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Some thermodynamic quantities for the Stockmayer potential (12, 6, 3) with a hard core are analyt-
ically evaluated at an isobaric process. The parameters of polar gases for 16 substances are obtained.
Also some thermodynamic quantities for H2O are calculated numerically and drawn graphically. The
inflexion point of the length L corresponds physically to a boiling point. L indicates the liquid phase
from lower temperature to the inflexion point and the gaseous phase from the inflexion point to higher
temperature. The boiling temperatures indicate reasonable values compared with experimental data.
The behaviour of L suggests the chance of a first-order phase transition in one-dimension.
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1. Introduction

It has been pointed out by Takahasi that the coexis-
tence of two phases is impossible in one-dimensional
substances for any choice of the potential. In a sys-
tem between two neighbouring molecules, the Gibbs
free energy G(T,P) and the length dG/dT are math-
ematically analytic functions applied to the proper-
ties of the Laplace transform, and must be single-
valued functions of P [1, 2]. Although Gürsey [3] con-
cluded that a single partition function is an analytic
function of the pressure and the temperature from the
Laplace transform, changes of phase were physically
discussed illustrating the isotherms for the square-well
potential [3, 4]. The Gibbs free energy is consequently
replaced by the function of two intensive variables,
namely T and P.

From the viewpoint of an isobaric process, this may
be significant to provide the behaviours of thermody-
namic quantities for the Stockmayer potential (12, 6, 3)
discussing physically the phase transition between
gaseous and liquid phases. The Stockmayer poten-
tial (12, 6, 3) [5, 6] is the sum of the Lennard-Jones
potential (12, 6) and an additional angle-dependent
term to account for the electrostatic interaction of two
dipoles while the dipole-dipole function includes the
long-range interaction.

In this work, the parameters for Stockmayer gases
(12, 6, 3) with a hard core are obtained. The length
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(dL/dT )p, enthalpy, and heat capacity are analytically
represented as the two intensive variables T and P.
These thermodynamic quantities are determined by nu-
merical calculations and are graphically displayed at
atmospheric pressure for H2O. The chance of the first-
order phase transition for the Stockmayer potential at
boiling points and at atmospheric pressure is discussed.

2. Second Virial Coefficients for the Stockmayer
Potential (12, 6, 3) with a Hard Core

For rigid spheres of distance σ , the Stockmayer po-
tential (12, 6, 3) is based upon the Stockmayer poten-
tial [5, 6]

U(r) =




∞, for r < σ ,

λ
[(σ

r

)12
−
(σ

r

)6
]
− µ2g

r3 , for r > σ ,
(1)

where µ is the permanent dipole moment and
g(θ1,θ2,ϕ) is the angular dependence of the dipole-
dipole interaction, namely

g = 2cosθ1 cosθ2 − sinθ1 sinθ2 cosϕ . (2)

In this expression, θ1 and θ2 are the inclinations of the
two dipole axes to the intermolecular axis and ϕ is the
azimuthal angle between them. Substituting r = σx,
the potential (1) is replaced by

U(x) = λ [x−12 − x−6 − dgx−3], x > 1, (3)
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where

d =
µ2

λ σ3 .
(4)

The second virial coefficients for angle-dependent po-
tentials may be found, in classical statistics, from the
well-known formula
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NA is the Avogadro number and β = 1/kT . The second
virial coefficients for polar gases (12, 6, 3) with rigid
spheres are expressed as
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where the integral is calculated by
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Here u = β λ , and nC2k, n−2kCj, and kCm are binominal
coefficients.

3. Thermodynamic Functions of Stockmayer
Gases (12, 6, 3) with a Hard Core at Isobaric
Process

Now, the particles and the gas constants in one di-
mension are calculated as follows [7]. The particles are
obtained using the cubic root of the Avogadro number
NA, thus

N1 = 0.84446× 108, (9)

and, consequently, a gas constant is

R1 = kN1 = 1.1659× 10−15 JK−1. (10)

Another gas constant corresponds to

R1 = 0.122233 atm Å K−1, (11)

which is obtained by applying T = 273.15 K, P =
1 atm, and L = (22414)1/3 cm = 28.1951 cm.

The configurational partition function for the Stock-
mayer potential may be defined as

Q(T,P) =
∫ ∞

1
exp[−β f (x)]dx, (12)

where

f (x) =U(x)+Pσx. (13)

The partition function in the T -P grand canonical en-
semble is expressed as the product of kinetic and con-
figurational partition functions,

Y (T,P,N1) =

(
2πmkT

h2

)N1/2

Q(T,P)N1 . (14)

The Gibbs free energy is derived from (14):

G(T,P)=−N1kT

[
log

(2πmkT )
1
2

h
+ logQ(T,P)

]
. (15)

Substituting q = Pσ/R1T , then the configurational
partition function can be explicitly represented as

Q =
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1
e−qxdx
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where F(m,q) is calculated by the primitive integrals
and the exponential integral,

F(m,q) =
∫ ∞
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where Ei(−q) is a exponential integral and explicitly
obtained as

Ei(−q) = γ + logq− e−q
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∑
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with the Euler constant γ .
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Table 1. Parameters for the polar gas (12, 6, 3) with hard core
determined from experimental data of the second virial coef-
ficients [8]. As dipole moments data of [9] are used.

Substance µ /Debye (λ/k)/K σ /Å
CHCl3 1.04 4731.48 2.67
HCl 1.1086 1519.88 2.61
CH3NH2 1.27 2880.57 2.59
NH3 1.468 1197.36 2.52
C2H2Cl2 1.62 2668.27 2.70
SO2 1.634 1442.75 2.68
CH3OH 1.690 2044.13 2.45
CH3Br 1.797 1977.62 3.22
CH3F 1.8471 743.57 3.18
CH3Cl 1.892 1302.37 2.94
H2O 1.94 979.12 2.46
C2H5Cl 2.05 1656.10 3.00
CH3CHO 2.69 1195.69 3.61
CH3COCH3 2.93 1212.77 3.59
CH3NO2 3.46 802.71 3.84
CH3CN 3.913 1143.74 4.23

The equation of state in one dimension is expressed
as

L−N1σ =

(
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∂P
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The derivative of L with respect to T can be derived
from (20) to(
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Now the enthalpy is obtained as

H −PN1σ =−T 2
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The heat capacity at constant pressure can be easily
derived from (22) to

CP =
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P
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The integrals in (20), (21), (22), and (23) can be ex-
plicitly calculated by using (18).

4. Numerical Results

The parameters of the Stockmayer potential
(12, 6, 3) with a hard core for 16 substances are pre-
sented, λ and σ are determined from the experimen-

Fig. 1. Length L for H2O vs. temperature at P = 1 atm; TB =
355.8 K.

Fig. 2. Derivative (dL/dT )P for H2O vs. temperature at P =
1 atm; TB = 355.8 K.

Fig. 3. Enthalpy H for H2O vs. temperature at P = 1 atm;
TB = 355.8 K.
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Table 2. T1 (temperature for the maximum of Cp) and boiling
temperature TB for different substances at 1 atm.

Polar gas (12, 6, 3) Exp. result [13]
Substance T1/K TB/K TB/K
CHCl3 254 306 334.3
HCl 139 166 188.1
CH3NH2 208 243 266.8
NH3 200 225 239.7
C2H2Cl2 241 276 313.0
SO2 212 240 263
CH3OH 284 316 337.8
CH3Br 187 220 276.7
CH3F 161 185 194.8
CH3Cl 213 241 248.9
H2O 325 354 373,2
C2H5Cl 239 270 285.4
CH3CHO 230 262 293.6
CH3COCH3 266 299 329.4
CH3NO2 289 322 374.4
CH3CN 289 325 354.8

Fig. 4. Heat capacity Cp for H2O vs. temperature at P =
1 atm; TB = 355.8 K.

tal data of the second virial coefficients [8] and the
dipole moments [9] by the least squares method as
shown in Table 1. Numerical results obtained with the
length (dL/dT )p, enthalpy, and heat capacity for H2O
at atmospheric pressure are displayed in Figures 1 – 4.

As shown in Figure 2, the curve of (dL/dT )p in (21)
has a maximum at the temperature T2 which is the in-
flexion point of the length L. This curve of (dL/dT )p
may reach asymptotically to 0 with decreasing T and
to 1 with increasing T beyond T2. Considering Fig-
ure 2, the curve of L in Figure 1 is definitely away
from T2 and the behaviours of ideal gases. Also, similar
to (dL/dT )p, the curve of the heat capacity in Figure 4
shows a maximum at the temperature T1 which is the
inflexion point of the enthalpy H. The enthalpy reaches
the behaviour of ideal gases at higher temperature
beyond T1. The heat capacity reaches asymptotically
1.5 R1 at higher temperature than T1. (dL/dT )p and
CP are originally not maxima but must diverge to in-
finity according to three-dimensional models [10 – 12].
This point of L, however, corresponds physically to a
boiling point, while L does not show a sudden change
but a sluggish one in the neighbourhood of the inflex-
ion point T2. L in Figure 1 indicates the liquid phase
from lower temperature to the inflexion point and the
gaseous phase from the inflexion point to higher tem-
perature. This fact seems to be caused by the long-
range interaction that includes the dipole-dipole func-
tion for the Stockmayer potential (12, 6, 3).

The differences of temperatures for two inflexions
of L and H are about 30 K for 16 substances in Ta-
ble 2. In one dimension the inflexion point of L does
not agree with that of H though a jump for H is graph-
ically observed from the liquid to the gaseous phase at
the boundary of the boiling point in three-dimensional
models [10 – 12]. Assuming that boiling temperature,
TB is physically equivalent to the inflexion point of L,
T2, the boiling temperatures for 16 polar substances in-
dicate reasonable values comparing with experimen-
tal data [13] as shown in Table 2. The behaviour of
(dL/dT )p in the neighbourhood of the boiling point
corresponds to a first-order phase transition in one-
dimension.
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