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Peristaltic flow of couple stress fluids is studied here in a finite length channel. The analysis is
carried out under the assumption of long wavelength and low Reynolds number approximations.
When the couple stress parameter increases, it is found that pressure diminishes, maximum averaged
flow rate increases, mechanical efficiency decreases, area experiencing reflux reduces, and trapped
bolus-size increases. A comparative study of integral and non-integral number of waves propagating

along the channel is also done.
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1. Introduction

A couple stress fluid is a non-Newtonian fluid
whose particle-size is taken into consideration during
flow. Since the classical continuum theory ignores the
particle-size effects, a micro-continuum theory pro-
pounded by Stokes [1] has been considered to take
into account the particle size effects. The Stokes micro-
continuum theory is the generalization of the classical
theory of fluids. The polar effects such as the pres-
ence of couple stresses, body couples, and an anti-
symmetric stress tensor are taken into consideration
in it. In this model, the couple stress effects are con-
sidered as a consequence of the action of a deforming
body on its neighbourhood. Blood, polymers, colloidal
solutions etc. are couple stress fluids. The fluid flow-
ing in the oesophagus is generally a colloidal solution.
We plan to investigate peristaltic transport of a couple-
stress fluid in a channel of finite length that can model
the aforementioned flow in the oesophagus as well as
the flow of a colloidal solution in a mechanical pump
of finite length.

Peristalsis is a mechanism of pumping process in
which a piston is not used. From biological point of
view, it is a continuous wave-like muscle contraction
and relaxation of the vessels. For instance, food bo-
lus through oesophagus, chyme through duodenum,
urine in ureters, and blood through blood vessels, roller

pumps etc. are driven by peristaltic waves. The as-
sumption of finite length helps us to study the prop-
agation of a non-integral number of waves propagating
along the channel.

In a short communication, Srivastava [2] reported
that pressure increases as the couple stress param-
eter decreases in a tube. For a couple stress fluid
pressure is more than that for Newtonian fluids.
Some authors [3-6] further reported about peri-
staltic flow of couple stress fluids through differ-
ent geometries of wall surfaces. They have all dis-
cussed the effects of the couple stress parameter or
the magnetic field on pressure and friction force etc.
of the fluid flowing in infinite length channels or
tubes. However, physiological vessels such as oe-
sophagus are of finite length in comparison to their
width/diameter. Finiteness of length gives rise to a sit-
uation when a non-integral number of waves propa-
gate along the walls and consequently a non-integral
number of fluid-boluses are trapped at a particular
instant. Such a situation never arises in an infinite
length tube. This situation was investigated by Li
and Brasseur [7] for Newtonian fluids. Misra and
Pandey [8] and Pandey and Tripathi [9, 10] extended
the results for power law, magneto hydro dynamic
(MHD) and Maxwell fluids, respectively. We intend to
discover these aspects for couple stress fluids flowing
in channels.
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2. Mathematical Model

The wave propagating along the channel walls is
mathematically modeled as

h(€,7) = a— pcos® —(é—cf) (1)

where i, €, 7, a, @, A, and ¢ represent the transverse vi-
bration of the wall, the axial coordinate, time, the half
width of the channel, the amplitude of the wave, the
wavelength, and the wave velocity, respectively.

Neglecting the body forces and the body couples,
the continuity equation and the equations of motion of
couple stress fluids are given by
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where p, i, V, ], p, I, 4 are the fluid density, axial ve-
locity, transverse velocity, transverse coordinate, pres-
sure, viscosity, constant associated with couple stress,
and
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where 8, Re, a are the wave number, Reynolds num-
ber, couple stress parameter, respectively, and applying
the long wavelength and low Reynolds number approx-
imation in (2)—(4), we get

du dv
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The boundary conditions are

no slip condition: u =0 at 1 =h,

d 9
regularity condition: # =0 at n=0, ©)
vanishing of couple stresses:

d%u u (10)
8—1"2:0 at n:h, 8—1"3:0 at n:(),
transverse velocity at the wall:

oh 11
V:E atn=~h, v=0atn=0.

Equation (7) under the boundary conditions (9)
and (10), yields the axial velocity

32 [ (nz_th%{l_%H. (12)

Using (12) and the second condition of (11), the trans-
verse velocity is obtained as

y=
dp oh sinh(an) sech(och) tanh(och)
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The transverse velocity, at the boundary of wall, is

obtained by substituting the first condition of (11)
into (13). It yields
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Integrating (14) once with respect to &, the pressure
gradient across the length of the channel is obtained as
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where G(¢) is a function of 7.
Further, integrating (15) from 0 to &, the pressure
difference is obtained as

p(6:1) = p(0,1) =
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The substitution & =/ in (16) readily gives the pressure
difference between inlet and outlet of the channel as

p(l,l) _p(ovt) =

G
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from which G(¢) is evaluated as
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The instantaneous volume flow rate in the laboratory
frame is defined as Q(&,1) = fé’ udy, which, by virtue
of (12), assumes the following form:

dp a®h® +3(tanh(ath) — ah)

= . 1
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When averaged over one time period, it gives
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But, the following are the existing relations between
the averaged flow rate and flow rate in the wave frame
and in laboratory frame:

Q=q+1—%:Q—h+1—9.
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A simple manipulation of (19), followed by the appli-
cation of (21), yields the pressure gradient as
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which, on integrating between 0 and &, gives
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Mechanical efficiency (cf. [11]) is derived for couple
stress fluids as

__ O
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= fol 3—2005(2ﬂ5)d§, and Ap; is the pres-

sure difference across a wavelength, which, by using
the (23), becomes

The local wall shear stress defined as Ty =
duces, by virtue of (12) and (15), to
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Moreover, the maximum flow rate is obtained by sub-
stituting Ap; = 0 as
h
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Reflux (cf. [11]) is an important phenomenon of peri-
staltic movement. The dimensional form of the stream
function in the wave frame is defined as

dé
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dy = UdY — VdX, (28)

where W, Y, X, U, and V are the stream function, coor-
dinates, and velocities components, respectively. Us-
ing the transformations between wave and laboratory
frame, defined as

X=E—di,
V =y,

Y=10, U=ii—c,

q = Q - Cha
where the parameters on the left side are in the wave
frame and that on the right side are in the laboratory

frame. We obtain the stream function by solving (12),
(13), and (28) in the form
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At the wall

Wl =we=0-1+2.
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When averaged for one cycle, the reflux flow rate

Oy (&) =y +n(y,&) yields

1

Oy =v+ [ m(y.E)dE. (32)
To evaluate the reflux limit, Q_.,, is expanded in power
series in terms of a small parameter € about the wall,
where € = Y — y, and is subjected to the reflux con-
dition

Qa5 e—o. (33)
Q
The coefficients of the first two terms in the expansion
n=h+a€ +are?+- - are found for small value of a
by using (30) as
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Integrating (32), and substituting the coefficients
from (34), the reflux limit is obtained, for couple stress
fluids, as
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3. Numerical Results and Discussion
3.1. Numerical Aspects

This section presents the salient features of couple
stress parameter on pressure distribution, i.e., p(&,7) —
p(0,1), local wall shear stress Ty, averaged flow rate Q,
maximum averaged flow rate Qp, mechanical effi-
ciency E, reflux limit, and trapping through Figures 1 —
7. Numerical results have been obtained by writing
programmes in C-language applying numerical tech-
niques (e. g., Simpson’s rule for integration).

In order to carry out the computer simulation of the
model, we consider the propagation of integral num-
ber and non-integral number of waves in a train along
the walls of a channel. To this end, we consider the
simplest case known as free pumping, i.e., the pres-
sures at the two ends of the channel are zero, i.e.,
p(l,t) = p(0,t) =0.

In order to investigate the temporal dependence
of pressure on the axial distance we plot graphs
(Figs. 1la—d) at various instants t = 0 — 1 with an in-
terval of 0.25 with couple stress parameter o varying
from 4—10 based on (16) in conjunction with (18).
We consider a train wave propagation (in particu-
lar, two waves in the train) on the walls of the
channel.

It is observed that for r = O (Fig. 1a), the pressure at
the inlet is large. The pressure is at its maximum, i. e.,
peak near the tail of the bolus, and then there is a sharp
nonlinear decline of pressure to zero at the middle,
which further diminishes to its minimum, i. e., trough.
Then the pressure rises very sharply and linearly, al-
most vertically, to zero at the head of the bolus and
maintains the same trend to reach another maximum,
i.e., peak equal to the previous maximum one. The
pressure distribution for the leading bolus is identical
and the final pressure at the head of the leading bolus
is zero. For t = 0.25-0.75 revealed by Figures 1b—d,
the pressure distributions depict a continuous process
of bolus movement from the one end to another end
of the channel with similar peaks and troughs. When
t = 1.0, the pressure distribution is identical with that
for t = 0. Finally, it is observed that the pressure dimin-
ishes with the increase in the magnitude of the couple
stress parameter.

Figures 2a—d display the propagation of a non-
integral number of waves in the train, which is an in-
herent feature of finite length vessels. In this case, we
take [ = 1.8. The effect of the couple stress parame-
ter on the pressure difference in both cases is similar,
but a significant difference between the two is that the
peaks of pressure for the two boluses are identical in
the integral case while the peaks are different in the
non-integral case.

Figures 3a—d present the influence of couple stress
parameter on local wall shear stress along the length
of the channel. It is observed that the local wall shear
stress bears similarity with the pressure distribution at
various instants and range between peak and trough de-
creases when the magnitude of the couple stress pa-
rameter increases.
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Fig. 1 (colour online). Pressure vs. axial distance at o0 = 4.0, 6.0, 8.0, 10.0, ¢ = 0.9, I = 2.0 and various instants (a) = 0.0,
1.0, (b) = 0.25, (¢) t = 0.5, (d) t = 0.75. Dotted lines represent the position of wave and colour solid lines show pressure

along the length of channel.

Figure 4 depicts the variation of the pressure across
one wavelength Ap; against the averaged flow rate O
for different values of o at ¢ = 0.6. It is observed that
there is a linear relation between pressure and averaged
flow rate. Also, an increase in the flow rate reduces the
pressure and thus maximum flow rate is achieved at
zero pressure and the maximum pressure occurs at zero
averaged flow rates. It is also evident from the figure
that the pressure decreases with increasing «.

Figure 5 is plotted for mechanical efficiency E vs.
the ratio of averaged flow rate to maximum averaged
flow rate Q/Qp. There is a nonlinear relation between
them. First E rises with Q/Qy from zero to the maxi-
mum value, thereafter it falls to zero. Finally, it reveals
that the mechanical efficiency decreases with increas-
ing o.

Figure 6 depicts the impact of couple stress parame-
ter on the reflux limit. The upper portion of the curves
is no reflux region while the lower portion is reflux
region. It is observed that the reflux region decreases
when ¢ increases.

Figures 7a—d are drawn for streamlines in the wave
frame for various values of @ = 1.0, 1.2, 1.3, 2.0 for
Q = 0.5 and ¢ = 0.5. The figures show that the size of
the trapped bolus increases and so trapping of the bolus
reduces with increasing «.

3.2. Physical Interpretation and Physiological and
Engineering Applications

The keen observation given in the fourth paragraph
of Section 3.1 reveals many interesting facts of the
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Fig. 2 (colour online). Pressure vs. axial distance at o0 = 4.0, 6.0, 8.0, 10.0, ¢ = 0.9, I = 1.8 and various instants (a) r = 0.0,
1.0, (b) = 0.25, (¢) t = 0.5, (d) t = 0.75. Dotted lines represent the position of wave and colour solid lines show pressure

along the length of channel.

pumping mechanism for a safe smooth and harmonic
motion in the oesophagus. Considering oesophagus as
a channel and colloidal solutions swallowed in it as
couple stress fluids and analyzing the numerical results
displayed through the figures, the following inferences
can be drawn.

Once a bolus has already entered into the oesopha-
gus, the pressure at the inlet is initially large enough at
its maximum value or the peak near the tail of the bo-
lus to prevent a backward motion. In order to move
it ahead it declines to zero at the middle of the bo-
lus and further reaches the trough. In the meanwhile,
the leading bolus has to be restrained from any pos-
sible backward motion; so it rises very sharply and
linearly, almost vertically, to zero at the head of the
trailing bolus which is also the tail of the leading

bolus and maintains the same trend to reach another
peak equal to the previous maximum one. The pres-
sure distribution for the leading bolus is identical. It
is observed that the final pressure at the head of the
leading bolus is zero as desired. This rise of pres-
sure to zero indicates a controlled motion of the bo-
lus which is ready to be transported. At + = 0.25 a
portion of a new bolus is in the process of transporta-
tion and one fourth of the leading bolus has already
been transported. Similarly at ¢t = 0.5 and t = 0.75,
the pressure distributions depict a continuous harmonic
process of bolus movement from the one end to an-
other. The pressure distribution at + = 1.0 which is
identical with that at + = O indicates that the pump-
ing machinery is ready to repeat the process of trans-
portation.
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Fig. 3 (colour online). Local wall shear stress vs. axial distance at & = 4.0, 6.0, 8.0, 10.0, ¢ = 0.9, / = 2.0 and various instants
(@)t =0.0, 1.0, (b) t = 0.25, (c) t = 0.5, (d) t = 0.75. Dotted lines represent the position of wave and colour solid lines show
local wall shear stress along the length of channel.
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Fig. 4 (colour online). Pressure vs. averaged flow rate. Colour
lines represent the pressure at fixed flow rate for o =4.0, 6.0,

8.0, 10.0 and ¢ = 0.6.

Since the couple stress parameter @ — oo makes
the fluid Newtonian, the diminishing pressure with
increasing couple stress parameter can be inter-
preted as that less pressure is required to trans-
port Newtonian fluids compared with couple stress
fluids.

Since the presence of a non-integral number
of waves is an inherent characteristic of commer-
cial pumps, the numerical results obtained for this
case may be applied to commercial pumps. The
different sizes of the peaks and troughs of pres-
sure in the case of non-integral number of waves
indicate that the mechanism may be similar but
the pressure distributions in the two cases are dis-
tinct. This may be concluded that the pressure
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Fig. 5 (colour online). Mechanical efficiency vs. ratio of av-
eraged flow rate and maximum averaged flow rate. Colour
lines represent the efficiency of pump for o = 4.0, 6.0, 8.0,
10.0 and ¢ =0.6.
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Fig. 6 (colour online). Averaged flow rate vs. amplitude.
Colour lines represent reflux limit at & = 0.001, 0.1.
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Fig. 7. Streamlines in the wave frame when (a) 0=0.5, ¢=0.5,0=1.0,(b) 0=0.5, ¢0=050=1.2,() 0=0.5, ¢ =0.5,
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exerted on the fluid in such pumps is not as bal-
anced as observed in natural pumps such as oeso-
phagus.

It has also been found that mechanical efficiency
decreases with increasing ¢. Thus for transporting a
couple stress fluid the pump has to be more efficient.
This endorses the conclusion drawn in the previous
paragraph.

A decreasing reflux region with an increasing couple
stress parameter indicates that the couple stress fluid is
more prone to reflux.

A reduction of trapping with increasing «a re-
veals that the couple stress fluid is more prone to

trapping.
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