sufficiently
high that the stagnation region in the neighbourhood
of O is inviscid. A Blasius boundary layer forms in the
stagnation region OA in Figure 1 and is matched to the
inviscid flow in the impinging jet. The thickness of the
boundary layer grows downstream from O until it fills
the whole of the liquid film and the entire flow is of
boundary layer type. This occurs at point A in Figure 1.
Downstream of A the outer edge of the boundary layer
is a free surface. The surrounding fluid is a gas and the
shearing stress vanishes at the free surface. The liquid
film we are concerned with in this paper is the region
downstream of the point A.

Consider cylindrical polar coordinates (x,θ ,y) with
origin at the stagnation point O where x and y are mea-
sured along and normal to the surface of the sphere. All
fluid variables are independent of θ and x = 0 is the
axis of symmetry. The surface of the sphere is at y = 0
and the free surface is at y = φ(x). The fluid in the film
is viscous and incompressible and the flow is steady.
The radius of the sphere is a. Surface tension and grav-
ity are neglected. Prandtl’s boundary layer equations
for a steady, incompressible, viscous fluid film on the
surface of a sphere of radius a are [1]

uux + vuy = νuyy , (1)[
asin

(
x
a

)
u

]
x
+
[

asin

(
x
a

)
v

]
y
= 0 , (2)
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Fig. 1. Impinging circular jet at point O on the surface of a sphere of radius a. The Blasius-type boundary layer is the
region OA and the liquid film is the region downstream from the point A. (Adapted from Middleman [17].)

where u(x,y) and v(x,y) are the velocity components
in the x- and y-directions, respectively, and ν is the
kinematic viscosity of the fluid. Here asin(x/a) is the
perpendicular distance of a point on the surface of the
sphere from the axis of symmetry. The velocity com-
ponent v(x,φ(x)) is

v(x,φ(x)) =
D
Dt

[φ(x)] = u(x,φ(x))
dφ(x)

dx
, (3)

where

D
Dt

=
∂

∂ t
+u(x,φ(x))

∂

∂x
+ v(x,φ(x))

∂

∂y
(4)

is the material time derivative.
Since the liquid film is viscous there is no slip at

the surface of the sphere and therefore u(x,0) = 0.
There is no suction or blowing of fluid at the solid
boundary y = 0, thus v(x,0) = 0. The boundary con-
dition on the free surface of the film, y = φ(x), is that
there is no shear stress along the free surface. In the
boundary layer approximation this boundary condition

is uy (x,φ(x)) = 0. Thus the boundary conditions for
the liquid film are

u(x,0) = 0, v(x,0) = 0, uy(x,φ(x)) = 0 . (5)

The three boundary conditions in (5) are homoge-
neous. This is an indication that a further condition is
required to determine all the unknowns in the group
invariant solution. In addition, the strength of the fluid
flow in the liquid film has yet to be specified which can
be done through a conserved quantity. We will derive
the conserved quantity for the liquid film by the new
method introduced in [8].

2.1. Conserved Quantity for a Liquid Film on a Sphere

The conserved vectors for the system of differential
equations (1) – (2) derived in [2] are

T 1 = asin
( x

a

)
u, T 2 = asin

( x
a

)
v , (6)

T 1 = asin
( x

a

)
u2, T 2 = asin

( x
a

)
[uv−νuy] . (7)
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The conserved vector (6) will give the conserved quan-
tity for a liquid film on a sphere. For the conserved
vector (6), we have

DxT 1 +DyT 2 =
∂T 1

∂x
+

∂T 2

∂y
. (8)

But DxT 1 +DyT 2 = 0 and therefore (8) yields

∂T 1

∂x
+

∂T 2

∂y
= 0 . (9)

The conserved quantity for the liquid film is obtained by
integrating (9) with respect to y from y = 0 to y = φ(x)
keeping x fixed. For the conserved vector (6), we obtain

∫
φ(x)

0

[
∂

∂x

(
asin

(
x
a

)
u(x,y)

)
+

∂

∂y

(
asin

(
x
a

)
v(x,y)

)]
dy = 0 .

(10)

Using the formula for differentiation under the integral
sign [18], we have

d
dx

∫
φ(x)

0

[
asin

(
x
a

)
u(x,y)

]
dy−asin

(
x
a

)
·u(x,φ(x))

dφ(x)
dx

+
[

asin

(
x
a

)
v(x,y)

]φ(x)

0
= 0 .

(11)

The boundary condition (5) for v(x,0) and expres-
sion (3) for v(x,φ(x)), reduce (11) to

∫
φ(x)

0
asin

(
x
a

)
u(x,y)dy = const. independent of x .

(12)

Thus the total volume flux, 2πF , where

F =
∫

φ(x)

0
asin

(
x
a

)
u(x,y)dy , (13)

is constant along the film. It is the conserved quantity
for the liquid film on the sphere. The constant F is given
and describes the strength of the liquid film.

Introducing the stream function ψ(x,y) defined by

u =
1

asin
(

x
a

)ψy, v =− 1

asin
(

x
a

)ψx , (14)

we see that (2) is identically satisfied while (1) becomes

1

asin
(

x
a

)ψyψxy−
cos
(

x
a

)[
asin

(
x
a

)]2 ψ
2
y

− 1

asin
(

x
a

)ψxψyy−νψyyy = 0 .

(15)

The boundary conditions (5) and conserved quan-
tity (13) in terms of the stream function become

ψx(x,0) = 0, ψy(x,0) = 0, ψyy(x,φ(x)) = 0 , (16)

and

F =
∫

φ(x)

0
ψy(x,y)dy . (17)

Since ψx(x,0) = 0, it follows that ψ(x,0) = ψ0 where
ψ0 is a constant which we choose to be zero. Thus

ψ(x,0) = 0 , (18)

and the conserved quantity (16) becomes

F = ψy(x,φ(x)) = const. independent of x . (19)

The free surface y = φ(x) is a streamline and (19)
is the well known result that the stream function is
constant along a streamline.

3. Group Invariant Solution for Film of Liquid
on a Sphere

The Lie point symmetry generator for the third-order
partial differential equation (15) is [2]

X =
[

c1

sin2
(

x
a

)( x
2
− a

4
sin

(
2x
a

))
+

c2

sin2
(

x
a

)] ∂

∂x

+
[

y

(
− c3−

c2 cos
(

x
a

)
asin3

(
x
a

) +
c1

2asin3
(

x
a

)
(20)

·
(
− xcos

(
x
a

)
+asin

(
x
a

)
+asin3

(
x
a

)))
+ k(x)

]
∂

∂y
+[c3ψ + c4]

∂

∂ψ
,

where c1, c2, c3, and c4, are constants, and k(x) is
an arbitrary function. The symmetry associated with
the conserved vector (6) will give the group invariant
solution. The symmetries associated with a known con-
served vector can be determined by using the result due
to Kara and Mahomed [15]

X [m](T i)+Dk(ξ k)T i−Dk(ξ i)T k = 0 , (21)
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where X [m] is the mth prolongation of X if the compo-
nents T i depend upon mth derivatives. Equation (21)
results in the following two equations:

X [2](T 1)+T 1Dy(ξ 2)−T 2Dy(ξ 1) = 0 , (22)

X [2](T 2)+T 2Dx(ξ 1)−T 1Dx(ξ 2) = 0 , (23)

where Dx and Dy are the total derivative operators
defined by

Dx =
∂

∂x
+ψx

∂

∂ψ
+ψxx

∂

∂ψx
+ψxy

∂

∂ψy
+ . . . , (24)

Dy =
∂

∂y
+ψy

∂

∂ψ
+ψyy

∂

∂ψy
+ψyx

∂

∂ψx
+ . . . . (25)

The conserved vector (6) in terms of the stream function
becomes

T 1 = ψy, T 2 =−ψx . (26)

We will find the symmetries associated with the con-
served vector (26). Equations (22) and (23) yield

c3T 1 = 0, c3T 2 = 0 , (27)

which is satisfied if and only if c3 = 0. Thus,

X =
[

c1

sin2
(

x
a

)( x
2
− a

4
sin

(
2x
a

))
+

c2

sin2
(

x
a

)] ∂

∂x

+
[

y

(
−

c2 cos
(

x
a

)
asin3

(
x
a

) +
c1

2asin3
(

x
a

)(− xcos

(
x
a

)
(28)

+asin

(
x
a

)
+asin3

(
x
a

)))
+ k(x)

]
∂

∂y
+ c4

∂

∂ψ

is the symmetry associated with the conserved vec-
tor (26) and will be used to derive the group invariant
solution.

Now, ψ = Ψ(x,y) is a group invariant solution of
the third-order partial differential equation (15) if

X(ψ−Ψ(x,y)) |ψ=Ψ = 0 , (29)

where the operator X is given by (28). Equation (29)
becomes[

c1

sin2
(

x
a

)( x
2
− a

4
sin

(
2x
a

))
+

c2

sin2
(

x
a

)]Ψx (30)

+
[

y

asin3
(

x
a

)(− c2 cos

(
x
a

)
+

c1

2

(
− xcos

(
x
a

)
+asin

(
x
a

)
+asin3

(
x
a

)))
+ k(x)

]
Ψy = c4Ψ .

Equation (30) is a linear first-order partial differential
equation for Ψ(x,y). The case c1 = 0 is a special case.
We will consider the general case in which c1 6= 0. Two
independent solutions of the differential equations of
the characteristic curves of (30) are

ysin
(

x
a

)
2x−asin

(
2x
a

)
+ 4c2

c1

−K(x) = a1 , (31)

Ψ(x,y)− ln

[
2x−asin

(
2x
a

)
+

4c2

c1

]c4/c1

= a2 , (32)

where a1 and a2 are constants and

K(x) =
4
c1

∫ x k(x)sin3
(

x
a

)[
2x−asin

(
2x
a

)
+ 4c2

c1

]2 dx . (33)

The general solution of (30) is of the form a2 = g(a1)
where g is an arbitrary function. Therefore, since ψ =
Ψ(x,y), we have

ψ(x,y) = g(χ)+ ln

[
2x−asin

(
2x
a

)
+

4c2

c1

]c4/c1

,

(34)

χ =
ysin

(
x
a

)
2x−asin

(
2x
a

)
+ 4c2

c1

−K(x) . (35)

Now ψ(x,0) = 0 from (18) which will be satisfied
if c4 = 0 and g(−K(x)) = 0. Since g(x) is not iden-
tically zero, g(−K(x)) = 0 provided K(x) is constant.
We choose the constant to be zero. To make K(x) = 0
we choose k(x) = 0. Thus

ψ(x,y) = g(χ), g(0) = 0 , (36)

χ =
ysin

(
x
a

)
2x−asin

(
2x
a

)
+ 4c2

c1

. (37)

The substitution of (36) and (37) into (15) gives rise to
a third-order ordinary differential equation for g(χ):

aν
d 3g
d χ3 +4

(
dg
d χ

)2

= 0 . (38)

Letting η = 4A
3aν

χ and g = A f in (38), we obtain

f ′′′+3 f ′2 = 0 , (39)

where the prime denotes differentiation with respect
to η and A is an arbitrary constant which is fixed later.
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The boundary conditions (16) and conserved quan-
tity (19) become

f (0) = 0, f ′(0) = 0, f ′′(c(x)) = 0 , (40)

F = A f (c(x)) = const. independent of x , (41)

where

c(x) =
4A

3a2ν

φ(x)sin
(

x
a

)[
2x
a − sin

(
2x
a

)
+ 4c2

ac1

] . (42)

Since f (η) is not a constant function it follows
from (41) that c(x) must be a constant, which we take
to be unity. Equations (36) and (37) yield

ψ(x,y) = A f (η) , (43)

η =
4A

3a2ν

ysin
(

x
a

)[
2x
a − sin

(
2x
a

)
+ 4c2

ac1

] , (44)

and the conserved quantity (41) becomes

F = A f (1) , (45)

where F is a given constant and the boundary condi-
tions (40) simplify to

f (0) = 0, f ′(0) = 0, f ′′(1) = 0 . (46)

The equation of free surface from (42) is

φ(x) =
3a2ν

4A

[
2x
a − sin

(
2x
a

)
+ 4c2

ac1

]
sin
(

x
a

) . (47)

In [9, 10], (39) was solved subject to conditions (46),
(45), and the condition f ′(1) = 1 which fixes the ar-
bitrary constant A. Equation (39) yields (see [9, 10])

f ′′ =
[
2(k1− f ′3)

] 1
2 . (48)

The boundary condition f ′′(1) = 0 and the chosen con-
dition f ′(1) = 1 give k1 = 1. Defining t = f ′, (48)
becomes

d t
dη

= [2(1− t3)]
1
2 . (49)

The solution of (49) is [10]

−2
3
(1− t3)

1
2 ×2F1

[
1
2
,

2
3
,

3
2
,1−t3

]
=
√

2η +k2 , (50)

where 2F1 is the hypergeometric function of the first
kind and k2 is an arbitrary constant. The boundary con-
dition f ′(0) = 0 = t(0) gives the constant k2, and we
obtain

η =
2

3
√

2

(
2F1

[
1
2
,

2
3
,

3
2
,1

]
− (1− t3)

1
2

× 2F1

[
1
2
,

2
3
,

3
2
,1− t3

])
.

(51)

Since f ′ = t, (51) gives the solution for f ′(η) in para-
metric form with parameter t. The velocity component
u(x,y) is proportional to f ′(η).

The constant A is given in terms of F by (45). Now,
using (49) [5]

f (1) =
∫ 1

0
f ′(η)dη =

1√
2

∫ 1

0
t(1− t3)−1/2 d t

=
π

3
√

3
,

(52)

and hence

A =
3
√

3F
π

. (53)

The final form of the group invariant solution is

ψ =
3
√

3F
π

f (η) , (54)

where

η =
4
√

3F
πνa2

[
sin
(

x
a

)(
2x
a − sin

(
2x
a

)
+ 4c2

ac1

)y

]
. (55)

From (47) the equation of free surface is

φ(x) =
πνa2

4
√

3F

[
2x
a − sin

(
2x
a

)
+ 4c2

ac1

]
sin
(

x
a

) , (56)

and from (14),

u(x,y) =
36F2

νa3π2
(

2x
a − sin

(
2x
a

)
+ 4c2

ac1

) f ′(η) . (57)

4. Analysis of the Results

The fluid velocity, given by (57), is proportional to
f ′(η). From (51) we may tabulate the values of η for
given values of the parameter t = f ′. The behaviour
of the velocity function f ′ is shown in Figure 2 and is



278 R. Naz et al. · Group Invariant Solution for a Liquid Film on the Surface of a Sphere

0.2 0.4 0.6 0.8 1 η

0.2

0.4

0.6

0.8

1
f’

Fig. 2. Graph of f ′(η) against η .

the same as for the two-dimensional and radial liquid
jets [9,10]. There are two cases to consider, c2

c1
= 0 and

c2
c1

> 0.
Case i: c2

c1
= 0.

When c2
c1

= 0, the equation of the free surface (56) and
the velocity (57) reduce to

φ(x) =
πνa2

4
√

3F

[ 2x
a − sin

(
2x
a

)
sin
(

x
a

) ]
(58)

and

u(x,y) =
36F2

νa3π2
(

2x
a − sin

(
2x
a

)) f ′(η) . (59)

The range of x is 0≤ x
a ≤

π

2 because the film of liquid
will separate from the sphere for x

a > π

2 . There is no
pressure gradient to cause separation for x

a ≤
π

2 . Using
L’ Hopital’s rule it follows from (58) and (59) that as x
tends to zero the thickness of the liquid film also tends
to zero and the fluid velocity u(x,y) tends to infinity

0.5 1.0 1.5

x

a

φ

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 3. Graph of the free surface of the liquid film when
c2
c1

= 0.

in such a way that the flux of fluid remains finite and
the conserved quantity is satisfied. It is readily verified
that φ(x) is an increasing function of x for 0≤ x

a ≤
π

2 .
The thickness of the liquid film increases steadily from
zero at x = 0 to

φ

(
π

2

)
=

π2νa2

4
√

3F
(60)

at x
a = π

2 . The graph of the free surface of a liquid
film is shown in Figure 3. The thickness of the liquid
film is directly proportional to the kinematic viscosity ν

which causes diffusion of vorticity from the surface of
the sphere and is inversely proportional to the strength
of the film, F , which opposes the diffusion from the
surface.

This solution does not describe the flow illustrated
in Figure 1 but it may describe the flow due to a point
source at O.

Case ii: c2
c1

> 0.
We will follow the approach of Watson [5] who related
c2/c1 to a length for a radial liquid jet on a horizontal
plane.

Let the radius of the incident jet be b and the speed
at which it strikes the sphere be U0. The point x = 0,
y = 0 is a stagnation point. Watson distinguished four
regions of flow.

In Region 1, x = O(b). The fluid outside the bound-
ary layer is approximately inviscid and its velocity rises
rapidly from zero at the stagnation point to U0. In Re-
gion 2, x > O(b). The fluid velocity outside the bound-
ary layer is now approximately U0. Since the boundary
layer is matched to the free stream U0 it is a Blasius
boundary layer with thickness

δ (x) = O

[(
νx
U0

)1/2]
. (61)

Let h(x) be the total depth of the flow. Since 2πF is
the volume flow rate

2πF = πb2U0 = 2πa sin
( x

a

)
h(x)U0 (62)

and therefore, neglecting terms O
[(

x
a

)3]
,

h(x) = O

(
b2

x

)
. (63)

In Region 2, δ (x) < h(x). In Region 3, the viscous
stresses are important up to the free surface and
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δ (x) = O(h(x)). The boundary layer changes from Bla-
sius to a liquid film on a sphere. In Region 4, the way
the liquid film was formed is no longer important and
the solution for the liquid film applies with a suitable
choice for c2/c1.

From (61) and (63), the boundary layer thick-
ness δ (x) becomes of order h(x) when

x3 = O

(
b4U0

ν

)
. (64)

The Reynolds number of the incident jet is

Re =
U0b

ν
(65)

and expressing U0 in terms of Re, (64) becomes

x = O
(
bRe1/3) . (66)

Thus in Region 3, (66) is satisfied and the speed of the
film on the free surface is O(U0). But the velocity on
the free surface of the liquid film is given by (57) with
η = 1. Since f ′(1) = 1, (57) yields

O(U0) = O

[
F2

νa3
((

x
a

)3 + 3
a

c2
c1

)] , (67)

where terms of O
((

x
a

)5)
were neglected in the expan-

sion of sin
(

x
a

)
. Using (62) for F and (65) for U0, (67)

becomes(
x
a

)3

+
3
a

c2

c1
= O

((
b
a

)3

Re

)
. (68)

But in Region 3, (66) is satisfied and therefore

3
a

c2

c1
= O

((
b
a

)3

Re

)
. (69)

Introduce the length l defined by

3
a

c2

c1
=
(

l
a

)3

. (70)

Then from (69),

l
a

= O

(
b
a

Re1/3
)

. (71)

Equation (71) gives an order of magnitude for l
a and

was derived by considering the development of the flow
from the impact point of the film. It is the same estimate

0.5 1.0 1.5

x

a

φ

1

2

3

4

Fig. 4. Graph of the free surface y = φ(x) of the liquid film

when
( l

a

)3 = 5×10−2.

for l as obtained by Watson [5] for an axisymmetric jet
falling vertically on a horizontal plane. Expressed in
terms of l

a , (56) and (57) become

φ(x) =
πνa2

4
√

3F

[
2x
a − sin

(
2x
a

)
+ 4

3

(
l
a

)3

sin
(

x
a

) ]
, (72)

u(x,y) =
36F2

νa3π2
(

2x
a − sin

(
2x
a

)
+ 4

3

(
l
a

)3) f ′(η) , (73)

where

η =
4
√

3F
πνa2

[
sin
(

x
a

)(
2x
a − sin

(
2x
a

)
+ 4

3

(
l
a

)3)y

]
. (74)

The value of the film Reynolds number is assumed
large because (66) holds only for x� b. A graph of φ(x)
against x for

(
l
a

)3 = 5×10−2 is plotted in Figure 4. In
an actual flow the group invariant solution will only hold
sufficiently far from the impact point for the conditions
in the inner regions to no longer have an effect as
illustrated in Figure 1.

As the radius a of the sphere tends to infinity the re-
sults for an axisymmetric jet falling vertically on a hor-
izontal plane are rederived. For expanding (72) – (74)
for x

a small gives to lowest order,

φ(x) =
πν

3
√

3F

(x3 + l3)
x

, (75)

u(x,y) =
27F2

νπ2

f ′(η)
(x3 + l3)

, (76)

where

η =
3
√

3F
πν

xy
(x3 + l3)

. (77)
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The results agree with the results of Watson [5] if
2πF = Q and f ′(η) is replaced by f (η), y by z and x
by r. The expansion of (58) and (59) for x

a small is
obtained by setting l = 0 in (75) and (76).

5. Conclusions

The problem of flow in a film of liquid on a sphere
was formulated. The conserved quantity for the liquid
film was constructed with the help of a conserved vector.
A symmetry was associated with the conserved vector
that gave the conserved quantity for the liquid film.
That symmetry was then used to construct the group
invariant solution for the liquid film on the sphere. The
velocity profile f ′(η) plotted against η for a liquid film
on a sphere is the same as the velocity profile for two-
dimensional and radial liquid jets.

The group invariant solution contained one remain-
ing constant c2

c1
after the boundary conditions and con-

served quantity had been imposed. This constant de-
pended on the conditions in the incident jet and its
order of magnitude was obtained by considering the
growth of the boundary layer from the impact point of
the jet on the sphere as described by Watson [5] for
the spreading of a film of liquid on a horizontal plane.
We can expect the group invariant solution to only ap-
ply when x is sufficiently large for the conditions in
the inner regions to no longer affect the flow. We es-
timated this distance to be O(bRe1/3) where b is the
radius and Re is the Reynolds number of the incident
jet.
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