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The variational iteration method (VIM) proposed by Ji-Huan He is a new analytical method to
solve nonlinear equations. In this paper, a modified VIM is introduced to accelerate the convergence
of VIM and it is applied for finding exact analytical solutions of nonlinear gas dynamics equation.
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1. Introduction

Analytical methods commonly used to solve nonlin-
ear equations are very restricted and numerical tech-
niques involving discretization of the variables on the
other hand give rise to rounding off errors. Recently,
the variational iteration method (VIM), introduced by
He (see [1, 2] and references therein), which gives
rapidly convergent successive approximations of the
exact solution if such a solution exists, has proved
successful in deriving analytical solutions of linear
and nonlinear differential equations. This method is
preferable over numerical methods as it is free from
rounding off errors and neither requires large computer
power/memory. He has applied this method for obtain-
ing analytical solutions of autonomous ordinary dif-
ferential equation, nonlinear partial differential equa-
tions with variable coefficients, and integro-differential
equations. The variational iteration method was suc-
cessfully employed by various authors. For example,
the VIM was applied to the nonlinear Boltzmann equa-
tion [3], to Burger’s and coupled Burger’s equations
[4], to the eikonal partial differential equation [5], to
parabolic integro-differential equations arising in heat
conduction in materials with memory [6], to coupled
Korteweg-de Vries (KdV) and Boussinesq-like B(m,n)
equations [7], to Sawada-Kotera equations [8], to mod-
ified Camassa-Holm and Degasperis-Procesi equations
[9], to KdV, K(2,2), Burgers, and cubic Boussinesq

0932–0784 / 11 / 0300–0161 $ 06.00 c© 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

equations [10] and to KdV-Burgers and Sharma-Tasso-
Olver equations [11].

In the present paper, the VIM is employed to solve
the following type of partial differential equation:

∂u
∂ t

+
1
2

∂ (u2)

∂x
= u(1− u)+ f (x, t),

0 ≤ x ≤ 1, t > 0,
(1)

and we consider a modified VIM to accelerate the con-
vergence of the VIM. Equation (1) is known as the non-
homogeneous gas dynamics equation [12].

2. He’s Variational Iteration Method

For the purpose of illustration of the methodology
to the proposed method, using variational iteration
method, we begin by considering a differential equa-
tion in the formal form,

Lu+Nu = f (x, t), (2)

where L is a linear operator, N a nonlinear operator, and
f (x, t) is the source inhomogeneous term. According
to the variational iteration method, we can construct a
correction functional for (2) as follows:

un+1(x, t) =

un(x, t)+
∫ t

0
λ {Lun(τ)+Nũn(τ)− f (τ)}dτ,

n ≥ 0,

(3)
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where λ is a general Lagrangian multiplier [13], which
can be identified optimally via the variational theory,
the subscript n denotes the nth-order approximation,
and ũn is considered as a restricted variation [13], i. e.,
δ ũn = 0. Therefore, we first determine the Lagrange
multiplier λ that will be identified optimally via inte-
gration by parts [14]. The successive approximations
un(x, t),n ≥ 0, of the solution u(x, t) will be readily
obtained upon using the obtained Lagrange multiplier
and by using any selective function u0. Consequently,
the exact solution may be obtained by using

u(x, t) = lim
n→∞

un(x, t). (4)

For the convergence of the above method we refer the
reader to [15].

3. Applications with Modified VIM

We often run into the problems, such as the ones
considered in this contribution, whose successive ap-
proximate solutions of VIM converge to its exact solu-
tion relatively slowly. In the following sections, a mod-
ified VIM is considered to deal with these situations.

3.1. Homogeneous Gas Dynamics Equation

To apply the VIM, first we rewrite (1) with f (x, t) =
0 in the form

Lu+Nu = 0, (5)

where the notations Lu = ∂u
∂ t , Nu = 1/2 ∂ (u2)

∂x − u+ u2,
symbolize the linear and nonlinear terms, respectively.
The correction functional for (5) reads

un+1(x, t) = un(x, t)+
∫ t

0
λ
{

∂
∂τ

(un)+N(ũn)

}
dτ,

n ≥ 0.
(6)

By taking the variation with respect to the independent
variable un, noticing that δN(ũn(0)) = 0, we get

δun+1(x, t)

= δun(x, t)+ δ
∫ t

0
λ
{

∂
∂τ

(un)+N(ũn)

}
dτ

= δun(x, t)+λ δun |τ=t −
∫ t

0
λ ′δundτ

= 0.

(7)

This yields the stationary conditions

1+λ (τ) = 0, (8)

λ ′(τ) |τ=t= 0. (9)

Equation (8) is called Lagrange-Euler equation, and (9)
natural boundary condition. The Lagrange multiplier
can be identified as λ = −1, and the following varia-
tional iteration formula can be obtained:

un+1(x, t) =

un(x, t)−
∫ t

0

{
∂

∂τ
(un)+ un

∂
∂x

(un)− un + u2
n

}
dτ,

n ≥ 0.

(10)

We start with an initial approximation u0(x, t) = e−x,
and by means of the iteration formula (10), we can ob-
tain directly the other components as

u1(x, t) = e−x(1+ t),

u2(x, t) = e−x(1+ t +
t2

2
),

u3(x, t) = e−x(1+ t +
t2

2
+

t3

3!
),

u4(x, t) = e−x(1+ t +
t2

2
+

t3

3!
+

t4

4!
),

...

(11)

This gives the exact solution of (5) by

u(x, t) = et−x, (12)

obtained upon using the Taylor expansion for et .
From the above solution procedure, we can see

clearly that the approximate solutions converge to its
exact solution et−x relatively slowly due to the approx-
imate identification of the multiplier.

To accelerate the convergence, we apply restricted
variations to a few nonlinear terms, therefore, we
rewrite (1) in the form

Lu+Nu = 0, (13)

where the notations Lu = ∂u
∂ t − u, Nu = u2, symbolize

the linear and nonlinear terms, respectively. The cor-
rection functional for (13) reads

un+1(x, t) =

un(x, t)+
∫ t

0
λ
{

∂
∂τ

(un)− un +N(ũn)

}
dτ,

n ≥ 0.

(14)
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Making the above correction functional stationary with
respect to un, noticing that δN(ũn)(0) = 0, we get

δun+1(x, t)

= δun(x, t)+ δ
∫ t

0
λ
{

∂
∂τ

(un)− un +N(ũn)

}
dτ

= δun(x, t)+λ δun |τ=t

+
∫ t

0

{
−λ ′δun −λ δun

}
dτ = 0.

(15)

Hence, we obtain the Euler-Lagrange equation

1+λ |τ=t= 0 (16)

and the natural boundary condition

λ ′+λ |τ=t= 0. (17)

We, therefore, identify the Lagrange multiplier in the
form

λ =−et−τ . (18)

Substituting this Lagrange multiplier into (14) results
in the following iteration formulation:

un+1(x, t) =

un(x, t)−
∫ t

0
et−τ

{
∂

∂τ
(un)+ un

∂
∂x

(un)− un + u2
n

}
dτ,

n ≥ 0. (19)

If we begin with u0(x, t) = e−x, by means of the above
iteration formula (19), we can obtain directly the other
components as

u1(x, t) = et−x,

u2(x, t) = et−x,

u3(x, t) = et−x,
...

(20)

So, it can be seen clearly that the approximations ob-
tained from (19) converge to its exact solution more
fast than those obtained from the iteration formula
(10).

3.2. Non-Homogeneous Gas Dynamics Equation

We now rewrite (1) with f (x, t) =−et−x in the form

Lu+Nu = 0, (21)

where the notations Lu = ∂u
∂ t −u, Nu = u2+et−x, sym-

bolize the linear and nonlinear terms, respectively. The
correction functional for (21) reads

un+1(x, t) =

un(x, t)+
∫ t

0
λ
{

∂
∂τ

(un)− un+N(ũn)

}
dτ,

n ≥ 0.

(22)

By taking variation with respect to the independent
variable un and noticing that δN(ũn)(0) = 0, we get

δun+1(x, t) =

δun(x, t)+ δ
∫ t

0
λ
{

∂
∂τ

(un)− un+N(ũn)

}
dτ

= δun(x, t)+λ δun |τ=t

+
∫ t

0

{
−λ ′δun −λ ′δun

}
dτ = 0.

(23)

This yields the stationary conditions

1+λ = 0, (24)

λ ′+λ |τ=t= 0. (25)

The Lagrange multiplier can be easily identified as λ =
−et−τ , and the following variational iteration formula
can be obtained:

un+1(x, t) = un(x, t)

−
∫ t

0
et−τ

{
∂

∂τ
(un)+ un

∂
∂x

(un)− un+ u2
n + et−x

}
dτ,

n ≥ 0. (26)

We start with an initial approximation u0(x, t) = 1−
e−x, by means of the above iteration formula (26), we
can obtain directly the other components as

u1(x, t) = 1− e−x+ et−x (−t) ,

u2(x, t) = 1− e−x+ et−x
(
− t +

t2

2

)
,

u3(x, t) = 1− e−x+ et−x
(
− t +

t2

2
− t3

3!

)
,

u4(x, t) = 1− e−x+ et−x
(
− t +

t2

2
− t3

3!
+

t4

4!

)
,

...

(27)

This gives the exact solution of (21) by

u(x, t) = 1− et−x, (28)

obtained upon using the Taylor expansion for e−t − 1.
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4. Conclusion

In this paper, the variational iteration method has
been successfully applied to find solutions of some gas
dynamics equations. The solution obtained by the vari-
ational iteration method is an infinite power series for

which, with appropriate initial condition, can be ex-
pressed the exact solution in a closed form. The results
presented in this contribution show that the variational
iteration method is a powerful mathematical tool for
solving gas dynamics equations, it is also a promising
method to solve some other nonlinear equations.
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