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In this research work a time-dependent partial differential equation which has several important
applications in science and engineering is investigated and a method is proposed to find its solution.
In the current paper, the homotopy analysis method (HAM) is developed to solve the eikonal equation.
The homotopy analysis method is one of the most effective methods to obtain series solution. HAM
contains the auxiliary parameter /i, which provides us with a simple way to adjust and control the
convergence region of a series solution. Furthermore, this method does not require any discretization,
linearization or small perturbation and therefore reduces the numerical computation a lot. Some test
problems are given to demonstrate the validity and applicability of the presented technique.
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1. Introduction

The Hamilton-Jacobi time-dependent partial differ-
ential equation,

v +H(x,Vy(x,t)) =0, (1)

arises in many applications ranging from classical me-
chanics to contemporary problems of optimal control.
These include geometrical optics, crystal growth, etch-
ing, computer vision, obstacle navigation, path plan-
ning, photolithography, and seismology.

A very important member of the family of the static
Hamilton-Jacobi equations is the eikonal equation. The
stationary eikonal equation is

[Vu@)|=n(x), xeR", 2)

with a boundary condition u(x) = ¢(x), x € I’ C R".
The eikonal equation has many applications in opti-
mal control [1,2], computer vision [3-5], geometric
optics [6], path planning [7, 8], etc. The equation is
closely related to conservation laws, and information
travels with characteristics or rays from the boundary.
If 1 =1 and ¢ = 0O then the solution u(x) is the dis-
tance between the point x and the boundary. If ) de-
pends on x, u(x) is the phase of high frequency wave

travelling in a medium with variable speed of propa-
gation.

Two different type of methods can be found to solve
the eikonal equation. One approach is to treat the
problem as a static (time-independent) boundary value
problem and design an efficient numerical algorithm
to solve the system of nonlinear equations after dis-
cretization. For example, the fast marching [9, 10] and
fast sweeping methods [11, 12] are of these types. The
fast marching method employs a heap to sort points on
the moving wavefront. This is based on the property of
the solution that guarantees the characteristic steepest
descent on u. The solution at each point depends on
points with smaller values, and updating the minimum
value on the wavefront, using the heap-sort maintains
this condition. The complexity of this algorithm is of
order O(NlogN) for N grid points, where the logN
factor comes from the heap-sort algorithm. On the
other hand, one can update solutions along a specific
direction without explicit checks for causality prop-
erty. This is the main idea behind the fast sweeping
method which solves the problem on an n-dimensional
grid using at least 2" directional sweeps, one per quad-
rant, within a Gauss-Seidel update scheme. The fast
sweeping is optimal in the sense that a finite number of
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iterations is needed [12], so that the complexity of the
algorithm is O(N) for a total number of N grid points,
although the constant in the complexity depends on the
equation.

The high-order finite difference type fast sweep-
ing method developed in [11] provides a quite gen-
eral framework, and it is easy to incorporate any or-
der of accuracy and any type of numerical Hamil-
tonian into the framework. Much faster convergence
speed than that by the time-marching approach can
be achieved. Several other numerical schemes are ex-
tended to solve Hamilton-Jacobi equations for example
the essentially non-oscillatory (ENO) scheme [13], the
weighted ENO (WENO) scheme [14], the discontinu-
ous Galerkin method [15], etc.

The other class of numerical methods for static
Hamilton-Jacobi (HJ) equations is based on the refor-
mulation of the equations into suitable time-dependent
problems. One technique to obtain a time-dependent
Hamilton-Jacobi equation is using the so called parax-
ial formulation [13, 16— 18]. Another approach is the
level set method. A large number of applications re-
quire the development of optimal algorithms for track-
ing moving interfaces (that is, advancing fronts). Ad-
vances in numerical analysis have led to computation-
ally efficient tools for tracking interface motion by us-
ing level set methods. The level set method first intro-
duced by Osher and Sethian [19] in 1988 is a simple
and adaptable method for computing and analyzing the
motion of an interface in two or three dimensions and
following the evolution of interfaces [20]. The main
idea of the level set method is to embed the propa-
gating interface as the zero level set of a continuous
real valued function, called a level set function. Let ¢
denote this function then ¢ embeds the interface I"
as its zero level set I'(r =0) = {x e R" | ¢(x) = 0}.
Furthermore, by adding a time variable, the level set
function can be used to capture a given dynamics of
the interface using a time dependent partial differential
equation (PDE) in ¢. The location of the interface at
time ¢ in this case is the zero level set of ¢ at that time:
r'(t)={xeR"|¢o(x,t) =0}.

Osher [21] provided a link to the time dependent
Hamilton-Jacobi equations by proving that the 7-level
set of ¢@(x,y) is the zero level set of the viscos-
ity solution of the evolution equation at time ¢. In
that paper, Osher derived from the general first-order
equation

‘F(xvyvuvuhuy):() (3)
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a time-dependent Hamilton-Jacobi equation,

¢I+H(x’yat7q)xa(py):0a (4)

on domain £ C R" and subject to initial conditions
o(x,t =0)= @y(x) forx € I' C Q. Osher and Sethian
developed a Hamilton-Jacobi scheme with second-
order viscosity for a curve propagation with curvature-
dependent speed. In that work, they considered a small
section of curver = u(X), as u is satisfied in the eikonal
equation, and produced an evolution equation of the
form

Y4+F(K)(1+| VP2 =G(X,VW,e), X eR?, (5)

where x; = ¥(xy,...,x4_1,¢) and K is the curvature.
At the same time, if we view the curve r = u(X) as a
level set of the function ®(X,7) = C, we are led to the
Hamilton-Jacobi equation

& +c(X)|VP| =0, XeRY. (6)

2. The Main Problem

In this paper, we consider the time-dependent
eikonal equations (7) and (8) that are formulated by the
aid of the level set method. According to the level set
framework, if we view the curve t = u(x) as a level set
of the function ¢ (x,#) = ¢, we are led to the Hamilton-
Jacobi equation

& (x, 1) +c(x)|Vo(x,2)] =0, in Qx[0,T]. (7)

At the same time, if considering a small section of
curve t = u(X), as u is satisfied in (2), then we can
produce an evolution equation of the form

v+ X)L+ V)2 =0, in 2x[0,T], (8)

where x; = y(x1, - ,x4-1,1), d = 2, 3, and subject to
the initial conditions

¢ (x,10) = g(x),

where c(x) = ﬁ, g(x) and h(x) are Lipschitz contin-

uous functions.

In this investigation, we focus on an eikonal equa-
tion which is transformed in the form of a Hamilton-
Jacobi equation by the level set formulation. These
equations are solved numerically by several authors.
Interested reader can see [16,22] and the references

v(X,10) =h(X), x€Q, )
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therein. But the current paper proposes a different ap-
proach. The main idea behind this work is to use a
semi-analytic (or quasi-numerical) technique [23]. The
solution is given by means of the homotopy analysis
method (HAM). Several examples are given to show
the efficiency of this method for solving the studied
model.

The rest of this paper is arranged as follows: In Sec-
tion 3, we present the mathematical framework of the
homotopy analysis method. In Section 4, several test
problems are given, and results obtained by the pre-
sented method are reported. In Section 5, some appli-
cations of this model are prescribed. Section 6 com-
pletes this paper with a brief conclusion.

3. The Homotopy Analysis Method

The homotopy analysis method (HAM) has been
proposed by S.J. Liao in his Ph.D. dissertation in
1992. In [24], Liao employed the basic idea of the
homotopy in topology to propose a general analytic
method for nonlinear problems. Based on homotopy
of topology, the validity of the HAM is independent
of whether or not there exist small parameters in the
considered equation. Therefore, the HAM can over-
come the foregoing restrictions and limitations of per-
turbation techniques. The HAM also avoids discretiza-
tion and provides an efficient numerical solution with
high accuracy and minimal calculation. Furthermore,
the HAM always provides us with a family of solution
expressions in the auxiliary parameter 7 [25], the con-
vergence region might be determined conveniently by
the auxiliary parameter /.

Several authors have used HAM to solve various
problems in applied mathematics. This technique is
used in [26] for solving Blasius’ viscous flow which is
the two-dimensional laminar viscous flow over a semi-
infinite flat plate. In [27] this method is applied to give
an analytic solution of the viscous flow past a sphere.
In [28] HAM is used to solve the combined heat and
mass transfer by natural convection adjacent to a verti-
cal wall in a non-Darcy porous medium. In [29] HAM
is applied to find the exact flow of a third-grade fluid
past a porous plate. In addition, this method is applied
in [30] for solving the time fractional wave-like differ-
ential equation with a variable coefficient. This method
is applied in [31] to solve the Thomas-Fermi equa-
tion. This technique is used for computing a solitary
wave solution of the modified Camassa-Holm equa-
tion in [32]. Author of [33] implemented the HAM for

solving the Laplace equation with Dirichlet and Neu-
mann boundary conditions. This technique is also ap-
plied in [34] to compute an explicit series solution of
travelling waves with a front of the Fisher equation.
In [35] the heat transfer analysis is investigated for
magnetohydrodynamic (MHD) flow in a porous chan-
nel, and the homotopy analysis method is employed
to obtain the expressions for velocity and tempera-
ture fields. Authors of [36] presented an efficient nu-
merical algorithm for solving the nonlinear algebraic
equations based on the Newton-Raphson method and
HAM. The higher-dimensional initial boundary value
problems of variable coefficients are solved by means
of HAM [37]. In [38] the problem of a magnetohydro-
dynamic boundary layer flow of an upper-convected
Maxwell (UCM) fluid is considered for the analytical
solution using HAM. Authors of [39] introduced a re-
liable modification of HAM and applied it to homoge-
neous or non-homogeneous differential equations with
constant or variable coefficients. They assumed that the
‘coefficients’ and/or non-homogeneous terms can be
expressed in Taylor series based on a kind of a con-
tinuous homotopy mapping with respect to p (embed-
ding parameter). For more applications of HAM the
interested reader can see [40—45]. Beyond that for
some other semi-analytical approaches the reader can
see [46—-52].

3.1. Basic Idea of HAM

To illustrate the basic idea of the homotopy analysis
method, let us consider the following differential equa-
tion:

Nu(r)] =0,

where N is a nonlinear operator, 7 denotes the inde-
pendent variable, and u(r) is an unknown function.
By means of generalizing the traditional homotopy
method, Liao constructs the so-called zero-order de-
formation equation

(1=p)L[(r; p) —uo(r)] = phH (r)N[§(r; p)], (11)

where p € [0, 1] is the embedding parameter, i # 0 is a
non-zero auxiliary parameter, H(r) # 0 is an auxiliary
function, £ is an auxiliary linear operator, ug(r) is an
initial guess of u(r), and u(r; p) is an unknown func-
tion. Expanding u(r; p) in Taylor series with respect
to p, we have

O(rp) = uo(r)+ Y p"um(r),

m=1

(10)

(12)
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where

1 .9"9(r;p)

g P (43

um(r) =

If the auxiliary linear operator, the initial guess, the
auxiliary parameter 7, and the auxiliary function are
so properly chosen, the series (12) convergesat p = 1,
then we have

u(r) =uo(r)+ i um (1), (14)
m=1

which must be one solution of the original nonlinear
equation. As i=—1and H(r) = 1, (11) becomes

(1=p)L[¢(r;p) —uo(r)]+ pN(r;p)] = 0. (15)

Define the vector

tin(r) = {uog(r),ui (r),...,u.(r)}.

Differentiating (11) m times with respect to the em-
bedding parameter p and then setting p = 0 and finally
dividing them by m!, we have the so-called mth-order
deformation equation

(16)

E[um(r) — XmUm—1 (r)} = hH(r)Rm(ﬁm—l)a 17

where
1 9" Ng(r;p)]
m _’m— = =i 1
R (u 1) (m—l)‘ apm_l ‘p 0 ( 8)
and
0, m<1,
Xm = 1, m>1.

By Theorem 2.1 in [53], (18) can be reformulated in

the following form:

o 1NN pu
(m—1)! dpn-1

Lo (19)

It should be emphasized that u,(r) for m > 1 is gov-
erned by the linear equation (17) with the linear bound-
ary conditions that come from the original problem,
which can be easily solved by the well-known sym-
bolic computation softwares such as Maple, Mathe-
matica or Macsyma.
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4. Test Problems

In this section, we present some examples with
analytic solutions for the validation of HAM. Most
of the test problems presented here are taken from
the literature on high-order methods for hyper-
bolic problems: discontinuous Galerkin finite element
method [54, 55], viscosity solutions approach [5], level
set method [20, 56].

4.1. Example 1

As the first example, we consider the following ini-
tial value problem:

ur(x,1) + ux(x,2)| =0 (20)
with the initial condition
u(x,0) = min{x, —2(x—2)}. 21

For application of the homotopy analysis method, we
choose the initial condition

up(x,1) = u(x,0)

=min{x,—2(x—2)} (22)
and choose the linear operator
£loxisp)) = 20ELL) )
with the property
L(c) =0, (24)

where ¢ is the integral constant. Furthermore,
from (20) we suggest to define the nonlinear operator

N9 (x,t5p)] = ¢ (x,1; p) + |0 (x, 25 p)|.

As simplest initial approximation for u(x,7) we choose
u = up = u(x,0). It is immediately obvious that uy =
u(x,0) satisfies the initial condition automatically. Us-
ing the above definition, with assumption H (x,7) = 1,
the zeroth-order deformation equation and the corre-
sponding initial condition has the form

(1= p)L[¢(x,1;p) — uo(x,0)]

(25)

(26)
= phN(§(x,1;p)),
subject to the initial condition
¢(x,0,p) = u(x,0). 27
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It easily can be seen that for p = 0, (25)—(27) lead to
the relationship

O (x,2;0) = up(x,1).

Therefore, as embedding parameter p increases from 0
to 1, ¢(x,¢; p) varies from initial condition ug(x) to the
solution u(x,7). Expanding ¢ (x,#; p) in Taylor’s series
with respect to p, one has

(28)

O (x,1:p) = uo(x,1) + Y p"um(x,1), (29)
m=1
where
1 9"9(x,t;p)
U (x,1) = %WM;:& (30)
Define the vector
Uy (x,1) = {uo(x,2),u; (x,2),...,un(x,8)}.  (31)

Differentiating the zero-order deformation equa-
tion (26) m times with respect to p and finally dividing
by m!, we gain the mth-order deformation equation

ﬁ[”m (x»t) — XmUm—1 (X»t)} = hRm(ﬁmfl )7 (32)
subject to the initial condition
un(0,0) =0, (33)
where
_ 1 9" 'N[g(x,1;p)]
’R«m(umfl) = (m — 1)' apm,I ‘p:O (34

1 0m Xy pM () + | X0 PR ()]

(m—1)! apn =0
(35)
and
0, m<1,
Xm = 1 m> 1 (36)

Now the solution of the mth-order deformation equa-
tion (32) for m > 1 becomes

um(xvt) = XmUm—1 (x»t) +h£_1 [Rm(ﬁmfl )} +c1. (37)

According to the initial condition (22), we have
un(0,0) = 0, this implies that the integration constant

¢y occurring in (37) is zero. From (22) and (37), we
now successively obtain

up(x,t) = min{x, —2(x —2)}

{ X; if x< %,
= . 4
—2(x—2), if x> 3,

1, if x< £,
(uo)x(x,t) :{ ;

-2, if x> 1%,

1, if x< %,

[ (o) (x,1)] = {

2, if x> 4%,
wy (x,1) = RL™[Ry (o)) = L™ [(10): + | (o) ]

—h£‘1~{1— ht, if x <3,
2 20ht, if x> 3,

(u1(x,1))x =0,

up(x,1) = uy +hL™ Ry (i)
1 9[(uo+pur )+ (uo+puy)x|]

=ug+nL"

ap =0
= (1+R)uy (x,1),
uz(x,1) = us + L Y[R3 (ihr)] = up + AL ™!
. 9% [(uo+ pur + p*uz) + |(uo + puy + p*ur)x|]
dp? "
= (1B (x,0),
At last, we get
(n(x,0))x =0, Vn>1,
Rn(ﬁnfl) =
(i) ()
t X
ap”71 =0
ot [zzl P+ (uo>x]
- apiT = (Up—1)r,
p=0
Vn>2,
Un(%,0) =ty 1 +RL Ry (i)
=(1+h)" ui(x,t), Vn>2.
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The solution of (20) in the series form can be given by
u(x,t) = uo(x, 1)+ huy (x,) +uy (x,1) Z (1+nr)k. (38)

Note that the coefficients of the solution expression
(38) depend upon the auxiliary parameter /. Accord-
ing to the convergence condition for geometric series,
the necessary condition for the series (38) to be con-
vergentis |1 +A| < 1, i.e.,

—-2<h<O0.

By setting i = —1 in the above series solution, we ob-
tain

u(x,t) = up(x,t) — uy(x,1)
=min{x—¢,—2(x—2) —2¢},

which is the exact solution of (20).

4.2. Example 2

Consider the equation

U (x,1) + |ux(x,1)[ = 0 (39)
and the initial condition
u(x,0) = sin(x). (40)

According to HAM, we choose the initial approxima-
tion

o(x,1) = u(x, 0) = sin(x) @1
and the linear operator

Llo(sp) = 2P @)
with the property

L(c)=0, (43)

where c is the integral constant. Furthermore, (39) sug-
gests to define the nonlinear operator

No(x,1:p)]

Using the above definition with the assumption
H(x,t) = 1, we construct the zeroth-order deformation
equation

(1—p)L[§(x,1:p) —uo(x,0)]

=@ (x,1;p) + |9u(x,15p)|.  (44)

= phiN(¢(x,t;p)). (45)
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As mentioned previously in Example 1, for p = 0, we
get

O (x,2;0) = up(x,1). (46)
The mth-order deformation equation is
Lty (x,8) — Xmitm—1(x,1)] = AR (tm—1), (47)
subject to the initial condition
um(0,0) =0, (48)
where
Ron(lin—1) = (mi oI i lggﬁ(f’t;p ) [p=0 (49)
and
0, m<1,
Xom = {1, m> 1.

Now the solution of mth-order deformation equa-
tion (47) for m > 1 becomes

um(xvt) = XmUm—1 (x,t) +h£_1 [’R«m(ﬁmfl )] +c1. (50)

From the initial condition (40), we conclude that

um (0,0) = 0 which yields the integration coefficient ¢;
is zero. We now successively obtain
up(x,t) = sin(x),
up(x,t) = ht|cos(x)|,
s
up(x,t) = (L +R)uy(x,1) — 5T sin(x),
us(x,t) = (1 +h)ua(x,1)
A
+ ETH abs(1,—cos(x)) cos(x)
h)hit*
+ (A +mhe abs(1,cos(x))sin(x),

2!

Thus the HAM series solution of the initial value prob-
lem (39) can be given by

u(x,1) = sin(x) + ar| cos(x)| 4 (1 +R)uy (x,1)

— Ts1n( x) + (1 +h)ua(x,t)

B Gb
+ Tabs(l —cos(x)) cos(x)
(e

51 abs(1,cos(x))sinx) + ...
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We have used the well-known software Maple 12 to
compute the above relations. In this software the abs
function denotes the first derivative of the absolute
value function which is defined by

1, if x>0,
abs(l,x) =< 0, if x=0,
—1, if x<O0.

By considering an appropriate interval for x and ¢, ac-
cording to the change of sign of the sin(x) and cos(x)
functions, and setting i = —1 in (51) the solution
of (39) can be obtained as the limit of one part of piece-
wise function u = ug+u; +uz + . . .. Thus the following
formula which is the exact solution is obtained:

ifo<r<Z:
sin(x—1), if 0<x< %,
sin(x+1), if %<x§37”—t,
u(x,t) =
—1, if Z—r<x< 34,
sin(x —1), if 37”+t<x§27t,
if7<t<m
—1, if0<x<i—Z,
sin(x—1), if t—% <x<Z,
u(x,t) = : eon 3n
sin(x+1), if 7 <x<F—1,
-1, if Z-r<x<2m,

ift > m: u(x,t) =0.

4.3. Example 3

The third test problem is the initial value problem

w—(1+u)!* =0, (52)
subject to the initial condition
1/2—x, if x<1,
T (53)
x—1/2, if x> 5

The initial front “V’ is formed by rays meeting at
(1/2,0). By entropy condition, the solution at any time ¢
is the set of all points located a distance ¢ from the ini-
tial ‘V’. See [56] for details. Under the rule of solution
expression and according to the initial condition (53),
it is straightforward to choose

1/2—xif x<

up(x,t) = u(x,0) = {x_ 1/2 if x>

1
AN L))
29

and the auxiliary linear operator

d ;
Lo (x.1:p)] = —‘“’;j 2 (55)
with the property
L(c) =0, (56)

where c is the integral constant. In view of the HAM
technique, we construct the zeroth-order deformation
equation, with assumption H (x,¢) = 1, as follows:

(1=p)L[¢(x,1;p) —uo(x,0)] = phN(9(x,1; p)), (57)

where

Mo(x,t:p)] = ¢ (x,1:p) =/ 1+ 92 (x,1:p). (58)

Differentiating (57) m times with respect to p, then set-
ting p = 0 and finally dividing them by m!, we have the
mth-order deformation equation

E[um(x,t) — XmUm—1 (x,t)} = hRm(ﬁm—l)-

Accordingly, the first few terms of the HAM approxi-
mate solution can be shown by

um(xvt) = XmUm—1 (x,t) +h£_1 [Rm(ﬁmfl )] +c1. (59)

In accord with the initial condition, we have u,,( % ,0)=
0 that implies c¢; = 0. The first few terms of HAM so-
lution series are as given in the following:

1/2—xif x< 4,
uo(x,1) = . "
x—1/2if x> 3,

up(x,t) = —\2ht, x# %,

up(x,1) = (1 +R)uy (x,1),

us(x,t) = (L+R)uy(x,t) = (1 +7)“uy (x,1),
ug(x,1) = (1 +m)us(x,t) = (1 4+7)uy (x,1),

Hence, the HAM series solution of the initial-value
problem (52) can be given by

=

u(x,t) = ugp(x,t) +uy(x,t) + Z U (x,1)

m=2
=ug(x,t) —itvV2+uy(x,1) Y, (1+R)""! 60)
m=2
> 1/2 —x+V2t,ifx < %,
=u(x) Y (14" + / . f
o x—1/24+2t,ifx > 1.
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It is seen that the convergence results can be obtained
when —2 < /i < 0. Now, by setting 7= —1 in (60), we
have the following formula, which is the exact solution
of problem (52)

( 1/2—x+\/§t, if XS%,
u(x,t) =
x—1/24 V21, if x> 1.

4.4. Example 4

As the last example we consider the following initial
value problem which appears in the application of the
model introduced in this paper in computer vision:

w+Z(x,y)Jui +ui+1=1 (61)
with initial condition
u(x,y,0) = 0. (62)

The steady state solution of this problem is the shape
lighted by a source located at infinity with vertical di-
rection. See [5] for details. We take

1
I(x,y)—\/1+(1_|x|)2+(1—\y\)2’

the exact steady solution is
u(x,y,00) = (1= |x[)(1 = y).

According to HAM, we choose the initial approxima-
tion

uo(x,y,1) = u(x,y,0) =0 (63)
and the linear operator
IP(x,y,1;
L[p(x.y.1:p)] = W (64)
with the property
L(c) =0, (65)

where c is the integral constant. Furthermore, (62) sug-
gests to define the nonlinear operator as

N[¢(x7y7t;p)] = ¢t(x»y»f§P)

66
+ Z(x,y)\ /02 + 02 +1—1. (66)
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Using the above definition, with assumption
H(x,y,t) = 1, we construct the zeroth-order de-
formation equation

(1=p)L[P(x,y,2: p) —uo(x,0)] = phN(¢(x,y,1: p)),
(67)
subject to the initial condition
um(0,0) =0. (68)
Then, the mth-order deformation equation is

Lt (x,y,1) = Xmttm—1(x,3,1)] = ARy (thyn—1). (69)

Now the solution of mth-order deformation equa-
tion (61) for m > 1 becomes

M()(X,y,t) =0,
uy(x,y,t) = (Z— 1)k,
MZ(xvyvt) = (1 —l—h)ul(x,y,t) = (1 +h)ht(1_ 1)7

IR f (x,
uz(x,y,t) = (1 +h)uz(x,y,t) + #

(=) + (1 = [yD)?
(4 (1= [d)?+ (1= [y)2)*

where f(x,y) =

So the approximate HAM series solution truncated in
the fourth term is:

u(x,y,1) &~ ug+uy +uz + u3
=uy (x, 1) + (1 +A)uy (x,y,)

IR f(x,y)
3!
=(1+(1+r) +(1+R)DRIT 1)
RT3 f(x,y)

3! '

Note that this series contains the auxiliary parameter 7,
which influences its convergence region and rate. We
should therefore focus on the choice of i by plotting of
h-curve. Figure 1 shows the fi-curve of u(0,0,0.08),
1(0.5,0.5,0.08), and u(3,3,0.08) given by 4th-term
approximate solution of (61). It is seen that conver-
gence results can be obtained when —2 < i < 0. To
show the convergence behaviour of the approximate
solution compared with the exact solution of this prob-
lem, in Tables 1 -2 the values of ||u — ugam ||« for dif-
ferent values of 7 are listed. Also, the results in Ta-
bles 1 -2 for —2 < /i < 0 confirm the validity of HAM

+ (1+7)%uy (x,y,0) +
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dx=dy=2/n P h=—1 h=—-09 h=—0.7 h=—-05 Table 1. Maximum abso-
40 002 41991x102 41996 x 102 42139x 102 42679x 10 2  luteerror between the ex-
004  3.6482x1072  3.6493x 1072  3.6779x 1072  3.7858x 10-2  act solution (61) and the
006  3.0975x1072  3.0990x 102  3.1419x10°2  33038x 102 HAM solution for differ-
008  2.5470x 1072 25490x 102  2.5490x 102  2.8218x 10-2  entvaluesof i
80 0.02 1.8693 x 1072 1.8698 x 1072 1.8846 x 1072 1.9403 x 1072
0.04 1.3011 x 1072 1.3022 x 1072 1.3318 x 1072 1.4431 x 1072
0.06 7.3314 % 1073 7.3476 x 1073 7.7895 x 1073 9.4594 x 103
0.08 42684 x 1073 42715 %1073 4.4160 x 1073 5.0955 x 1073
160 0.02 6.5798 x 1073 6.5798 x 1073 6.7298 x 103 7.2952 % 1073
0.04 2.1399 x 103 2.1423 x 1073 2.2142 % 1073 2.5531 x 1073
0.06 4.9623 % 1073 4.9459 % 1073 4.4971 x 1073 2.8015 % 1073
0.08 1.0707 x 1072 1.0707 x 10~2 1.0110 x 1072 7.8495 x 1073
dx=dy=2/n P h=—1.1 h=—13 h=—16 h=—19 Table 2. Maximum abso-
40 002 41985x 102 41842x102  4.0801x 102  3.7975x 10 2  luteerror between the ex-
004  3.6471x102  3.6186x1072  34105x 1072  2.8455x10-2  act solution (61) and the
006  3.0959x1072  3.0533x102  27415x102  1.8945x 102 HAM solution for differ-
008  2.5451x 1072  24885x 102  2.0735x 102  1.0341x10-2 entvaluesof i
80 0.02 1.8687 x 1072 1.8540 x 1072 1.7466 x 1072 1.4551 x 1072
0.04 1.3000 x 10~2 1.2706 x 10~2 1.0560 x 10~2 5.1927 x 1073
0.06 7.3155 % 1073 6.8751 x 1073 4.8222 %1073 5.0764 x 1073
0.08 42658 x 1073 4.1394 x 1073 3.3940 x 103 1.4870 x 1073
160 0.02 6.5684 x 1073 6.4185 x 1073 5.3282 % 1073 2.5993 x 103
0.04 2.1375x 1073 2.0714 x 1073 1.6995 x 1073 7.6015 x 1073
0.06 4.9785 % 1073 5.4580 x 1073 8.6911 x 1073 1.7502 x 1072
0.08 1.0748 x 1072 1.1342 x 1072 1.8614 x 1072 2.7507 x 1072
(m]
i 14
) |
12 o
(m}
o |
1 -
a
- |
] 0g H
- + u(0,0,0.08)
- 1N o wns05008)
o 064 o w3008
D -
o
L = 8 =] 0.4+
o, " = o, _
thag b 02 -
T4 Co o OpQ .
+++++$oo o Og =TT _ Fig. 1. .h—cu.rve of 4th-term
| . i """nnnnﬂﬂﬁ'._'_l:.'g-,_—_. approximation of u(0,0,
4 i3 . -1 0 0.08), 1(0.5,0.5,0.08), u(3,

h

for the eikonal equation. The results fori=—1,H =1
are exactly the same as the results for homotopy per-
turbation method (HPM). Furthermore, the compari-
son between the results shows that the HPM results are
not the optimal results in this case.

3,0.08).

5. Applications

In this section we give some applications of the
time-dependent partial differential eikonal equation.
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5.1. Optimal Control

In this subsection we follow [1,5] to prescribe an
optimal control application of the studied model in this
research. It is now well known, after the work of Cran-
dall and Lions [57], that in some situations a viscosity
solution may be considered as the cost function of an
optimal control problem. We shall use here the formu-
lation of u(x) in terms of a value function and more
precisely, the dynamic programming principle of Bell-
man.

Let u(x,t) be the viscosity solution of (2). With the
remark that [5]

|Vu(x)| = n(x) <= sup{ Vu(x) - g —n(x)} =

O (70)
Vx € Q,
u(x) appears to be the cost function of the follow-
ing exit time problem, which is the Hamilton-Jacobi-
Bellman equation of a minimum time problem for dy-
namical systems [1]: let y, be the state of the controlled
dynamical system,
yx = —C](S), s> Oa
yx(0) =x,

where ¢, the control, belongs to

(71)

A={g:R, — R? measurable ||g(s)| <1,s>0}.
(72)

Here the problem is to minimize a finite horizon cost
function which is defined by [5]:

T
Txg() = [ nlls)ds+90(T). (73

where 7 denotes the first exit time of Q, i.e., T =
min{r > 0 | y,(t) € dQ}.

The dynamic programming method suggests that the
cost function

u(x, 1) :=inf 7(x,4(,)) (74)

of the finite horizon problem solves, for all T > 0,
uy(x,t) + H(x,Dyu(x,t)) =0, in RV x(0,T),
u(x,0) = ¢(x), in RY,

where the Hamiltonian is H(x, p) := supj,<i{p-q —

n(x)}.

(75)

5.2. Halftoning

In this subsection we follow [58,59] to prescribe
an application of the studied model in halftoning. A
halftone is a binary picture H(x,y), each point being
either completely black or completely white that gives
the impression of an image containing shads of grey.
Halftoning is the process of transforming a grey-level
image, f(x,y), into a halftone, with the aim that when
H(x,y) is displayed on a bilevel medium, the human
observer will see in it as a good approximation as pos-
sible of the original f(x,y) [59]. One way to mathemat-
ically translate the halftone paradigm into a live gener-
ation algorithm is via the eikonal equation.

In the rest of this section we follow [58,59] to show
that the equal height lines of the solution H (x,y) of the
eikonal equation obey the halftone paradigm. Then, we
follow [21] to introduce a time-dependent formulation
of the eikonal equation by the level set method which
can be solved by the method presented in this report.

Suppose we want to determine a bivariate function
H (x,y), so that the local density of its equal height con-
tours (level sets) corresponding to the equally spaced
levels, defined by {H(x,y) =nh | n € Z}, will be pro-
portional to a given image f(x,y) > 0. Assuming that
in the neighbourhood of a point (xp,y) the bivariate
function can be approximated by a planner patch, that
can be written as

H(x,y) = H(x0,Y0) + p(x0,Y0)(x — X0)
+q(x0,y0) (y — o),

where p and g are the partial derivatives of H(x,y),
with respect to the x and y-coordinates [59]. In the
neighbourhood of (xg, o), the level sets corresponding
to nh are equally spaced parallel lines, separated by a
distance d, which is given by

d[p*(x0,0) + 4 (x0,0)]"/* = h.

The ‘local density’ of the parallel lines is proportional
to the inverse of d [58], thus we need to have

h
[P (x0,0) + ¢*(x0,0)]/* = 7= f(x,y).

This shows that a solution of the partial differential
equation

(5 (52 o
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will yield a bivariate function H(x,y) obeying the de-
sired halftone paradigm.
Now by the method given in [21], (71) becomes

v +g|Vo| =0,

where g = ’71 Then to compute H(x,y), we calculate
the level set via the relation

v(x,t) =0<=1t=H(x,y).

5.3. Shape Offset

In this subsection we follow [60, 61] to prescribe an
application of the studied equation in computer aided
design (CAD). In CAD one often encounters the need
to find the offsets of a given curve. The problem of
shape-offsetting is straightforward; it gives a closed
shape in two or three dimensions and computes the
offsets that are obtained by propagating the boundary
in its normal direction with constant unit speed. The
propagation time represents the ‘offset distance’ from
the given curve. The problem of shape offsetting can
be formulated as follows [60]: given a simple, closed
planner curve

Xo(s) = [x(s),y(s)]",

where s is an arbitrary curve parameterization. Finding
an offset curve is almost everywhere given by

Xi.(s) = Xo(s) + M(s,0) L,

where L is the displacement of the offset curve and
N(s,0) is the unit normal at the point Xy(s) given by

1
FIRFEO LRl

Consider X (s,f) to be a curve continuously changing
in time, for all 7, X (s,7) = Xo(s) +tN(s,0). Thus the
curve evolution can be described differentially by

N(s,0) =

aXa(f’t) =NMs0), X(5,0) = Xos),
or equivalently
XD M), X =Xo(s).  (6)

provided that each point on the curve moves in the di-
rection of the instantaneous normal

1

o s xs (s, T .
Mest) =250 560 33 5260)
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In [60], Kimmel and Bruckstein introduced an Eu-
lerian scheme for curve propagation. The Eulerian
framework is a recursive procedure which propagates
the curve while inherently implementing the entropy
condition. Authors of [60] introduced a smooth func-
tion @(x,y,r) which is arbitrary initialized so that
¢ (x,y,0) = 0 yields the curve X (s,0) provided that ¢
is negative in the interior and positive in the exterior
of the level set ¢(x,y,0) = 0. The idea is to determine
an evolution of the surface ¢(x,y,7) so that the level
sets ¢(x,y,0) = 0 provide the curve X (s,t) as if prop-
agating by (76) and obeying the entropy condition. If
@ (x,y,t) = 0 along X(s,t) then, by the chain rule, we
have

a‘P(x»y»t) + a‘P(X(Svt)vy(Svt)vt)
ot ox

a‘P(X(Svt)vy(Svt)vt)
N ot

Xt

v =0
or
&+ X (s,0) Vo =0. 77

The scaler velocity of each curve point in its normal
direction is

v =N(s,t)- X, (s,1).

In this case, we need to impose v = 1. The gradient V¢
is always normal to the curve given by @(x,y,r) =0
[60] so that

%4
N(S,t) = _ﬁ
and hence
v =NMN(s,1)- X, (5,8) = —%Xt(s,t) =1. (78)

Substituting (78) into (77) yields the surface evolution
equation

(P,—‘V(N:O,

which is the time-dependent eikonal equation and can
be solved by the method introduced in this research.

5.4. Porous Medium

In this subsection we follow [62,63] to prescribe a
porous medium application of the model studied in this
research. The porous medium equation arises in sev-
eral areas such as percolation of gas through porous
medium, radiative heat transfer in ionized plasma, etc.
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Now, consider the following partial differential
equations [63]:

u =AW"), in R"x(0,T,),

u(x,0) = up, in R" x {t =0}, (79)

and

v =|Vv%, in R" % (0,T,),

in R" x {t =0}, (80)

U = Vo,

as the first is the porous medium equation and the sec-
ond one is the eikonal equation. The connection be-
tween these equations is made apparent when we per-
form the change of variables

m m—1

V= —u"",

m—1
which transforms (79) into the ‘pressure’ equation

Ve = (m—1)0, AV, + |V0[% in R x (0,T;,), o1
Uy = U0, in R" x {r =0}, 1)
letting m — 1, then we obtain (80).

In [62], authors explored the convergence,as m — 1,
of the solution of (81) to (80) in the case of the Cauchy
problem in one space dimension. They proved not only
the solutions but also the interfaces of the solution (81)
converge to the solution and the interfaces of (80), if
the initial data is continuous, non-negative, and conver-
gent locally uniformly. Also, in [63], authors showed
the convergence behaviour in N space dimensions with
general initial data both for the Cauchy problem in RY
and for the Dirichlet problem in a bounded domain in
RV . They proved that the solution of (81) converge to
the viscosity solution of (80). Moreover, they showed
that the positivity sets of solutions of (81) converge to
the positivity solution of (80) by means of introducing
a new type estimates for the gradient.
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