On the Fractional-Order Logistic Equation with Two Different Delays
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The fractional-order logistic equation with the two different delays ry,r; > 0, D%x(r) = px(r —
r1)[1 =x(t —r2)], ¢ > 0 and p > 0, with the initial data x(¢) = xg,# < 0 are considered. The existence
of a unique uniformly stable solution is studied and the Adams-type predictor-corrector method is

applied to obtain the numerical solution.
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1. Introduction

The topic of fractional calculus (derivatives and in-
tegrals of arbitrary orders) is enjoying growing interest
not only among mathematicians, but also among physi-
cists and engineers.

Let I = [0,T], T < oo; C(I) is the class of all
continuous functions defined on I with norm ||x|| =
sup,|e Mx(¢)|,N > 0; L[0,T] = L, is the class of
all integrable functions on / with the norm |x||; =
Jo e Nt |x(¢)|de,N > 0.

Let a € (0, 1]. Here we are concerned with the initial
value problem of the fractional-order logistic equation
with the two different delays r and r,:

D%(t) = px(t —r)[1—x(t=r2)], >0, (1)

x(t) =xp, t<0. 2)

In Section 2 we study the existence and uniqueness
of the solution. In Section 3 we study the stability of
the solution, and in Section 4 we apply the predict-
evaluate-correct-evaluate (PECE) method to obtain the
numerical solution.

Now, we give the definition of fractional-order inte-
gration and fractional-order differentiation.

Definition. The fractional integral of order § € R™
of the function f(¢), t €1, is

t _Sﬁ—l
P10 = [ s

Definition. The (Caputo) fractional-order deriva-
tive D% of order & € (0, 1] of the function f(7) is given
by

DEf () =1"*

2. Existence and Uniqueness

For the initial value problem (1)—(2) define C(I) =
{xeR:x(t) €[0,1],r € I and x(r) = x9,t < 0}.

Theorem 1. The initial value problem (1)—(2) has
a unique solution x € C(I), x’' € L;.

Proof. From the properties of fractional calculus
the fractional-order differential equation in (1) can be
written as

pad
dr

x(t) = px(t —r)[1 —x(t — )]s
operating with I%, we obtain
x(t) =x0+pI%x(t —r1)[1 —x(t — )] 3)
Now let the operator F : C(I) — C(I) be defined by
Fx(t) =x0+pI%x(t —r1) —x(t —r))x(t —r2)]. (4)
Then
e M|Fx—Fy| <

I _ o—1
2p/ 1 e—NthS_
0

@) r1) —y(s—rp)|ds
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t —s o—1

+2p/rl eNt%pc(s—rl)—y(s—rl)ds
o) —g)e-1

+p/0 e—/\n%x(s_rz)—y(s—rz)ds
t —s a—1

+p/}:2 e_Nt (IF(‘)X) ‘x(S_FZ)_y(S_FZHdsv

but x(f) = xp and y(t) = xo when ¢ < 0, then

e M|Fx—Fy| <

=r ooy (t—r—0)%

p[ e 9>%e M01(6)—y(6)|d6
t=r2 o oy (t—r—0)%1

+p/0 e N 9>%e N |x(6)—y(0)|d6.

This implies that
3p
1Fx = Fyll < g b=,

and it can be proved that if we choose N large enough
such that N* > 3p, we obtain

[Fx—=Fy| <[lx=yl,

and the operator F has a unique fixed point x € C(I).
Now from (3), we have

_S)oc—l

x(t) :xo—i-pxo/orl (IFTdS
Tt —s)%!
w0,

o =9
pxo/o (e ds

r —s a—1
— pxo /r| %x(s —r1)ds
t —s o—1
—-p /rz %x(s —r)x(s—ry)ds.

Differentiating formally, we obtain

a—1
%x(f) = p(xo —x(z))ﬁ

t(t_s)OFI /
+p/r1 I'(a) *

r (1 — )01
—px()/r1 %x/(s—rl)ds

(s—rp)ds
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—p/ X (s —r)x(s —rp)ds
—p /r: %x(s—rl)x/(s—rz)ds,

which proves that

p 3p

1] < W\xo—xé\ +WHX,||7

i.e.
1 )
< (1-32)  eko-xl
N¢ N¢

then

d

a x(t) € Ly.

And from (3), we get

%x(r) _ p%l“x(t )= x(t— )],

operating with I' =%, we obtain (1) and the theorem is
proved.

3. Stability of the Solution

Let x(¢) be a solution of the initial value prob-
lem (1)—(2) and let x*(¢) be a solution of

D%%*(t) = px*(t —r)[1 =x*(t — 1rp)], >0,
x(t)=x5, t<0, ©)
then we get
X(1) = X(1) = (¥0 = x5) + pI* {x(t = 1) = x"( = 1)
+x(t =) [x*(t = ry) —x(t —r2)]

(=) ) =xt- )]}

and
e M x(r) —x*(1)] < e |xo — ]
% (t—r)” B}
2 — —
* p[F(a+1) Tlat 1|l
i t—r;—0)%!
+2p/ vo-o) (=i —6)T ZL( ST e ¥0)(0) 2" (0) a6
¢ t—rg y
+p ((X+ ) |X() X0|
t—r2 —r 0 a—1 B .
o e Z(a)) e N7[x(0) " (6) 46,
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which gives

" 3pT® ., 3P *
b= (1 gy bo—i b=l

i.e.

3p\ ! 3pT?
< 1= [ A — —xx
[ — x| < ( N“) ( +F((x+1) |xo — x5

therefore if |xo — x| < 6(€) implies ||x—x*|| < &. Then
the solution of (1) —(2) is uniformly stable.

4. Numerical Methods and Results

An Adams-type predictor-corrector method has
been introduced in [4,5] and investigated further
in [1-3,6-10]. In this paper, we use an Adams-type
predictor-corrector method for the numerical solution
of fractional integral equation.

The key to the derivation of the method is to replace
the original fractional differential equation in

by the fractional integral equation
x(t) = xo+1%f (x(t)). (6)

The product trapezoidal quadrature formula is used
with nodes ¢; (j = 0,1,...,k+ 1) taken with respect
to the weight function (f; —.)*~!. In other words,
they applied the approximation

Tyl
[ =0 gl

fo

et 1 ! k+1
~ ) (k1 —w)* g (w)du =Y ajri18(t)),
0 =0
where
ajk+1 =
ha o+1 o
—k —(k—a)k+1 if j=0
ek = (ko0 D i =0,
h
—_— if j=k+1.
alo+1)’ Hr=k+

h is a step size, and for 1 < j < k holds

o

. = |\(k—7 206+1
@ikl a(a+1)[( j+2)

—Z(k—]+ I)Ot+1 +(k_j)a+1 )
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This yield the corrector formula, i.e. the fractional
variant of the one-step Adams-Moulton method

Xk+1 =

X +;< 3 ajrif(xj)+a flx? )> 7
0 F(O() ~ Jjk+1 J k+1,k+1 k1))

J

The remaining problem is the determination of the pre-
dictor formula that is needed to calculate the value
xf 41+ The idea they used to generalize the one-step
Adams-Bashforth method is the same as the one de-
scribed above for the Adams-Moulton technique: the
integral on the right-hand side of (6) is replaced by the
product rectangle rule, i. e.

Tk k
[ =0 gwdum Y by,
=0

fo J

where

o

bjasr = o[k 1= )= (k= )%

Thus, the predictor xf 1 is determined by the fractional
Adams-Bashforth method

1 k
xfﬂ :)Co-i-m E)ij”lf(xj)' (8)
j=

This completes the description of the basic algorithm,
namely, the fractional version of the one-step Adams-
Bashforth Moulton method. Recapitulating, they saw
that they first calculated the predictor xf 41 accord-
ing to (8), then they evaluated f(x}, ), used this to
determine the corrector x;,; by means of (7), and
finally evaluated f(x;y;) which is then used in the
next integration step. Methods of this type are usually
called predictor-corrector or, more precisely, predict-
evaluate-correct-evaluate (PECE) methods.

Now, we apply the PECE method to the problem
(H-(2).

The approximate solutions are displayed in Fig-
ures 1 -3 for different xg and «. In Figure 1, we take
p=05r=rn=07 a=0.09, and different xy. In
Figure 2, we take p = 0.5, r; = 0.2, » = 0.7, x9 =
0.85, and different . In Figure 3, we take p = 0.5,
r1 =r, =0, xop = 0.85, and different a.

These figures assure that the solution of (1)—(2) is
uniformly stable. In Figure 3 with r; = r, =0, the same
results as in [13] are obtained.
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Fig. 2. Approximate solution for p = 0.5,
t r1 =0.2,n =0.7, xo = 0.85, and different c.
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