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In this paper, Painlevé analysis of supersymmetric extensions of the Sawada-Kotera (SK) equation
is performed. It is shown that only two simple supersymmetric extensions of the Sawada-Kotera
equation pass the Painlevé test. One of them was proposed by Tian and Liu, the other one is a B-
extension of the SK equation.
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1. Introduction

The following fifth-order evolution equation,

ut + uxxxxx + 5uuxxx+ 5uxuxx + 5u2ux = 0, (1)

is a well-known system in soliton theory. It was pro-
posed by Sawada and Kotera [1], also by Caudrey,
Dodd, and Gibbon independently more than thirty
years ago [2]. So it is referred as Sawada-Kotera
(SK) equation or Caudrey-Dodd-Gibbon-Sawada-Ko-
tera equation in literature. Now there are a lot of pa-
pers about it and thus its various properties have been
established. For example, its Darboux transformation
was given in [3] and [4], its bi-Hamiltonian structure
was worked out by Fuchssteiner and Oevel [5], its
Painlevé property was verified by Harada and Oishi
[6], its Bäcklund transformation and Lax representa-
tion were provided in [7] and [8].

Soliton equations or integrable systems have many
interesting extensions and one of them is the su-
persymmetric extension. Up to now, many equations
such as Korteweg-de Vries (KdV), modified Korteweg-
de Vries (mKdV), Kadomtsev-Petviashvili (KP), and
nonlinear Schrödinger (NLS) equations have been em-
bedded into their supersymmetric counterparts. The
point is that these supersymmetric systems have also
remarkable properties and potential applications.

Our aim is to construct supersymmetric counter-
parts for the SK equation. On this regard, the following
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equation, proposed by Carstea [9] based on the Hirota
bilinear approach is known as

Φt +Φxxxxx

+
[
10Φxx(DΦ)+ 5Φ(DΦxx)+ 5Φ(DΦ)2]

x = 0,

where Φ = Φ(x, t,θ ) is a fermionic super variable de-
pending on the super spatial variables x, θ and the
usual temporal variable t. D = ∂

∂θ + θ ∂
∂x is the super

derivative. However, there is not much known about its
integrabilty apart from the two-soliton solution. Very
recently, Tian and Liu [10] obtained another version
for the supersymmetric SK (sSK) equation. It reads as

Φt +Φxxxxx + 5Φxxx(DΦ)+ 5Φxx(DΦx)

+ 5Φx(DΦ)2 = 0.
(2)

They showed that their system is indeed integrable.
Popowicz [11] studied this system further and showed
that it is an remarkable supersymmetric equation with
unusal properties.

An interesting question arises: is there any other su-
persymmetric system which qualifies as a supersym-
metric SK equation? In this paper, we will show that
a general supersymmetric extension of the SK equa-
tion with free parameters is integrable only for two
cases. One is the sSK equation (2) and the other is
a B-extended equation [12]. We will adopt the sin-
gularity analysis or Painlevé analysis to reach above
conclusion.
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The article is organized as follows: In Section 2, we
present the supersymmetric extensions of the SK equa-
tion containing three free parameters. In Section 3, we
proceed with the Painlevé analysis for the equation ob-
tained in Section 2. In Section 4, our conclusion is re-
ported.

2. The Supersymmetric Extensions for the
SK Equation

In this section, we are to construct a supersymmetric
analogy for the SK equation. To this aim, we extend the
ordinary fields u(x, t) to the superfield Φ(x, t,θ ):

u(x, t)→ Φ(x, t,θ ) = θu(x, t)+ ξ (x, t),

where θ is a Grassmannian variable: θ 2 = 0, and
ξ (x, t) is a fermionic field. Then we proceed with a
direct extension of the SK equation, multiplying each
term by θ and rewriting the results of superfields:

ut → Φt ,

u2ux → k3Φ(DΦ)(DΦx)+ (5− k3)Φx(DΦ)2,

uxuxx → k2Φx(DΦxx)+ (5− k2)Φxx(DΦx),

uuxxx → k1Φ(DΦxxx)+ (5− k1)Φxxx(DΦ),

uxxxxx → Φxxxxx,

where k1,k2,k3 are the free parameters. We notice that
the nonlinear terms do not have the unique extensions
in the term of superfields. Therefore, this direct exten-
sion supplies us with a supersymmetric version of the
SK equation containing three free parameters:

Φt +Φxxxxx + k1Φ(DΦxxx)+ (5− k1)Φxxx(DΦ)

+ k2Φx(DΦxx)+ (5− k2)Φxx(DΦx)

+ (5− k3)Φx(DΦ)2 + k3Φ(DΦ)(DΦx) = 0.

(3)

In components, it reads as:

ut + uxxxxx + 5uuxxx+ 5uxuxx + 5u2ux

−k1ξxxxx +(5− k1− k2)ξxξxxx − k3uξ ξxx

−k3uxξ ξx = 0,
(4a)

ξt + ξxxxxx + k1uxxxξ + k2uxxξx

+ k3ξ uux +(5− k1)uξxxx +(5− k2)uxξxx

+(5− k3)u2ξx = 0.

(4b)

It is clear that this system does reduce to the SK equa-
tion when the fermionic variable is absent. This equa-
tion is our general sSK equation.

3. Painlevé Analysis

In this section, we perform the Painlevé analysis for
the system (4a – 4b). To this end, we consider an ex-
pansion of the component fields about a movable sin-
gular manifold φ(x, t) = 0 :

u(x, t) =
∞

∑
j=0

u j(x, t)φ(x, t) j−α ,

ξ (x, t) =
∞

∑
j=0

ξ j(x, t)φ(x, t) j−β ,
(5)

where ξ j(x, t) are fermionic fields. In order to simplify
the calculation, we use the Kruskal’s ansatz [13, 14]:

u j(x, t) = u j(t), ξ j(x, t) = ξ j(t),

φ(x, t) = x+ f (t),
(6)

where f (t) is an arbitrary function. Besides, we com-
mand u0 �= 0 and ξ0 �= 0.

3.1. Leading Order Analysis

In this step, we start with determining the possible
values of α and β in the expression (5). By substituting
u ≈ u0φ−α ,ξ ≈ ξ0φ−β into (4a – 4b), we find α = 2
and β is an arbitrary integer.

3.2. Resonance Structure Analysis

It is known that a ‘resonance’ occurs at j when the
coefficient u j(t) of the term φ j−α or the coefficient
ξ j(t) of the term φ j−β in the expression (5) is arbitrary.
Substituting (5), (6), and α = 2 into the system (4a –
4b) leaves us with the following recursion formula:

0 = u j−5,t +( j− 6)u j−4 f ′

+ 5( j− 6)
j

∑
n=0

(n− 2)(n− 3)unu j−n

−k3

j

∑
n=0

n+2β−3

∑
m=0

(m−β )( j+m− n−β − 3)ξn+2β−3−m

·ξmu j−n + (5− k1 − k2)
j+2β−3

∑
n=0

( j+β − 3− n)(n−β )

·(n−β − 1)(n−β − 2)ξ j+2β−3−nξn

+ 5
j

∑
n=0

( n

∑
m=0

unun−m

)
( j− n− 2)u j−n+( j− 2)

· ( j− 3)( j− 4)( j− 5)( j− 6)u j− k1

j+2β−3

∑
n=0

(n−β )

· (n−β − 1)(n−β − 2)(n−β − 3)ξ j+2β−3−nξn, (7)
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0 = ξ j−5,t +( j−β − 4)ξ j−4 f ′

+ k3

j

∑
n=0

( j−n

∑
m=0

(m− 2)umu j−n−m

)
ξn

+(5− k3)
j

∑
n=0

( j−n

∑
m=0

unu j−n−m

)
(n−β )ξn

+ k2

j

∑
n=0

(n−β )( j− n− 2)( j− n−3)u j−nξn

+ k1

j

∑
n=0

( j− n− 2)( j− n− 3)( j−n−4)u j−nξn

+(5− k2)
j

∑
n=0

(n−β )(n−β − 1)( j− n− 2)u j−nξn

+(5− k1)
j

∑
n=0

(n−β )(n−β − 1)(n−β − 2)u j−nξn

+( j−β )( j−β − 1)( j−β − 2)
· ( j−β − 3)( j−β − 4)ξ j.

(8)

Solving these equations we must rememember that
u j(t) and ξ j(t) are even and odd elements of the Grass-
man algebra, respectively, i. e.

u j = d j+Uj, d j ∈C, Uj is nilpotent, ξ 2
j = 0.

For j = 0, we get

0 = u3
0 + 18u2

0+ 72u0+σ1u0 −σ2 −σ3, (9)

0 = ξ0

{[
(5− k3)β + 2k3

]
u2

0

+ β (β + 1)(β + 2)(β + 3)(β + 4)
+

[
(5− k1)β (β + 1)(β + 2)

+ 2(5− k2)β (β + 1)+ 6k2β + 24k1
]
u0

}
.

(10)

For β ≤ 1, we have

σ1 = σ2 = σ3 = 0, u0 =−12, or u0 =−6.

For β ≥ 2, we obtain

σ1 =
k3

10

2β−3

∑
m=0

(m−β )(m−β − 3)ξ2β−3−mξm,

σ2 =− k1

10

2β−3

∑
n=0

(n−β )(n−β − 2)(n−β − 3)

· (n−β − 4)ξ2β−3−nξn,

σ3 =
1
10

(5− k1− k2)
2β−3

∑
n=0

(β − 3− n)(n−β )

· (n−β − 1)(n−β − 2)ξ2β−3−nξn,

σβ
i = 0, i = 1,2,3,

and

u0 = d0 +U0 =−6+
1
2
(1+

√
3i)(X +Y)

or

u0 = d0 +U0 =−12+
1
2
(1−

√
3i)(X +Y ),

where

X =−
√

3
3

(
√

3+ i)KL,

Y =−
√

3
3

(
√

3− i)KLV +

√
3(
√

3+ i)
36

σ1V,

V = 1+
1
3

KL+(
1
3

KL)2 +(
1
3

KL)3 + . . . ,

K =

1
5184i

√
3
(2592i

√
3PH − 648σ1− 108σ2− 108σ3),

L = 1+
1
3

K +
5
9

K2 +
10
81

K3 + . . . ,

H = 1+
1
4

P+
1
4

P+
1
8

P3 + . . . ,

P =− 1
559872

(
46656σ1+ 1620σ2

1 + 12σ3
1

+ 972σ1σ2 + 972σ3σ1 + 81σ2
2

+ 162σ3σ2 + 81σ2
3

)

with i2 = −1. (10) implies that ξ0 is an arbitrary odd
Grassmania function of t.

Now we determine resonances and recursion rela-
tions for u j and ξ j. We can rewrite (7) and (8) in the
form:

Fj = u jP( j)+Xjξ0ξ j+2β−3,

G j = ξ jQ( j)+Yjξ0u j,

where

P( j) = ( j− 2)( j− 3)( j− 4)( j− 5)( j− 6)

+ 5( j− 6)( j2 − 5 j+ 12)u0+ 5( j− 6)u2
0

−k3

2β−3

∑
m=0

(m−β )( j+m−β − 3)ξ2β−3−mξm,

Q( j) =
[
(5− k3)( j−β )− 2k3

]
u2

0

+
[
(5− k1)( j−β )( j−β − 1)( j−β − 2)

−2(5− k2)( j−β )( j−β − 1)+ 6k2( j−β )− 24k1

]
u0

+( j−β )( j−β−1)( j−β−2)( j−β−3)( j−β−4),
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Xj = (5− k1− k2)β ( j+β − 3)
[
(β + 1)(β + 2)

−( j+β − 4)( j+β − 5)
]
+ k1

[
( j+β − 3)( j+β − 4)

· ( j+β − 5)( j+β − 6)−β (β + 1)(β + 2)(β + 3)
]
,

Yj = (5− k2)β (β + 1)( j− 2)+ k3( j− 4)u0

−2β (5− k3)u0 + k1( j− 2)( j− 3)( j− 4)

−(5− k1)β (β + 1)(β + 2)− k2β ( j− 2)( j− 3),

Fj =−5
j−1

∑
n=1

( n

∑
m=1

umun−m

)
( j− n− 2)u j−n− u j−5,t

−( j− 6)u j−4 f ′ − 5( j− 6)
j−1

∑
n=1

(n− 2)(n− 3)unu j−n

+ k3

j−1

∑
n=1

(n+2β−3

∑
m=1

(m−β )( j+m− n−β − 3)

·ξn+2β−3−mξm

)
u j−n + k1

j+2β−4

∑
n=1

(n−β )(n−β − 1)

· (n−β − 2)(n−β − 3)ξ j+2β−3−nξn − (5− k1− k2)

·
j+2β−4

∑
n=1

( j+β − 3− n)(n−β )(n−β− 1)

· (n−β − 2)ξ j+2β−3−nξn,

G j =−k2

j−1

∑
n=1

(n−β )( j− n− 2)( j− n−3)u j−nξn

−(5− k1)
j−1

∑
n=1

(n−β )(n−β − 1)(n−β − 2)u j−nξn

−(5− k2)
j−1

∑
n=1

(n−β )(n−β − 1)( j− n− 2)u j−nξn

−k3

j−1

∑
n=1

( j−n

∑
m=1

(m− 2)umu j−n−m

)
ξn

−(5− k3)
j−1

∑
n=1

( j−n

∑
m=1

umu j−n−m

)
(n−β )ξn− ξ j−5,t

−( j−β − 4)ξ j−4 f ′

−k1

j−1

∑
n=1

( j− n− 2)( j− n− 3)( j− n−4)uj−nξn.

Thus, the resonances of the system (4a – 4b) are the
roots of the equations P( j) = 0 and Q( j) = 0, respec-
tively. We will discuss the resonances and the corre-
sponding values of the parameters k1,k2,k3 for the case
β ≤ 1 and the case β ≥ 2 separately.

For β ≤ 1, P( j) = 0, we have

( j− 2)( j− 3)( j− 4)( j− 5)( j− 6)

+5( j−6)( j2 −5 j+12)u0+5( j−6)u2
0 = 0. (11)

In this case, we have u0 = −12 or u0 = −6. In
the case u0 = −12, the set of the roots of (11) is
{−2,−1,5,6,12}, which contains two negative inte-
gers, so (4a – 4b) could not possess the generalized
Painlevé property. Therefore, we take u0 =−6.

Substituting u0 = −6 into the equations P( j) = 0
and Q( j) = 0, respectively, gives

P′( j) = ( j+1)( j−2)( j−3)( j−6)( j−10), (12)

Q′( j) = ( j+ 2−β )
[
β 4 +(12− 4 j)β 3

+
(
6 j2 − 36 j+ 29+ 6k1

)
β 2 +

(− 4 j3 + 36 j2 − 58 j

−12k1 j+ 30k1+ 12k2 + 42
)
β +

(
j4 − 12 j3 + 29 j2

+ 6k1 j2 − 12k2 j+ 42 j− 30k1 j− 36k3− 72k1
)]
. (13)

Then the resonances of recursion relations (7) and (8)
are roots of P′( j) = 0 (i. e. j =−1,2,3,6,10) and roots
j1, j2, j3, j4, j5 of Q′( j) = 0, where the resonance j =
−1 corresponds to the arbitrary function φ defining in
the singular manifold.

For β = 1, substituting β = 1 and u0 =−6 into (10),
we have

108k1+ 12k2 − 36k3 = 0, (14)

and (13) gives

Q′( j) = j( j+ 1)
[

j3 − 16 j2 +(6k1 + 71) j

−(42k1 + 12k2+ 56)
]
.

(15)

Suppose that three roots of the cubic equation in the
square brackets in (15) are j1, j2, j3. Then we obtain
three equations from (15):

j1 + j2 + j3 = 16, (16)

j1 j2 + j1 j3 + j2 j3 = 6k1 + 71, (17)

j1 j2 j3 = 42k1 + 12k2+ 56. (18)

Combining the last two equations with (14), we have
the values of k1,k2,k3 in terms of the three undeter-
mined roots j1, j2, j3:

k1 =
1
6
( j1 j2 + j1 j3 + j2 j3 − 71), (19)

k2 =
1

12
[ j1 j2 j3 −7( j1 j2 + j1 j3 + j2 j3)+441], (20)



L. Li et al. · Supersymmetric Extensions of the Sawada-Kotera Equation 169

Table 1. j4 =−1, j5 = 0.

Case ( j1, j2, j3 , j4, j5) (k1,k2,k3)

(a.1) (1,2,13,−1,0) (−5,15,−10)
(a.2) (1,3,12,−1,0)

(− 10
3 ,10,− 20

3

)
(a.3) (1,4,11,−1,0) (−2,6,−4)
(a.4) (1,5,10,−1,0) (−1,3,−2)
(a.5) (1,6,9,−1,0)

(− 1
3 ,1,− 2

3

)
(a.6) (1,7,8,−1,0) (0,0,0)
(a.7) (2,3,11,−1,0)

(− 5
3 ,

20
3 ,− 25

9

)
(a.8) (2,4,10,−1,0)

(− 1
2 ,

15
4 ,− 1

4

)
(a.9) (2,5,9,−1,0)

( 1
3 ,

5
3 ,

14
9

)
(a.10) (2,6,8,−1,0)

( 5
6 ,

5
12 ,

95
36

)
(a.11) (3,4,9,−1,0)

( 2
3 ,2,

8
3

)
(a.12) (3,5,8,−1,0)

( 4
3 ,

2
3 ,

38
9

)
(a.13) (3,6,7,−1,0)

( 5
3 ,0,5

)
(a.14) (4,5,7,−1,0) (2,0,6)

Table 2. j4 =−2, j5 = 0.

Case ( j1, j2, j3, j4, j5) (k1,k2 ,k3)

(b.1) (1,2,9,−2,0) (0,5,0)
(b.2) (1,3,8,−2,0) (1,3,2)
(b.3) (1,4,7,−2,0)

( 5
3 ,

5
3 ,

10
3

)
(b.4) (1,5,6,−2,0) (2,1,4)
(b.5) (2,3,7,−2,0) (2,2,4)
(b.6) (2,4,6,−2,0)

( 5
2 ,

5
4 ,5

)
(b.7) (3,4,5,−2,0) (3,1,6)

k3 =
1

36
[ j1 j2 j3+2( j1 j2+ j1 j3+ j2 j3)−198]. (21)

Now we need to find the values of j1, j2, j3. Since they
are positive distinct integers, we can list up all the pos-
sible combinations of them satisfying the constraint
(16). In this way, we obtain Table 1 with j4 = −1 and
j5 = 0.

For β = 0, substituting β = 0 and u0 =−6 into (10),
we get

144k1 − 72k3 = 0,

and (13) in this case yields

Q′( j) = ( j+ 2) j
[

j3 − 12 j2 +(29+ 6k1) j

+(−12k2− 30k1 + 42)
]
.

Similarly, we get Table 2 with j4 =−2 and j5 = 0.
For β ≥ 2, as a result of u0 = d0 +U0, we can write

P( j) = 0 and Q( j) = 0 in the following form:

P′′( j) = ( j− 2)( j− 3)( j− 4)( j− 5)( j− 6)

+ 5( j− 6)( j2 − 5 j+ 12)d0+ 5( j− 6)d2
0 + p,

Q′′( j) =
[
(5− k3)( j−β )− 2k3

]
d2

0

+
[
(5− k1)( j−β )( j−β − 1)( j−β − 2)

−2(5− k2)( j−β )( j−β − 1)+ 6k2( j−β )− 24k1

]
d0

+( j−β )( j−β − 1)( j−β−2)( j−β−3)( j−β−4)+q,

where

p = 10( j− 6)U2
0 + 5( j− 6)( j2 − 5 j+ 12)U0

− k3

2β−3

∑
m=0

(m−β )( j+m−β − 3)ξ2β−3−mξm,

q = 2
[
(5− k3)( j−β )− 2k3

]
U2

0

+
[
(5− k1)( j−β )( j−β − 1)( j−β − 2)

−2(5− k2)( j−β )( j−β − 1)+6k2( j−β )− 24k1

]
U0.

The contribution to the resonances is the non-fermioic
part of P′′( j) = 0 (also with Q′′( j) = 0), namely

( j− 2)( j− 3)( j− 4)( j− 5)( j− 6)

+ 5( j− 6)( j2 − 5 j+ 12)d0+ 5( j− 6)d2
0.

Since we have known d0 = −12 or d0 =−6, similarly
to (11), we take d0 = −6. So the resonances of the re-
cursion relations (7) and (8) are also roots of P′( j) = 0
and roots of Q′( j) = 0.

For β = 2, substituting β = 2 and u0 =−6 into (10),
we get

0 ≡ 0.

Substituting β = 2 and u0 =−6 into (13), we get

j
[

j4 − 20 j3 +(6k1 + 125) j2 − (54k1+ 250+ 12k2) j

+ (144+ 24k2+ 156k1− 36k3)
]
.

Similarly to Table 1, we get Table 3 with j5 = 0.

3.3. Resonance Criteria Analysis

As the last step, we have to check the resonance cri-
teria for β = 0,1,2. We take advantage of the sym-
bolic software Maple 11. The final result is that only
the three cases (a.6), (b.1), and (c.15), see Tables 1 – 3,
have satisfied all criteria.

Therefore, the system (4a – 4b) has the Painlevé
property only for

case (i): k1 = k2 = k3 = 0 and

case (ii): k1 = k3 = 0,k2 = 5.
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Case ( j1, j2, j3, j4, j5) (k1,k2,k3) Case ( j1, j2, j3, j4 , j5) (k1,k2,k3)

(c.1) (1,2,3,14,0) (−5,15,−10) (c.2) (1,2,4,13,0)
(− 10

3 ,10,− 20
3

)
(c.3) (1,2,5,12,0) (−2,6,−4) (c.4) (1,2,6,11,0) (−1,3,−2)
(c.5) (1,2,7,10,0)

(− 1
3 ,1,− 2

3

)
(c.6) (1,2,8,9,0) (0,0,0)

(c.7) (1,3,4,12,0)
(− 5

3 ,
20
3 ,− 25

9

)
(c.8) (1,3,5,11,0)

(− 1
2 ,

15
4 ,− 1

4

)
(c.9) (1,3,6,10,0)

( 1
3 ,

5
3 ,

14
9

)
(c.10) (1,3,7,9,0)

( 5
6 ,

5
12 ,

95
36

)
(c.11) (1,4,5,10,0)

( 2
3 ,2,

8
3

)
(c.12) (1,4,6,9,0)

( 4
3 ,

2
3 ,

38
9

)
(c.13) (1,4,7,8,0)

( 5
3 ,0,5

)
(c.14) (1,5,6,8,0) (2,0,6)

(c.15) (2,3,4,11,0) (0,5,0) (c.16) (2,3,5,10,0) (1,3,2)
(c.17) (2,3,6,9,0)

( 5
3 ,

5
3 ,

10
3

)
(c.18) (2,3,7,8,0) (2,1,4)

(c.19) (2,4,5,9,0) (2,2,4) (c.20) (2,4,6,8,0)
( 5

2 ,
5
4 ,5

)
(c.21) (2,5,6,7,0) (3,1,6) (c.22) (3,4,5,8,0) (3,2,5)
(c.23) (3,4,6,7,0)

( 10
3 , 5

3 ,
50
9

)

Table 3. j4 = 0, j5 = 0.

For case (i), we get the sSK equation

Φt +Φxxxxx + 5Φxxx(DΦ)+ 5Φxx(DΦx)

+ 5Φx(DΦ)2 = 0.
(22)

For case (ii), we obtain the sSK equation

Φt +Φxxxxx + 5Φxxx(DΦ)+ 5Φx(DΦxx)

+ 5Φx(DΦ)2 = 0.
(23)

Equation (22) is identical to (2), which was proposed
by Kai and Liu while (23) is the B-extension of the SK
equation.

To complete the Painlevé analysis of the two cases,
we must check the resonance of their other branches.

For case (i), from (10) and (13), the resonances are
given by

1. β =−6, j1 =−8, j2 =−7,

j3 =−6, j4 = 0, j5 = 1;

2. β =−7, j1 =−9, j2 =−8,

j3 =−7, j4 =−1, j5 = 0;

and for case (ii), from (10) and (13), the resonances are

1. β =−1, j1 =−3, j2 =−1,

j3 = 0, j4 = 1, j5 = 8;

2. β =−2, j1 =−4, j2 =−2,

j3 =−1, j4 = 0, j5 = 7;

3. β =−9, j1 =−11, j2 =−9,

j3 =−8, j4 =−7, j5 = 0.

One can convince oneself that the compatibility condi-
tions for these branches are satisfied.

However, there are still other possibilities that must
be considered, namely those with β ≥ 3. Here we only

prove that the compatibility condition is contradictory
for β = 3. Substituting u0 = −6 and β = 3 into (10),
we get

k3 = 15+ 6k1+ k2. (24)

From (7), j =−2β + 4, one obtains the condition

2ξ0ξ1(β + 1)(k2β 2 − 5β 2 + 3β 2k1

+ 3k1β − k2β + 5β + k3u0) = 0,
(25)

and then it is easy to see that

ξ0ξ1 = 0

which is in contradiction with the arbitrariness of ξ0
and ξ1, because of j = 1 and j = 0 are two roots of
Q′( j) = 0 with β = 3.

So, the result of the Painlevé analysis is that the sSK
equations possesses Painlevé property if and only if
k1 = k2 = k3 = 0 and k1 = k3 = 0,k2 = 5. That is we
only obtain two integrable supersymmetric extensions
of the SK equations, and one is the sSK equation (2)
and the other is the B-extension of the SK equation.

4. Discussions

We have shown that the sSK equation containing
three parameters possesses the Painlevé property for
k1 = k2 = k3 = 0 and k1 = k3 = 0,k2 = 5, which corre-
spond to the sSK equation (2) and a B-extension of
the SK equation, respectively. So no new integrable
sSK equation could arise by the means of the Painlevé
analysis and the one proposed by Castera does not
appear in our study in particular. As a further prob-
lem, it would be interesting to study systematically the



L. Li et al. · Supersymmetric Extensions of the Sawada-Kotera Equation 171

Painlevé property of the supersymmetric extensions of
the fifth-order KdV type equations in the form

uxxxxx + a1uuxxx + a2uxuxx + a3u2ux + a4ut = 0,

where a1,a2,a3 are parameters. We may return to this
problem later and hope some new supersymmetric
equations of fifth order will appear.
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