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In this paper, we propose a new H∞ synchronization method for fuzzy model based chaotic systems
with external disturbance and time-varying delay. Based on Lyapunov-Krasovskii theory, Takagi-
Sugeno (TS) fuzzy model, and linear matrix inequality (LMI) approach, the H∞ synchronization
controller is presented to not only guarantee stable synchronization but also reduce the effect of ex-
ternal disturbance to an H∞ norm constraint. The proposed controller can be obtained by solving a
convex optimization problem represented by the LMI. A simulation study is presented to demonstrate
the validity of the proposed approach.
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1. Introduction

During the last two decades, synchronization in
chaotic dynamic systems has received a great deal of
interest among scientists from various research fields
since Pecora and Carroll [1] introduced a method to
synchronize two identical chaotic systems with differ-
ent initial conditions. It has been widely explored in a
variety of fields including physical, chemical, and eco-
logical systems [2]. In the literature, various synchro-
nization schemes, such as variable structure control
[3], Ott-Grebogi-Yorke (OGY) method [4], parameters
adaptive control [5], observer-based control [6], active
control [7, 8], time-delay feedback approach [9], back-
stepping design technique [10], complete synchroniza-
tion [11], and so on, have been successfully applied to
the chaos synchronization.

Time-delay often appears in many physical systems
such as aircraft, chemical, and biological systems. Un-
like ordinary differential equations, time-delayed sys-
tems are infinite dimensional in nature and time-delay
is, in many cases, a source of instability. The stabil-
ity issue and the performance of time-delayed systems
are, therefore, both of theoretical and practical impor-
tance. Since Mackey and Glass [12] first found chaos
in a time-delay system, there has been increasing inter-
est in time-delay chaotic systems [13, 14]. The prob-
lem of synchronization in time-delayed chaotic sys-
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tems has also been investigated by several researchers
[15 – 21]. In [15], a simple adaptive controller was
constructed for synchronizing time-delayed first-order
chaotic systems with unknown parameters. Guaran-
teed cost controllers for time-delayed chaotic systems
were proposed to achieve an adequate level of perfor-
mance in [16, 17]. Also, a delayed feedback controller
for stabilizing unstable fixed points of time-delayed
chaotic systems was proposed in [18]. The authors in
[19] studied a neural network based synchronization
method for a class of unknown time-delayed chaotic
systems. Recently, impulsive synchronization methods
for time-delayed chaotic systems were constructed in
[20, 21]. Despite these advances in synchronization for
time-delayed chaotic systems, the above research re-
sults were restricted to time-delayed chaotic systems
without external disturbance. In this paper, we pro-
pose a new synchronization method for time-delayed
chaotic systems with external disturbance.

In recent years, fuzzy logic has received much
attention as a powerful tool for the nonlinear con-
trol. Among various kinds of fuzzy methods, Takagi-
Sugeno (TS) fuzzy model provides a successful
method to describe certain complex nonlinear systems
using some local linear subsystems [22, 23]. These lin-
ear subsystems are smoothly blended together through
fuzzy membership functions. The TS fuzzy model can
express a highly nonlinear functional relation with a
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small number of implications of rules [22]. The TS
fuzzy control theory has been applied to chaos control
and synchronization in some literatures [24 – 26]. Re-
cently, the TS fuzzy model based approach to synchro-
nization for time-delayed chaotic systems was pro-
posed in [27].

In real physical systems, one is faced with model
uncertainties and a lack of statistical information on
the signals. This had led in recent years to an inter-
est in mini-max control, with the belief that H∞ con-
trol is more robust and less sensitive to disturbance
variances and model uncertainties [28]. In order to
reduce the effect of the disturbance, Hou et al. [29]
firstly adopted the H∞ control concept [28] for the
chaotic synchronization problem of a class of chaotic
systems. In [30], a dynamic controller for the H∞ syn-
chronization was proposed. Recently, linear and non-
linear controllers for the H∞ anti-synchronization were
proposed in [31]. These works [29 – 31] were all re-
stricted to chaotic systems without time-delay. But in
real situation, time-delay is inevitable in the operation
of chaotic systems and may deteriorate the synchro-
nization performance. Thus, the synchronization prob-
lem for chaotic systems with time-delay was investi-
gated by several researchers [12 – 21]. To the best of
our knowledge, however, for the H∞ synchronization
of chaotic systems with external disturbance and time-
varying delay, there is no result in the literature so far,
which still remains open and challenging.

In this paper, a new H∞ synchronization method
based on the TS fuzzy model is proposed for chaotic
systems with external disturbance and time-varying
delay. By the proposed scheme, the closed-loop er-
ror system is asymptotically synchronized and the H∞
norm from the external disturbance to the synchro-
nization error is reduced to a disturbance attenuation
level. In contrast to existing synchronization methods
[15 – 21] for time-delayed chaotic systems, an advan-
tage of the proposed method is that a lot of conven-
tional linear controller design methods based on both
classical and modern control theory can be easily em-
ployed in designing the nonlinear TS fuzzy controllers
as well. With the outstanding approximation ability
of the TS fuzzy system, the external disturbance in
chaotic systems with time-varying delay can be at-
tenuated efficiently in the H∞ framework. Based on
the Lyapunov-Krasovskii method and the linear ma-
trix inequality (LMI) approach, an existence criterion
for the proposed controller is represented in terms of
the LMI. The LMI problem can be solved efficiently

by using recently developed convex optimization algo-
rithms [32].

This paper is organized as follows. In Section 2, we
formulate the problem. In Section 3, an LMI problem
for the TS fuzzy model based H∞ synchronization of
chaotic systems with time-varying delay is proposed.
In Section 4, an application example for time-delayed
Lorenz system is given, and finally, conclusions are
presented in Section 5.

2. Problem Formulation

In system analysis and design, it is important to
select an appropriate model representing a real sys-
tem. As an expression model of a real plant, we use
the fuzzy implications and the fuzzy reasoning method
suggested by Takagi and Sugeno [22]. Consider a class
of time-varying delayed chaotic systems described by

fuzzy rule i: IF ω1 is µi1, . . . ,ωs is µis THEN

ẋxx(t) = Aixxx(t)+ Āixxx(t − τ(t))+ η̂ηη i(t), (1)

yyy(t) =Cxxx(t), (2)

where xxx(t) ∈ R
n is the state vector, yyy(t) ∈ R

m is the
output vector, Ai ∈ R

n×n, Āi ∈ R
n×n, and C ∈ R

m×n

are known constant matrices, ηηη i(t)∈R
n denotes a bias

term which is generated by the fuzzy modelling pro-
cedure, ω j ( j = 1, . . . ,s) is the premise variable, µi j
(i = 1, . . . ,r, j = 1, . . . ,s) is the fuzzy set that is char-
acterized by membership function, r is the number of
the IF-THEN rules, and s is the number of the premise
variables. τ(t) is the time-varying delay satisfying

0 ≤ τ(t)≤ Φ (3)

and

τ̇(t)≤Ψ , (4)

where Φ and Ψ are scalar constants.
Using a standard fuzzy inference method (using

a singleton fuzzifier, product fuzzy inference, and
weighted average defuzzifier), the system (1) – (2) is
inferred as follows:

ẋxx(t) =
r

∑
i=1

hi(ω)
[
Aixxx(t)+ Āixxx(t − τ(t))+ηηη i(t)

]
, (5)

yyy(t) =Cxxx(t), (6)
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where ω = [ω1, . . . ,ωs], hi(ω) = wi(ω)/∑r
i=1 wj(ω),

wi : Rs → [0,1] (i = 1, . . . ,r) is the membership func-
tion of the system with respect to the fuzzy rule i.
hi can be regarded as the normalized weight of each
IF-THEN rule and it satisfies

hi(ω)≥ 0,
r

∑
i=1

hi(ω) = 1. (7)

The system (5) – (6) is considered as a drive system.
The synchronization problem of system (5) – (6)

is considered by using the drive-response configura-
tion. According to the drive-response concept, the con-
trolled fuzzy response system is described by the fol-
lowing rules:

fuzzy rule i: IF ω1 is µi1, . . . ,ωs is µis THEN

˙̂xxx(t)=Aix̂xx(t)+Āix̂xx(t−τ(t))+ηηη i(t)+uuu(t)+Giddd(t), (8)

ŷyy(t) =Cx̂xx(t), (9)

where x̂xx(t) ∈R
n is the state vector of the response sys-

tem, ŷyy(t) ∈R
m is the output vector of the response sys-

tem, uuu(t) ∈R
n is the control input, ddd(t) ∈R

k is the ex-
ternal disturbance, and Gi ∈ R

n×k is a known constant
matrix. The fuzzy response system can be inferred as

˙̂xxx(t) =
r

∑
i=1

hi(ω)
[
Aix̂xx(t)+ Āix̂xx(t − τ(t))

+ηηη i(t)+uuu(t)+Giddd(t)
]
,

(10)

ŷyy(t) =Cx̂xx(t). (11)

Define the synchronization error eee(t) = x̂xx(t)− xxx(t).
Then we obtain the synchronization error system

ėee(t) =
r

∑
i=1

hi(ω)
[
Aieee(t)+ Āieee(t − τ(t))

+uuu(t)+Giddd(t)
]
.

(12)

Definition 1. (Asymptotical synchronization) The
error system (12) is asymptotically synchronized if the
synchronization error eee(t) satisfies

lim
t→∞

eee(t) = 0. (13)

Definition 2. (H∞ synchronization) The error sys-
tem (12) is H∞ synchronized if the synchronization er-
ror eee(t) satisfies

∫ ∞

0
eeeT (t)Seee(t)dt < γ2

∫ ∞

0
dddT (t)ddd(t)dt, (14)

for a given level γ > 0 under zero initial condition,
where S is a positive symmetric matrix. The parame-
ter γ is called the H∞ norm bound or the disturbance
attenuation level.

Remark 1. The H∞ norm [28] is defined as

‖Ted‖∞ =

√∫ ∞
0 eeeT (t)Seee(t)dt√∫ ∞
0 dddT (t)ddd(t)dt

where Ted is a transfer function matrix from ddd(t) to
eee(t). For a given level γ > 0, ‖Ted‖∞ < γ can be re-
stated in the equivalent form (14). If we define

H(t) =
∫ t

0 eeeT (σ)Seee(σ)dσ∫ t
0 dddT (σ)ddd(σ)dσ

, (15)

the relation (14) can be represented by

H(∞)< γ2. (16)

In Section 4, through the plot of H(t) versus time,
the relation (16) is verified.

The purpose of this paper is to design the controller
uuu(t) guaranteeing the H∞ synchronization if there ex-
ists the external disturbance ddd(t). In addition, this con-
troller uuu(t) will be shown to guarantee the asymptoti-
cal synchronization when the external disturbance ddd(t)
disappears.

3. Main Results

In this section, the LMI problem for achieving the
H∞ synchronization of chaotic systems based on the
TS fuzzy model with time-varying delay is presented
in the following theorem.

Theorem 1. For given γ > 0 and S = ST > 0, if
there exist P = PT > 0, Q = QT > 0, R = RT > 0, and
Mj such that




AT
i P+PAi+MjC+CT MT

j +ΦQ+R PĀi 0 PGi I
ĀT

i P −(1−Ψ)R 0 0 0

0 0 − 1
Φ

Q 0 0

GT
i P 0 0 −γ2I 0
I 0 0 0 −S−1



< 0 (17)
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for i, j = 1,2, . . . ,r, the controller for the H∞ syn-
chronization with the disturbance attenuation level γ
is given by

u(t) =
r

∑
i=1

hi(ω)P−1Mj(ŷyy(t)−yyy(t)). (18)

Proof. The H∞ synchronization controller can be
constructed via the parallel distributed compensation.
The controller is described by the following rules:

fuzzy rule j: IF ω1 is µ j1, . . . ,ωs is µ js THEN

uuu(t) = Kj(ŷyy(t)−yyy(t)), (19)

where Kj ∈R
n×m is the gain matrix of the controller for

the fuzzy rule j. The fuzzy controller can be inferred
as

uuu(t) =
r

∑
j=1

h j(ω)Kj(ŷyy(t)−yyy(t))

= ∑r
j=1 h j(ω)KjCeee(t).

(20)

The closed-loop error system with the control input
(20) can be written as

ėee(t) =
r

∑
i=1

r

∑
j=1

hi(ω)h j(ω)[(Ai +KjC)eee(t)

+ Āieee(t − τ(t))+Giddd(t)].
(21)

Consider the following Lyapunov-Krasovskii func-
tional:

V (eee(t)) =V1(eee(t))+V2(eee(t))+V3(eee(t)), (22)

where

V1(eee(t)) = eeeT (t)Peee(t), (23)

V2(eee(t)) =
∫ 0

−Φ

∫ t

t+β
eeeT (α)Qeee(α)dαdβ , (24)

V3(eee(t)) =
∫ t

t−τ(t)
eeeT (σ)Reee(σ)dσ . (25)

The time derivative of V1(eee(t)) along the trajectory of
(21) is

V̇1(eee(t)) = ėee(t)T Peee(t)+eeeT (t)Pėee(t) =
r

∑
i=1

r

∑
j=1

hi(ω)h j(ω)
{

eeeT (t)
[
AT

i P+PAi

+PKjC+CT KT
j P

]
eee(t)+eeeT (t)PĀieee(t − τ(t))

+eeeT(t−τ(t))ĀT
i Peee(t)+eeeT(t)PGiddd(t)+dddT(t)GT

i Peee(t)
}
.

If we use the inequality XTY + Y T X ≤ XT ΛX +
Y T Λ−1Y , which is valid for any matrices X ∈ R

n×m,
Y ∈ R

n×m, Λ = Λ T > 0, Λ ∈R
n×n, we have

eee(t)T PGiddd(t)+dddT (t)GT
i Peee(t)

≤ γ2dddT (t)ddd(t)+
1
γ2 eee(t)T PGiGT

i Peee(t).
(26)

Using (26), we obtain

V̇1(eee(t))≤
r

∑
i=1

r

∑
j=1

hi(ω)h j(ω)

{
eeeT (t)

[
AT

i P+PAi

+PKjC+CT KT
j P+

1
γ2 PGiGT

i P
]
eee(t)

+eeeT (t)PĀieee(t−τ(t))+eeeT (t−τ(t))ĀT
i Peee(t)

+ γ2dddT (t)ddd(t)
}
.

The time derivative of V2(eee(t)) is

V̇2(eee(t)) =ΦeeeT (t)Qeee(t)−
∫ t

t−Φ
eeeT (σ)Qeee(σ)dσ . (27)

Using the inequality [33]

[∫ t

t−Φ
eee(σ)dσ

]T

Q
[∫ t

t−Φ
eee(σ)dσ

]

≤ Φ
∫ t

t−Φ
eee(σ)T Qeee(σ)dσ ,

(28)

we have

V̇2(eee(t))≤ ΦeeeT (t)Qeee(t) (29)

− 1
Φ

[∫ t

t−Φ
eee(σ)dσ

]T

Q
[∫ t

t−Φ
eee(σ)dσ

]
.

Since the time derivative of V3(eee(t)) is written as

V̇3(eee(t)) =

eee(t)T Reee(t)− (1− τ̇(t))eeeT (t − τ(t))Reee(t − τ(t))

≤ eee(t)T Reee(t)− (1−Ψ)eeeT (t − τ(t))Reee(t − τ(t)),

(30)

we have the derivative of V (eee(t)) as

V̇ (eee(t)) = V̇1(eee(t))+ V̇2(eee(t))+ V̇3(eee(t))
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≤
r

∑
i=1

r

∑
j=1

hi(ω)h j(ω)




eee(t)

eee(t − τ(t))∫ t

t−Φ
eee(σ)dσ




T

·



(1,1) PĀi 0

ĀT
i P −(1−Ψ)R 0

0 0 − 1
Φ

Q







eee(t)

eee(t − τ(t))∫ t

t−Φ
eee(σ)dσ




−eeeT (t)Seee(t)+ γ2dddT (t)ddd(t), (31)
where

(1,1) = AT
i P+PAi+PKjC+CT KT

j P

+
1
γ2 PGiGT

i P+ΦQ+R+ S.
(32)

If the following matrix inequality is satisfied:


(1,1) PĀi 0
ĀT

i P −(1−Ψ)R 0
0 0 − 1

Φ Q


< 0 (33)

for i, j = 1,2, . . . ,r, we have

V̇ (eee(t))<
r

∑
i=1

r

∑
j=1

hi(ω)h j(ω)
{−eeeT (t)Seee(t)

+ γ2dddT (t)ddd(t)
}

=−eeeT (t)Seee(t)+ γ2dddT (t)ddd(t).

(34)

Integrating both sides of (34) from 0 to ∞ gives

V (eee(∞))−V(eee(0))

<−
∫ ∞

0
eeeT (t)Seee(t)dt + γ2

∫ ∞

0
dddT (t)ddd(t)dt.

Since V (eee(∞)) ≥ 0 and V (eee(0)) = 0, we have the re-
lation (14). From Schur’s complement, the matrix in-
equality (33) is equivalent to




AT
i P+PAi+PKjC+CT KT

j P+ΦQ+R PĀi 0 PGi I

ĀT
i P −(1−Ψ)R 0 0 0

0 0 − 1
Φ

Q 0 0

GT
i P 0 0 −γ2I 0

I 0 0 0 −S−1



< 0. (35)

If we let Mj = PKj, (35) is equivalently changed into
the LMI (17). Then the gain matrix of the control in-
put uuu(t) is given by Kj = P−1Mj. This completes the
proof. �

Corollary 1. Without the external disturbance, if we
use the control input uuu(t) proposed in Theorem 1, the
asymptotical synchronization is obtained.

Proof. When ddd(t) = 0, we obtain

V̇ (eee(t))<−eeeT (t)Seee(t)≤ 0 (36)

from (34). This guarantees

lim
t→∞

eee(t) = 0 (37)

from the Lyapunov-Krasovskii theory. This completes
the proof. �

Remark 2. Various efficient convex optimization al-
gorithms can be used to check whether the LMI (17) is

feasible. In this paper, in order to solve the LMI, we
utilize MATLAB LMI Control Toolbox [34], which im-
plements state-of-the-art interior-point algorithms.

4. Numerical Example

Consider the following Lorenz system [35] with
time-varying delay:

ẋ1(t) =−10x1(t)+ 10x2(t − τ(t)),

ẋ2(t) = 28x1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)− 8
3

x3(t − τ(t)),
(38)

where τ(t) = 0.3(sin(t) + 1). By defining two fuzzy
sets, we can obtain the following fuzzy drive system
that exactly represents the nonlinear equation of the
Lorenz system with time-varying delay under the as-
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Fig. 1. Plot of H(t) versus time.

Fig. 2. State trajectories when
ddd(t) is given by (44).
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Fig. 3. Synchronization errors
when ddd(t) is given by (44).

sumption that x1(t) ∈ [−d,d] with d = 20:

ẋxx(t) =
2

∑
i=1

hi(ω)[Aix(t)+ Āix(t − τ(t))+ηi], (39)

where

A1 =


−10 0 0

28 −1 −d
0 d 0


 , A2 =


−10 0 0

28 −1 d
0 −d 0


 ,

Ā1 = Ā2 =


0 10 0

0 0 0
0 0 − 8

3


 , η1 = η2 =


0

0
0


 .

(40)

The membership functions are

h1(ω) =
1
2

(
1+

x1(t)
d

)
,

h2(ω) =
1
2

(
1− x1(t)

d

)
.

(41)

For the numerical simulation, we use the following pa-
rameters:

Φ = 0.6, Ψ = 0.3, C =

[
1 1 0
0 1 1

]
,

G1 = G2 =


1

1
1


 , S =


0.1 0 0

0 0.1 0
0 0 0.1


 .

(42)

For the design objective (14), let the H∞ performance
be specified by γ = 0.2. Applying Theorem 1 to the
fuzzy system (39) yields

P =




4.6667 −2.6681−1.5624

−2.6681 5.4757 −1.9927

−1.5624 −1.9927 4.3585


 ,

M1 =



−31.5793 −62.7630

−151.2358 −21.3136

117.5464 −171.7664


 ,



158 C. K. Ahn · Fuzzy H∞ Synchronization for Chaotic Systems

Fig. 4. State trajectories when
ddd(t) is given by (45).

M2 =



−31.5793 −24.8528

−189.1461 16.5966

79.6362 −171.7664


 .

Figure 1 shows the plot of H(t) versus time when
ddd(t) = sin(25t). Figure 1 verifies H(∞) < γ2 = 0.04.
This means that the H∞ norm from the external distur-
bance ddd(t) to the synchronization error eee(t) is reduced
within the H∞ norm bound γ . Figure 2 shows state tra-
jectories for drive and response systems when the ini-
tial conditions are given by


x1(0)

x2(0)
x3(0)


=


 15.8
−17.48
15.64


 ,


x̂1(0)

x̂2(0)
x̂3(0)


=


13.8
−14
13


 , (43)

and the external disturbance ddd(t) is given by

ddd(t) =
{

w(t), 0 ≤ t ≤ 5,
0, otherwise, (44)

where w(t) means a Gaussian noise with mean 0 and
variance 1. Figure 3 shows that the proposed fuzzy H∞
synchronization method reduces the effect of the exter-
nal disturbance ddd(t) on the synchronization error eee(t).
In addition, it is shown that the synchronization error
eee(t) goes to zero after the external disturbance ddd(t) dis-
appears.

Next, in order to observe the disturbance attenuation
performance for the external disturbance with different
frequencies, we change the external disturbance ddd(t) to

ddd(t) =
[

sin(t)
cos(100t)

]
(45)

with γ , Φ , Ψ , C, and S remained invariant. In this case,
we use the following parameters:

G1 = G2 =


01

10
01


 . (46)
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Fig. 5. Synchronization errors
when ddd(t) is given by (45).

Solving for the LMI (17) gives

P =


 0.5306 0.2730 −0.4249

0.2730 0.6239 −0.1357
−0.4249−0.1357 0.7314


 ,

M1 =


−110.4396 −0.7814
−14.8310 −97.7285
104.7749 −105.4104


 ,

M2 =


−110.4396 51.8094
−67.4217 −45.1377
52.1842 −105.4104


 .

State trajectories and synchronization error are illus-
trated in Figure 4 and Figure 5, respectively, when the
initial conditions are given by (43). From the simula-
tion results, it can be seen that the resulting disturbance
attenuation performance is relatively poor for the dis-
turbance with lower frequency.

5. Conclusion

In this paper, a new H∞ design scheme which con-
sists of the fuzzy drive and response systems is pro-
posed for synchronization of chaotic systems with
external disturbance and time-varying delay. The TS
fuzzy model is used to describe the chaotic drive
system with time-varying delay. Based on Lyapunov-
Krasovskii theory and LMI approach, the proposed
method guarantees the asymptotical synchronization
and reduces the H∞ norm from the external disturbance
to the synchronization error within a disturbance atten-
uation level. The synchronization for the Lorenz sys-
tem with time-varying delay is given to illustrate the
effectiveness of the proposed scheme. Finally, the pro-
posed scheme has the advantage that it can be effec-
tively used to H∞ control and synchronization prob-
lems of other nonlinear systems described by a TS
fuzzy model with time-varying delay.
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