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This is an attempt to model an unsteady peristaltic flow of micro-polar fluid in a channel of finite
length. The channel is subjected to progressive sinusoidal waves that help the walls contract and
relax but not expand beyond the natural boundary. It is found that the coupling number increases
pressure along the entire length of the channel, while the micro-polar parameter decreases it. The
coupling number increases the efficiency; while the micro-polar parameter decreases it. The reflux
region is found to increase with the coupling number. One significant difference between integral and
non-integral number of waves in the train propagating along the channel walls is that the peaks of
pressure are identical in the integral case while the peaks are different in the non-integral case.
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1. Introduction

Eringen [1] formulated a concentrated suspension of
non-deformable neutrally buoyant rigid particles in a
viscous medium by duly considering the effect of indi-
vidual particle in the flow. In fact, the effects are micro-
rotational and micro-inertial. He termed the formulated
fluid as micro-polar. Some physiological fluids are of
this nature. Blood has some suspension of red blood
corpuscles (RBC), white blood corpuscles (WBC) etc.
in plasma; cervical mucus is a suspension of macro-
molecules in water-like liquid; and semi digested food
is a mixture of liquid and solid particles. Some food
materials may be viewed as a micro-polar fluid.

Devi and Devanathan [2] investigated the peri-
staltic transport of a micro-polar fluid in a cylin-
drical tube with a sinusoidal wave of small ampli-
tude. Philip and Chandra [3] worked on the peri-
staltic transport of a simple micro-polar fluid which
accounts for micro rotation and micro stretching of
the particles contained in a small volume element,
using long wavelength approximation. Bhargava et
al. [4] modelled the peristaltic flow of blood through
stenosed arteries by considering blood as micro-polar
fluid and arteries as porous channel. Srinivasacharya
et al. [5] studied different micro-polar properties;
Hayat et al. [6] investigated the effects of different
wave forms; Muthu et al. [7] studied wall properties;
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whereas Hayat and Ali [8] reported effects of an endo-
scope.

All the studies cited above have been carried out for
an infinite tube with the walls contracting and dilating
as well. However, the oesophagus is finite in length in
comparison to its radius. Its wall undergoes contraction
and relaxation but no expansion beyond the stationary
boundary. Hence, none of the studies mentioned above
is suitable for swallowing of a micro-polar fluid in oe-
sophagus. Further, the pressure distribution along the
oesophageal length, i. e., oesopageal manometry, is of
prime importance, which has been often neglected in
previous studies.

Dodds [9] and Ren et al. [10] carried out experimen-
tal investigations in this direction for different viscosi-
ties and bolus-volumes. Li and Brasseur [11] have the-
oretically worked on it for Newtonian fluids consider-
ing finite length tubes, and focused the study on both
local and global dynamics. The issue of local dynam-
ics such as spatial-temporal variations in local stresses
in terms of the motility and efficacy of the transport
process was raised by Brasseur and Dodds [12]. They
found close resemblance with the experimental find-
ings of Dodds [9] and Ren et al. [10]. Misra and
Pandey [13] who investigated similar phenomena for
power-law fluids came to similar conclusions, although
they didn’t discuss the experimental findings. Pandey
and Tripathi [14, 15] have recently worked for mag-
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Fig. 1. Diagram, based on (7), represents
the propagation of a progressive trans-
verse wave along the walls of the channel
containing fluid, which undergoes con-
traction and relaxation but no expansion
beyond the boundary.

neto hydro dynamic (MHD) and Maxwell fluids, re-
spectively.

With a mission to investigate the transportation of
physiological fluids through vessels, we have tried to
model peristaltic transport in a channel of finite length.
Physiological fluids are taken as micro-polar fluids.
This model may be applied to transportation of food
bolus in oesophagus, blood flow in aorta, and flow
of semi-digested food in duodenum. From engineer-
ing point of view, this model may also be applied to
study the flow of micro-polar fluids through a mechan-
ical peristaltic pump. We have also examined here the
case of propagation of a non-integral number of waves
along the channel walls, which are inherent character-
istics of finite length vessels.

2. Mathematical Model

We consider the flow of a micro-polar fluid in a
channel of length l̃. The equations governing the mo-
tion of an incompressible micro-polar fluid in the ab-
sence of body forces and body couple and under the
following dimensionless transformations:

ξ =
ξ̃
λ
, η =

η̃
a
, t =

ct̃
λ
, u =

ũ
c
, v =

ṽ
cδ

,

w =
aw̃
c
, H =

H̃
a
, l =

l̃
λ
, φ =

φ̃
a
,

σ =
σ̃
a2 , p =

p̃a2

µcλ
, Re =

ρcaδ
µ

, Q =
Q̃
ac

,

(1)

are reduced to the dimensionless form given by

∂ p
∂ξ

=
1

1−N

{
N

∂w
∂η

+
∂ 2u
∂η2

}
, (2)

∂ p
∂η

= 0, (3)

∂ 2w
∂η2 =

M2

2−N

(
2w+

∂u
∂η

)
, (4)

∂u
∂ξ

+
∂v
∂η

= 0, (5)

under long wavelength and low Reynolds number ap-
proximations. Here, H̃, ξ̃ , η̃ , t̃, a, φ̃ , λ , c, ũ, ṽ, w̃,
ρ , σ̃ , Re, and Q̃, represent transverse displacement of
the wall, axial and transverse coordinates, time, half
width of the channel, amplitude of the wave, wave-
length, wave velocity, axial velocity, transverse ve-
locity, micro-polar vector, fluid density, the micro-
gyration parameter, the Reynolds number, and vol-
ume flow rate, respectively. The symbols without ‘∼’
are the corresponding parameters in the dimension-
less form. Moreover, N = k/(µ + k) is the coupling
number, a measure of particle coupling with its sur-
roundings (0 ≤ N ≤ 1), M =

√
a2k(2µ + k)/γ(µ + k)

is the micro-polar parameter, and α , β do not appear
in the governing equation as the micro-rotation vector
is solenoidal. The parameters µ , k, α , β , γ are material
constants and satisfy the following conditions:

2µ + k ≥ 0, k ≥ 0,

3α +β + γ ≥ 0, γ ≥ |β |, (6)

where δ = a/λ is the wave number. In the limiting case
k → 0, i. e., N → 0, the governing equations for the
micro-polar fluid reduce to the governing equations for
a Newtonian fluid.

Oscillations are caused on the walls of the channel
by propagating continuous contraction waves (Fig. 1)
given in dimensionless form as

H(ξ , t) = 1−φ cos2 π(ξ − t). (7)

The boundary conditions, we shall apply, are

u(ξ , t)|η=H = 0, v(ξ , t)|η=H =
∂H
∂ t

,



S. K. Pandey and D. Tripathi · Peristaltic Flow of Micro-Polar Fluid 183

v(ξ , t)|η=0 = 0,
∂u(ξ , t)

∂η

∣∣∣∣
η=0

= 0, (8)

w(ξ , t)|η=0 = 0, w(ξ , t)|η=H = 0. (9)

Integrating (2) once with respect to η , we get

∂u
∂η

= (1−N)
∂ p
∂ξ

η −Nw+C, (10)

where C is a function, independent of η , to be evalu-
ated later.

Further, integrating (4) twice with respect to η , and
also using (10) and the boundary conditions (9), the
micro-polar vector is obtained as

w =
1−N
2−M

∂ p
∂ξ

{
H sinh(Mη)
sinh(MH)

−η
}

+
C

2−N
{sinh(Mη)+ sinh(M(H−η))− 1}.

(11)

Then, using the fourth boundary condition of (8), (10)
and (11) become

∂u
∂η

=

(1−N)
∂ p
∂ξ

[
η − N

2−N

{
H sinh(Mη)
sinh(MH)

−η
}]

,
(12)

w =
1−N
2−N

∂ p
∂ξ

{
H sinh(Mη)
sinh(MH)

−η
}

; (13)

and further integrating (12) and applying the no-slip
condition of (8), the axial velocity is obtained as

u =
1−N
2−N

∂ p
∂ξ

[
(η2 −H2)− NH

M sinh(MH)

· {cosh(Mη)− cosh(MH)}
]
.

(14)

The transverse velocity is derived from the continuity
equation (5) by substituting u from (14) and integrat-
ing it once with respect to η . The regularity condition,
given in (8), determines the constant term and gives the
transverse velocity as

v =
1−N
2−N

[
∂ p
∂ξ

∂H
∂ξ

{
2ηH +

N
M2

{
sinh(Mη)
sinh(MH)

−Mη coth(MH)+H(M sinh(Mη)cosh(MH)

· cosech2(MH)−M2η cosech2(MH))

}}

− ∂ 2 p
∂ξ 2

{
η3 − 3H2η

3
− NH

M2 sinh(MH)

·(sinh(Mη)−Mη cosh(MH))

}]
.

(15)

We apply the transverse velocity of the wall, given
in (8), on the transverse velocity in (15). That is fur-
ther integrated with respect to ξ , to obtain the pressure
gradient as

∂ p
∂ξ

=
3M2(2−N)

1−N

[
G(t)+

∫ ξ

0

∂H
∂ξ

ds
]

· [2M2H3 + 3NH(1−MH coth(MH))
]−1

.

(16)

Integrating it once again from 0 to ξ , the pressure dif-
ference is obtained as

p(ξ , t)− p(0, t) =
3M2(2−N)

1−N

·
∫ ξ

0

G(t)+
∫ s

0

∂H
∂ξ

ds1

2M2H3 + 3NH(1−MH coth(MH))
ds,

(17)

in which by substituting ξ = l, the pressure difference
between the inlet and the outlet of the channel is ob-
tained as

p(l, t)− p(0, t) =
3M2(2−N)

1−N

·
∫ l

0

G(t)+
∫ ξ

0

∂H
∂ξ

ds

2M2H3 + 3NH(1−MH coth(MH))
dξ ,

(18)

where G(t) is a function required to be evaluated. A
simple manipulation of this evaluates G(t) as

G(t) =
[

1−N
3M2(2−N)

∆pl(t)

−
∫ l

0

∫ ξ

0

∂H
∂ t

ds

2M2H3 + 3NH(1−MH coth(MH))
dξ

]

·
[∫ l

0

1
2M2H3 + 3NH(1−MH coth(MH))

dξ
]−1

,

(19)

where ∆pl(t) = p(l, t)− p(0, t) is the pressure differ-
ence between the inlet and the outlet of the channel.

The volume flow rate is defined as Q(ξ , t) =∫ H
0 udη, which, on performing the integration, yields

Q(ξ , t) =
N − 1
2−N

∂ p
∂ξ

{
2H3

3
+

NH
M2 (1−MH coth(MH))

}
.

(20)

The average volume flow rate can be given in terms of
the flow rate in the wave frame as

Q̄ = q+ 1− φ
2
= Q−H + 1− φ

2
. (21)
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The pressure difference, in terms of averaged volume
flow rate, is formulated by integrating the pressure gra-
dient obtained from (20) and (21) as

p(ξ )− p(0) =
3M2(2−N)

N − 1

·
∫ ξ

0

Q̄+H − 1+
φ
2

2M2H3 + 3NH(1−MH coth(MH))
ds.

(22)

Finally, the local wall shear stress τw = (∂u/∂η)|η=H ,
by virtue of (12) and (16), is given by

τw =

3M2(2−N)

{
G(t)+

∫ ξ

0

∂H
∂ t

ds
}

2H2M2 + 3N(1−MH coth(MH))
.

(23)

3. Mechanical Efficiency

Mechanical efficiency (cf. [16]) is derived for a
micro-polar fluid in a finite channel as

E =
Q̄∆p1

φ(I1 −∆p1)
, (24)

where I1 =
∫ 1

0 (∂ p/∂ξ )cos2πξ dξ and ∆p1, the pres-
sure difference across one wavelength, is given, in
view of (22), by

∆p1 = p(1)− p(0) =
3M2(2−N)

N − 1

·
∫ 1

0

Q̄− 1+
φ
2
+H

2M2H3 + 3NH(1−MH coth(MH))
dξ

(25)

and Q̄0, the maximum flow rate, is obtained by virtue
of (25) and for ∆p1 = 0 as

Q̄0 = 1− φ
2

−
[∫ 1

0

1
2M2H2 + 3N(1−MH coth(MH))

dξ
]

·
[∫ 1

0

1
2M2H3 + 3NH(1−MH coth(MH))

dξ
]−1

.

(26)

4. Reflux Limit

Reflux is an inherent phenomenon of peristaltic
movement, which refers to the presence of fluid par-
ticles that move, on the average, in a direction opposite
to the net flow in the close vicinity of the wall (cf. [16]).

For the two-dimensional case, the dimensional
stream function, in the wave frame, is dψ̃ = Ũdς̃ −
Ṽdζ̃ , where ψ̃ , ζ̃ , ς̃ , Ũ , and Ṽ are stream function, co-
ordinates and velocity-components, respectively. Un-
der the transformations, where the parameters on the
left of the equality sign are in the wave frame and
those on the right are in the laboratory frame, given
by ζ̃ = ξ̃ − ct̃, ς̃ = η̃ , Ũ = ũ− c, Ṽ = ṽ, q̃ = Q̃− cH̃,
we obtain stream function as

ψ =−
Q̄− 1+

φ
2
+H

2M2H3 + 3NH(1−MH coth(MH))

·
{

M2(η3 − 3H2η)− 3NH
sinh(MH)

·(sinh(Mη)−Mη cosh(MH))
}
−η .

(27)

The stream function at the wall, ψw, is solved from (27)
by substituting η = H. A simplification yields

ψw = Q̄− 1+
φ
2
. (28)

Reflux flow rate Qψ(ξ ), associated with a particle at
the position ξ , is given by

Qψ = ψ +η(ψ ,ξ ), (29)

which, on averaging over one cycle, gives

Q̄ψ = ψ +

∫ 1

0
η(ψ ,ξ )dξ . (30)

Moreover, in order to evaluate the reflux limit, Q̄ψ is
expanded in a power series in terms of a small param-
eter ε about the wall, where ε (= ψ −ψw) is subjected
to the reflux condition Q̄ψ/Q̄ > 1 as ε → 0. The coef-
ficient of the first two terms in the expansion of η is
obtained only for small values of M. Substituting the
expansion η = H + a1ε + a2ε2 + · · · into (27), and us-
ing (28), we get

a1 =−1,

a2 =−
3M2

(
Q̄− 1+

φ
2
+H

)

2M2H2 + 3N(1−MH coth(MH))

·
(

1− MNH
2sinh(MH)

)
.

(31)

Using (31) and applying reflux condition in (30), we
obtain the reflux limit as
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(a) (b)

(c) (d)

Fig. 2. Pressure vs. axial distance along the finite length channel at five time instants (a) t = 0.0, t = 1.0, (b) t = 0.25,
(c) t = 0.5, (d) t = 0.75. Dotted lines (· · ·) represent the position of wave, whereas continuous lines (—) represent the
pressure distribution for different coupling number Nand for φ = 0.9, l = 2.0, M = 1.0. The pressures at the two ends are
kept as zero.

Q̄ < 1− φ
2
−

∫ 1

0

H(2sinh(MH)−MNH)

2sinh(MH){2M2H2 + 3N(1−MH coth(MH))}dξ
∫ 1

0

2sinh(MH)−MNH
2sinh(MH){2M2H2 + 3N(1−MH coth(MH))}dξ

. (32)

5. Numerical Results and Discussion

5.1. Numerical Aspects

A thorough examination of the effects of coupling
number and micro-polar parameter, which together de-
termine the micro-polar characteristic of the fluid on
the flow pattern, is carried out by computer simulation.
The case, we take up here, is that of free pumping, i. e.,
the case when the pressure across the two ends of the
channel are zero. We write programs in C and observe
graphs drawn based on the computational results.

First of all, we perform temporal examination of
the pressure distribution along the length at various in-

stants, i. e., for discrete values of t in the range 0.0 –
1.0 (Fig. 2). At t = 0 (Fig. 2a), it is observed that the
pressure tends to rise sharply at the inlet, reaches some
peak, then falls at a lower rate to zero at the middle
of the bolus, comes down further to a lower trough,
and finally rises sharply to meet the leading end of the
bolus. The same distribution is repeated for the next
bolus. After one fourth of the periodic cycle (Fig. 2b),
the bolus has moved ahead and a trailing bolus is on
the way to entry. The graphs for higher values of t rep-
resent a systematic progress of the boluses in the chan-
nel. Eventually, at the time t = 1, which represents the
completion of one period, the pressure distribution re-
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(a) (b)

(c) (d)

Fig. 3. Pressure vs. axial distance along the finite length channel at five time instants (a) t = 0.0, t = 1.0, (b) t = 0.25,
(c) t = 0.5, (d) t = 0.75. Dotted lines (· · ·) represent the position of wave, whereas continuous lines (—) represent the
pressure distribution for different micro-polar parameter M and for φ = 0.9, l = 2.0, N = 0.50. The pressures at the two ends
are kept as zero.

sembles that at t = 0: this indicates that a new cycle is
ready to set out (Fig. 2a).

It is further observed that the pressure distribu-
tion along the length of the channel for micro-polar
fluid shows qualitative similarity with Newtonian fluid
(Fig. 2) which is a special case, i. e., N → 0.

It also reveals that as the coupling effect parame-
ter N increases, pressure gradient as well as pressure
along the length of the channel enhances and when
N → 0, the pressure is minimum. A similar observa-
tion is made for all values of t ranging from 0 – 1, i. e.,
throughout one time period. Temporal effects are simi-
lar to those observed for Newtonian and power-law flu-
ids (cf. [13]). Figures, together with captions, provide
the details (Figs. 2a – d).

We further carry out an investigation of the role of
the other micro-polar parameter M. It is observed that
the pressure along the entire length of the channel di-
minishes as M increases. Hence, this parameter has an
opposite influence vis-à-vis coupling number (Fig. 3).

Since no value of M can lead to Newtonian nature,
no comparison can be made with Newtonian fluids. In
fact, the micro-polar fluid has a complex characteris-
tic that is built up by the combined effects of these
two parameters. This may be noticed that once N = 0,
M seizes to affect the flow (cf. (17)).

Simultaneously, we consider the propagation of a
non-integral number of waves in the train, which is an
inherent feature of finite length vessels. Some signif-
icant differences are observed between this case and
the other where there are an integral number of waves
in the train. As a special case, we take l = 1.8.

It is observed that unlike the case of an integral num-
ber of waves, the pressure distributions are different
for the boluses enclosed within the whole and the frac-
tional waves. Whatever be the temporal value, the pres-
sure for the whole wave attains zero thrice: at the two
ends and once midway depending upon the value of t
for the whole bolus while it reaches zero only twice at
the two ends in the case of fractional bolus. But one
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(a) (b)

(c) (d)

Fig. 4. Pressure vs. axial distance along the finite length channel at five time instants (a) t = 0.0, t = 1.0, (b) t = 0.25, (c)
t = 0.5, (d) t = 0.75. Dotted lines (· · · ) represent the position of wave, whereas continuous lines (—) represent the pressure
distribution for different coupling number Nand for φ = 0.9, l = 1.8, M = 1.0. The pressures at the two ends are kept as zero.

significant difference between the two cases is that the
peaks of pressure for the two different types of boluses
are identical in the integral case while the peaks are
different in the non-integral case (Fig. 4). Pressure dis-
tribution changes with t. It is further observed that the
closer to symmetry is the distribution of boluses in the
channel, the lesser is the difference between the pres-
sure peaks (Fig. 3c). The effects of the coupling num-
ber N and the micro-polar parameter M do not reveal
any difference in the two cases (Figs. 2 – 5).

A graph, plotted between pressure across one wave-
length and averaged flow rate, that exhibits a linear re-
lation between them, for varying coupling number N
and fixed M, indicates that the pressure increases with
coupling number N. In fact, it measures the magni-
tude of pressure that can stop transportation. There-
fore, once it is zero, maximum amount of flow can
take place. For a fixed coupling number N, it is sim-
ilar to that for Newtonian fluids (Fig. 6a). The obser-

vation is that the pressure decreases with increasing M
and for fixed N (Fig. 6b). Another point to note is that
for a traditionally used sinusoidal wall equation that
represents both contraction and expansion, compara-
tively more pressure is required to prevent the flow,
that is to say, that the flow rate is less in the present
case (Fig. 6c).

Figure 7a compares the two cases of unidirec-
tional displacement of the wall and both ways of wall
displacements. The quantitative differences are enor-
mous. Graphs plotted for the mechanical efficiency
reveal that it increases with the coupling number N
(Fig. 7b) for fixed M and decreases with the micro-
polar parameter M for fixed N (Fig. 7c). Captions of
the figures give details of the other parameters. The
fluid turns Newtonian as N → 0.

Reflux has been examined here only for small val-
ues of micro-polar parameter. The graphs based on (32)
for reflux limit discloses that the reflux region for



188 S. K. Pandey and D. Tripathi · Peristaltic Flow of Micro-Polar Fluid

(a) (b)

(c) (d)

Fig. 5. Pressure vs. axial distance along the finite length channel at five time instants (a) t = 0.0, t = 1.0, (b) t = 0.25,
(c) t = 0.5, (d) t = 0.75. Dotted lines (· · ·) represent the position of wave, whereas continuous lines (—) represent the
pressure distribution for different micro-polar parameter M and for φ = 0.9, l = 1.8, N = 0.50. The pressures at the two ends
are kept as zero.

micro-polar fluid increases with the coupling num-
ber N (Fig. 8a). Figure 8b compares the reflux regions
for two cases of unidirectional displacement of the wall
and both ways of wall displacements. It reveals that
when the walls undergo contraction as well as expan-
sion, the region favourable to reflux is significantly
more than that in the present case. Since M is consid-
ered very small, no significant difference is observed;
and even if it is measured very carefully, it won’t give
us accurate values. For this reason, discussion in this
regard is dropped.

Trapping (cf. [16]) has been studied for varying
micro-polar parameter M and coupling number N.
We plot streamlines based on (27) for this case. Fig-
ures 9a – d reveal that when N is increased by keeping
other parameters unchanged, the size of the trapped
region decreases slightly. Unlike this, the size of the
trapped region increases when M enhances with other
parameters remaining unaltered (Figs. 9c and e).

5.2. Physical Interpretation and Applications in
Biology and Engineering

The observation of pressure distribution along the
length of the channel leads to the conclusion that the
mechanism is harmonic and works for a totally system-
atic continuous and rhythmic transportation and takes
care of the pumping machinery for safety. In order
to achieve this, the pressure distribution is time de-
pendent. The case of integral number of waves suit-
ably finds its application in oesophageal swallowing.
Pressure distribution reveals that natural peristaltic
pumping mechanism properly protects bolus move-
ment from any possible retrograde motion of leading
boluses and provides adequate safety to oesophagus.
A further revelation is that swallowing of fluids resem-
bling micropolar properties requires more efforts com-
pared with Newtonian fluids such as water. This will
be clear in subsequent paragraphs.
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footnotesize (a) (b)

(c)

Fig. 6. Pressure difference across one wavelength vs. average
flow rate (a) for different coupling number N and φ = 0.4,
M = 1.0, l = 1.0, (b) for different micro-polar parameter M
and φ = 0.4, N = 0.50, l = 1.0, (c) for different wall equa-
tions and φ = 0.4, N = 0.50, M = 1.0, l = 1.0.

A non-integral number of waves is inherent to com-
mercial pumps, so the related numerical results may
be applied to this case. The observation in the case of
non-integral number of waves propagating along the
channel that the closer to symmetry the distribution
of boluses in the vessel, the lesser is the difference
between the pressure peaks, indicates that the differ-
ence in peak sizes of pressure is due to the position-
ing of waves. It may be inferred that pressure distribu-
tion in commercial pumps changes with the location of
fractional waves and accordingly pressure peaks and
troughs are unequal or almost equal. The pressure ex-
erted by such a pump frequently changes in magnitude
along its length.

It is found that pressure gradient as well as pressure
along the length of the channel enhances as the cou-
pling effect parameter N increases. Since the coupling
effect parameter N is related with inner rotation, this
may be physically interpreted as that the inner rotation
of the fluid particles increases pressure; and as the fluid
turns Newtonian, the pressure becomes minimum. This
may lead to the conclusion that the channel has to work
more to pump a micro-polar fluid.

The influence of the two parameters on the pressure
across one wavelength and averaged flow rate disclose
that micro-polar fluid requires more efforts to be trans-
ported.

This is noteworthy that while examining pumping
efficiency, we fixed the flow rate so that higher effi-
ciency is an indication that the pump has to be more ef-
ficient to transfer the same amount of micro-polar flu-
ids. In other words, efficiency is less, in case a micro-
polar fluid is pumped.

The reflux region for micro-polar fluid increases
with the coupling number. Physically it can be in-
terpreted as that the flow becomes more prone to
reflux when the inner rotation of fluid particles in-
creases.

6. Conclusion

It is found that pressure distribution along the length
of the channel is such that a bolus is very system-
atically carried away with the waves travelling along
the walls of the channel. Micro-polar and Newtonian
fluids have qualitatively similar pressure distributions;
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(a) (b)

(c)

Fig. 7. Mechanical efficency vs. the ratio of average flow
rate and maximum average flow rate relation (a) for differ-
ent wall equations and φ = 0.4, N = 0.50, M = 1.0, (b) for
corresponding coupling number N and φ = 0.4, M = 1.0,
(c) for corresponding micro-polar parameter M and φ = 0.4,
N = 0.50.

(a) (b)

Fig. 8. Average flow rate vs. amplitude (a) for corresponding coupling number N for M = 0.1, (b) for different wall equations
and N = 0.50, M = 0.1.

but the quantitative differences are significant enough.
The parameters that represent the micro-polar charac-
ter in a fluid influence the flow pattern much signifi-
cantly. Revelation is that a parameter known as cou-
pling number increases pressure along the entire length
of the channel, while the other parameter decreases it.
The latter one favours the flow, whereas the former

one hinders it. The combined effect will be no doubt
a complicated one. Had the exact experimental values
of the two been available in the literature, we would
have evaluated.

A pump with micro-polar fluid is also affected by
the two parameters. The coupling number increases the
efficiency; while the other micro-polar parameter de-
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(a) (b)

(c) (d)

(e)

Fig. 9. Streamlines in the wave frame when (a) Q̄ = 0.6, φ =
0.6, M = 2.0, N = 0.0, (b) Q̄ = 0.6, φ = 0.6, M = 2.0, N =
0.25, (c) Q̄ = 0.6, φ = 0.6, M = 2.0, N = 0.5, (d) Q̄ = 0.6,
φ = 0.6, M = 2.0, N = 0.75, (e) Q̄ = 0.6, φ = 0.6, M = 5.0,
N = 0.5.
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creases it. It is further concluded that the pumping ef-
ficiency decreases for micro-polar fluids.

Reflux region is found to increase with the coupling
number. This may be inferred that a micro-polar fluid is
more prone to flow reversal. One significant difference
between integral and non-integral number of waves in
the train propagating along the channel walls is that

the peaks of pressure are identical in the integral case
while the peaks are different in the non-integral case.
The effects of the coupling number and the micro-polar
parameter are identical in both the cases of integral and
non-integral number of waves in train.

Trapping is favoured by the coupling number but
hindered by the micro-polar parameter.
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