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We consider the evolution of long shallow waves in a convecting fluid when the critical Rayleigh
number slightly exceeds its critical value within the framework of a perturbed Korteweg-de Vries
(KdV) equation. In order to study the wave dynamics of nonlinear pulse propagation in an inhomo-
geneous KdV media, a generalized form of the considered model with time-dependent coefficients
is presented. By means of the solitary wave ansatz method, exact dark soliton solutions are derived
under certain parametric conditions. The results show that the soliton parameters (amplitude, inverse
width, and velocity) are influenced by the time variation of the dependent model coefficients. The
existence of such a soliton solution is the result of the exact balance among nonlinearity, third-order
and fourth-order nonlinear dispersions, diffusion, dissipation, and reaction.
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1. Introduction

Propagation of solitons in nonlinear systems has
been the subject of intense research in recent years.
This should not be surprising because the soliton
approach is universal in different fields of modern
physics. The existence of such pulses cover various
branches of physics as for example nonlinear optics,
plasmas, fluid dynamics, condensed matter physics,
and many more. Envelope solitons are stable nonlinear
wave packets that preserve their shape when propagat-
ing in a nonlinear dispersive medium [1]. It needs to be
noted that the formation of this kind of pulses is due to
an exact balance between nonlinearity and dispersion
effects under specific conditions.

Dark solitons, in contrast to bright solitons, have re-
ceived a minor attention, in spite of their interesting
properties and possible applications in different physi-
cal contexts. Regarding to the dynamics of solitons in
optical fiber systems for example, it was shown both
numerically and analytically that the time jitter in a
dark soliton is lower than in the corresponding bright
soliton [2,3]. Note that there exist several essential dif-
ferences between bright and dark solitons [4]. One of
them consists of the existence of multiple bound states

0932–0784 / 11 / 0300–0199 $ 06.00 c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

that can form bright solitons in clear contrast with dark
solitons [4].

Solitons are solutions of a special class of par-
tial differential equations (PDEs) that model nonlin-
ear phenomena in physical systems like water waves
and light pulses propagation in optical fibers, etc. Well-
known PDEs with soliton solutions include the sine-
Gordon (sG), cubic nonlinear Schrödinger (NLS), and
Korteweg-de Vries (KdV) equations [5]. Importantly,
the existence of solitons critically depends on the spe-
cific properties of the nonlinear and dispersive terms in
the model equations.

The research on the KdV equation attracted the
interest of many authors. The KdV equation is the
generic model for the study of weakly nonlinear long
waves [6]. It arises in physical systems which in-
volve a balance between nonlinearity and dispersion at
leading-order [6]. The balance between the nonlinear
convection term uux and the dispersion effect term uxxx

in the spatially one-dimensional KdV equation [7]

ut +a(u2)x +uxxx = 0 (1)

gives rise to solitons.
If the evolution of steeper waves of shorter wave-

length is considered, the higher-order effects become
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essential and are non-negligible in studying the wave
dynamics of nonlinear pulse propagation. Extending
the KdV equation to the higher-order KdV equation
received much attention, due to the many important
applications of different versions of this wave equa-
tion. As an interesting example, the following per-
turbed KdV equation [8, 9]

ut +λ1uux +λ2uxxx +λ3uxxxx

+λ4(uux)x +λ5uxx = 0
(2)

is used to study the evolution of long shallow waves in
a convecting fluid when the critical Rayleigh number
slightly exceeds its critical value. The respective coef-
ficients λi, i = 1 – 5, are given by [8, 9]:

λ1 =
3

2σG
(10+σG),

λ2 =
σ
√

G
2

(
1
3

+
34
21

σ

)
,

λ3 =
682σ2G+717

2079
εσ ,

λ4 =
8√
G

ε,

λ5 =
R2

15
εσ ,

(3)

where σ is the Prandtl number, G the Galileo number,
and ε a small parameter such that the excess of the
Rayleigh number above its critical value is given by
ε2R2 [8, 9].

When inhomogeneous systems are considered, non-
linear wave equations with variable coefficients be-
come more realistic than their constant-coefficients
counterparts. For example, the generalized KdV equa-
tion with t-dependent coefficients [10]

ut +2β (t)u+[α (t)+β (t)x]ux

−3Aγ(t)uux + γ(t)uxxx = 0
(4)

is used to describe the wave dynamics in a varied KdV
media.

In 1993, the KdV equation (1) was generalized to
the K(m,n) equation

ut +(um)x +(un)xxx = 0,

m > 0,1 < n < 3,
(5)

by Rosenau and Hyman [11] to understand the role
played by the nonlinear dispersion in the formation

of patterns in liquid drops. The compactons [11 – 13],
which are solitons with compact support or strict local-
ization of solitary waves have been found for this class
of PDEs.

Ever since the discovery of the K(m,n) equation,
much effort has been devoted to finding families of
fully nonlinear evolution equations which are gener-
alization forms of the well-known wave equations.
Thus, various newly formed nonlinear evolution equa-
tions such that the generalized Boussinesq equation
(called B(m,n) equation) [14], the coupled Klein-
Gordon equations (called CKG(m,n,k)) [15], and the
nonlinear Schrödinger equation [16, 17], have recently
been introduced and studied.

2. Proposed Model

It has been shown in [8] that the evolution equation
of surface waves in a convecting fluid is found to obey
the perturbed KdV equation (2) that includes diffusion
and instability effects, when the critical Rayleigh num-
ber slightly exceeds its critical value. It is natural to
ask the following question: what kind of KdV equa-
tion can be used to study the wave evolution in the
case of inhomogeneous convecting fluid? As a matter
of fact, this problem is much more general since in re-
alistic physical systems, no media is homogeneous due
to long distance of propagation and the existence of
some non-uniformity due to many factors as for exam-
ple variations of the system geometry (diameter fluc-
tuations, etc). It is commonly believed that nonlinear
wave equations with variable coefficients are consid-
ered to study the wave dynamics in varied systems. In
this paper, the perturbed KdV equations (2) will exhibit
time-dependent coefficients and also will be general-
ized to a more general model as follows:

(ul)t +λ1(t)(um)x +λ2(t)(un)xxx

+λ3(t)(up)xxxx +λ4(t)
[
uh(uk)x

]
x
+λ5(t)(uq)xx

+2λ6(t)ul +[λ7(t)+λ6(t)x] (ul)x = 0.

(6)

In (6), the first term is the generalized evolution term,
the second term represents the nonlinear convection
term, the third and fourth terms, respectively, represent
the third-order and fourth-order nonlinear dispersions,
while the fifth and sixth terms describe the nonlinear
diffusion and dissipation effects, respectively. Also, the
time-dependent coefficients λi(t), with i = 1 – 7, are all
real valued functions, while l,m,n, p,h,k, and q ∈ Z+.
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Thus, (6) may be regarded as a combined form of
(2) and (4) having time-dependent coefficients. In par-
ticular, the case l = n = p = h = k = q = 1, m = 2,
λ6 (t) = λ7 (t) = 0, and λi(t) constants (with i = 1 – 5)
leads to the perturbed KdV equations (2). Moreover,
when l = n = 1,m = 2,λ1(t) = − 3

2 Aλ2 (t) with A be-
ing a constant, and λi(t) = 0 (with i = 3 – 5), (6) re-
duces to (3). If taking λi(t) = 0 (with i = 3 – 5), (6) can
be reduced to a generalized form of the K(m,n) equa-
tion having t-dependent coefficients which has recently
been considered by Triki and Wazwaz [18].

It is very interesting to note that this generalized
KdV equation incorporating various important effects,
having time-dependent coefficients and general values
of exponents in the existing effects is able to describe
the weakly nonlinear long waves dynamics in many
physical systems.

Generally, (6) is not integrable. The purpose of this
paper is to calculate the exact dark soliton solution for
(6) using the solitary wave ansatz method, and find the
conditions of their existence for general values of the
exponents l,m,n, p,h,k,q, and r and time-dependent
model coefficients. It is very interesting to note that the
proposed method has been applied successfully to dif-
ferent equations, such as, for example, the NLS equa-
tion with power law nonlinearity [19, 20], the K(m,n)
equation with t-dependent coefficients [18], and the
generalized NLS equation [19]. Further, many other
nonlinear wave equations have been recently solved
using the solitary wave ansatz method (see for exam-
ple [14, 19]).

3. Dark Soliton Solutions

In order to construct dark soliton solutions for (6),
we use an ansatz solution of the form [17, 18]

u(x, t) = A tanhs {µ(x− vt)} , (7)

where A = A(t), µ = µ(t), and v = v(t) are time-
dependent coefficients which will be determined as
functions of the model coefficients λi(t), i = 1 – 7. Here
A,µ , and v are, respectively, the amplitude, the inverse
width, and the velocity of the soliton. The exponent s
will be determined as a function of l,m,n, p,h,k, and q.

From ansatz (7), we get

(
ul)

t = lAl−1 dA
d t

tanhsl
θ +Alsl

{
x

d µ

d t
− d(tµv)

d t

}
·
{

tanhsl−1
θ − tanhsl+1

θ
}
, (8)

(um)x = Am
µsm

{
tanhsm−1

θ − tanhsm+1
θ
}
, (9)

(uq)xx = Aq
µ

2sq
{

(sq−1) tanhsq−2
θ

+(sq+1) tanhsq+2
θ −2sq tanhsq}, (10)

(un)xxx = An
µ

3sn
{

(sn−1)(sn−2) tanhsn−3
θ

−
[
2s2n2 +(sn−1)(sn−2)

]
tanhsn−1

θ

+
[
2s2n2 +(sn+1)(sn+2)

]
tanhsn+1

θ

− (sn+1)(sn+2) tanhsn+3
θ
}
,

(11)

(up)xxxx = Ap
µ

4sp
{

(sp−1)(sp−2)(sp−3)

· tanhsp−4
θ +(sp+1)(sp+2)(sp+3) tanhsp+4

θ

−4(sp−1)
[
s2 p2−2sp+2

]
tanhsp−2

θ (12)

−4(sp+1)
[
s2 p2 +2sp+2

]
tanhsp+2

θ

+2sp
[
3s2 p2 +5

]
tanhsp

θ
}
,

[
uh(uk)

x

]
x = Ah+k

µ
2ks
{

[s(h+ k)−1] tanhs(h+k)−2
θ

+[s(h+ k)+1] tanhs(h+k)+2
θ (13)

−2s(h+ k) tanhs(h+k)
θ
}
,

(
ul)

x = Al
µsl
{

tanhsl−1
θ − tanhsl+1

θ
}
, (14)

where

θ = µ(x− vt). (15)

Substituting (7) – (15) into (6), we have

lAl−1 dA
d t

tanhsl
θ

+Alsl

{
x

d µ

d t
− d(tµv)

d t

}
{tanhsl−1

θ − tanhsl+1
θ
}

+λ1Am
µsm

{
tanhsm−1

θ − tanhsm+1
θ
}

+λ2An
µ

3sn
{
(sn−1)(sn−2) tanhsn−3

θ

−
[
2s2n2 +(sn−1)(sn−2)

]
tanhsn−1

θ
}

+λ2An
µ

3sn
{[

2s2n2 +(sn+1)(sn+2)
]

tanhsn+1
θ

− (sn+1)(sn+2) tanhsn+3
θ
}

+λ3Ap
µ

4sp
{
(sp−1)(sp−2)(sp−3) tanhsp−4

θ
}

+λ3Ap
µ

4sp
{
(sp+1)(sp+2)(sp+3) tanhsp+4

θ

−4(sp−1)
[
s2 p2−2sp+2

]
tanhsp−2

θ
}

+λ3Ap
µ

4sp
{
−4(sp+1)

[
s2 p2 +2sp+2

]
tanhsp+2

θ
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+2sp
[
3s2 p2 +5

]
tanhsp

θ
}

+λ4Ah+k
µ

2ks
{

[s(h+ k)−1] tanhs(h+k)−2
θ

+[s(h+ k)+1] tanhs(h+k)+2
θ
}

+λ4Ah+k
µ

2ks
{
−2s(h+ k) tanhs(h+k)

θ
}

+λ5Aq
µ

2sq
{
(sq−1) tanhsq−2

θ +(sq+1) tanhsq+2
θ

−2sq tanhsq}+2λ6Al tanhsl
θ +[λ7 +λ6x]Al

µsl

·
{

tanhsl−1
θ − tanhsl+1

θ
}

= 0. (16)

Of course not all choices of the dependent exponents
l,m,n, p,q, and r lead to the existence of an exact ana-
lytical soliton solution, since they must satisfy the ho-
mogeneous balance principle. This fact imposes some
obvious restrictions on the values of these exponents in
order to obtain a closed form solution that is physically
meaningful. This may be a complicated task since we
are concerned by a model equation with several depen-
dent exponents.

As an example of the family of dark soliton solu-
tions for the generalized KdV equation (6), we con-
sider the resulting equation (16) at q = h + k. Under
the later condition, (16) becomes

lAl−1 dA
d t

tanhsl
θ

+Alsl

{
x

d µ

d t
− d(tµv)

d t

}{
tanhsl−1

θ − tanhsl+1
θ
}

+λ1Am
µsm

{
tanhsm−1

θ − tanhsm+1
θ
}

+λ2An
µ

3sn
{

(sn−1)(sn−2) tanhsn−3
θ

−
[
2s2n2 +(sn−1)(sn−2)

]
tanhsn−1

θ
}

+λ2An
µ

3sn
{[

2s2n2 +(sn+1)(sn+2)
]

tanhsn+1
θ

− (sn+1)(sn+2) tanhsn+3
θ
}

+λ3Ap
µ

4sp
{
(sp−1)(sp−2)(sp−3) tanhsp−4

θ
}

+λ3Ap
µ

4sp
{
(sp+1)(sp+2)(sp+3) tanhsp+4

θ

−4(sp−1)
[
s2 p2−2sp+2

]
tanhsp−2

θ
}

+λ3Ap
µ

4sp
{
−4(sp+1)

[
s2 p2 +2sp+2

]
tanhsp+2

θ

+2sp
[
3s2 p2 +5

]
tanhsp

θ
}

+λ4Aq
µ

2ks
{
(sq−1) tanhsq−2

θ +(sq+1) tanhsq+2
θ

−2sq tanhsq
θ
}

+λ5Aq
µ

2sq
{
(sq−1) tanhsq−2

θ

+(sq+1) tanhsq+2
θ −2sq tanhsq}+2λ6Al tanhsl

θ

+[λ7 +λ6x]Al
µsl
{

tanhsl−1
θ − tanhsl+1

θ
}

= 0.
(17)

By equating the exponents of the functions
tanhsm+1

θ and tanhsn+3
θ in (17), one gets

sm+1 = sn+3, (18)

which yields the following analytical condition:

s =
2

m−n
. (19)

It should be remarked that the dark soliton solution (7)
can be obtained when s > 0. Therefore the condition
m > n arises from (19).

Again, from (17), setting the coefficients of
tanhsm+1

θ and tanhsn+3
θ to zero, we obtain

−λ1Am
µsm−λ2An

µ
3sn(sn+1)(sn+2) = 0,

that gives

µ
2 =− λ1mAm−n

λ2n(sn+1)(sn+2)
. (20)

Substituting (19) in (20) leads to

µ = (m−n)
[
− λ1Am−n

2λ2n(m+n)

] 1
2

, (21)

which exists provided that λ1λ2 < 0.
Equating the exponents of tanhsq+2

θ and tanhsp+4
θ

in (17) gives

sq+2 = sp+4, (22)

which in turn gives

s =
2

q− p
(23)

for q > p. The same parametric condition (23) also re-
sults from matching up the exponents of tanhsq

θ and
tanhsp+2

θ .
Setting the coefficients of tanhsq+2

θ and tanhsp+4
θ

terms to zero, we obtain

+λ3Ap
µ

4sp(sp+1)(sp+2)(sp+3)

+λ4Aq
µ

2ks(sq+1)+λ5Aq
µ

2sq(sq+1) = 0,
(24)

which gives

µ =
[

(λ5q+λ4k)(sq+1)Aq−p

λ3 p(sp+1)(sp+2)(sp+3)

] 1
2

. (25)
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Substituting (23) into (25) gives

µ = (q− p)
[
(λ5q+λ4k)Aq−p

2λ3 pq(p+q)

] 1
2

, (26)

which exists provided that λ3 (λ5q+λ4k) > 0.
If we set the coefficients of tanhsq

θ and tanhsp+2
θ

to zero in (17), we obtain a certain relation which also
expresses the dependence of the inverse width µ on the
coefficients λ3,λ4, and λ5 such that λ3 (λ5q+λ4k) > 0.

Equating the two values of s from (19) and (23)
gives the condition

n+q = m+ p (27)

with q > p and m > n. Thus the existence of the soliton
solution (7) is the result of strict balance among third-
order dispersion, dissipation, and diffusion, fourth-
order nonlinear dispersion and nonlinearity effects de-
scribed by (27).

Equating the two values of µ from (21) and (26)
gives the parametric condition

λ1λ3

λ2(λ5q+λ4k)
=− n(m+n)

pq(p+q)
. (28)

Therefore, the condition (28) is crucial for the exis-
tence of dark solitons which are uniquely determined
from the characteristics of the nonlinear medium, i.e.
the model coefficients λi, i = 1 – 5, and the dependent
exponents n,m, p,q, and k.

Now, equating the exponents of tanhsl+1
θ and

tanhsn+1
θ in (17) yields

l = n. (29)

The coefficients of tanhsl
θ terms in (17) gives

A(t) = A0l−1 e−2
∫ t

0 λ6t
′
d t
′
, (30)

where A0 is an integral constant related to the initial
pulse amplitude.

Also, the coefficients of tanhsn−3
θ and tanhsn−1

θ

(with l = n) in (17), respectively yields

λ2An
µ

3sn(sn−1)(sn−2) = 0 (31)

and

Alsl

{
x

[
d µ

d t
+λ6µ

]
−µv− t

d(µv)
d t

− λ2µ
3 [2−3sn+3s2n2]+λ7µ

}
= 0.

(32)

Finally, the coefficients of tanhsl+1
θ and tanhsn+1

θ

terms in (17) gives

Alsl

{
−x

[
d µ

d t
+λ6µ

]
+ µv+ t

d(µv)
d t

+ λ2µ
3 [2+3sn+3s2n2]+3λ1A2n

µ−λ7µ

}
= 0.

(33)

To solve (31) – (33), we consider the two cases:

3.1. Case 1: sn−1 = 0

In this case we find

s =
1
n
. (34)

Substituting (34) into (19), (21), and (32), respectively,
gives

m = 3n, (35)

µ
2 =−A2nλ1(t)

3nλ2(t)
, (36)

d µ

d t
+λ6(t)µ = 0, (37)

d(tµv)
d t

= λ7(t)µ−2λ2(t)µ
3. (38)

Note that (37) and (38) are obtained from the fact that
the parameter v we want to determine through (32) is
a function of time, then we have split (32) into the two
equations (37) and (38).

Integrating (37) and (38), we get

µ (t) = µ0 e−
∫ t

0 λ6(t ′)d t ′ , (39)

v(t) =
1

tµ (t)

∫ t

0

[
λ7
(
t ′
)

µ
(
t ′
)
−2λ2

(
t ′
)

µ
3 (t ′)] d t ′.

(40)

Inserting the expressions (30) and (39) into (36), we
obtain the following constraint among λ1(t),λ2(t), and
λ6(t):

λ1 (t)
λ2 (t)

=−
n−2nA2n

0 e(2−4n)
∫ t

0 λ6(t ′)d t ′

2µ2
0

(41)

with λ1 (t)λ2 (t) < 0.
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3.2. Case 2: sn−2 = 0

In this case we find

s =
2
n
. (42)

By substituting (42) into (19), (21), and (32), respec-
tively, we obtain

m = 2n, (43)

µ
2 =−λ1 (t)An

6λ2(t)
, (44)

d µ

d t
+λ6(t)µ = 0, (45)

d(tµv)
d t

= λ7(t)µ−8λ2 (t)µ
3. (46)

Integrating (45) and (46) gives

µ(t) = µ0 e−
∫ t

0 λ6(t
′
)d t
′
, (47)

v(t) =
1

tµ(t)

∫ t

0

[
λ7(t

′
)µ(t

′
)−8λ2(t

′
)µ

3(t
′
)
]

d t
′
.

(48)

Substituting (30) and (47) into (44), we obtain the fol-
lowing constraint among λ1(t),λ2(t), and λ6(t):

λ1 (t)
λ2 (t)

=−
n−nAn

0 e2(1−n)
∫ t

0 λ6(t ′)d t ′

6µ2
0

(49)

with λ1(t)λ2(t) < 0.

Lastly, we can determine the dark soliton solutions
for the t-dependent KdV equation (6) when we substi-
tute (30), (34), (36), (39), (40) in (7) with the respec-
tive constraint (41) for the first case of solution or we
substitute (30), (42), (43), (47), (48) in (7) with the re-
spective constraint (49) for the second case of solution
as

u(x, t) = A tanhp{µ(x− vt)}, (50)

which exists provided that m > n, q > p, n+q = m+ p,
l = n with the condition (28).

4. Conclusion

In this paper, we have studied the dynamics of dark
solitons within the framework of a family of fully
nonlinear perturbed KdV equations with time vary-
ing coefficients. Besides the pure KdV equation, the
additional terms that are taken into account are non-
linearity, fourth-order dispersion, diffusion, dissipa-
tion, and reaction. A solitary wave ansatz has been
used to carry out the integration and an exact dark
soliton solution is obtained. All the physical param-
eters in the soliton solution are obtained as func-
tion of the dependent model coefficients and expo-
nents. The conditions of existence of solitons are pre-
sented. We hope that this paper will help to understand
the behaviour of solitons in very complicated KdV
systems.
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