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The coupled generalized Schrödinger-Boussinesq (SB) system, which can describe a high-
frequency mode coupled to a low-frequency wave in dispersive media is investigated. First, we study
the modulational instability (MI) of the SB system. As a result, the general dispersion relation be-
tween the frequency and the wave number of the modulating perturbations is derived, and thus a
number of possible MI regions are identified. Then two classes of exact travelling wave solutions are
obtained expressed in the general forms. Several explicit examples are presented.
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1. Introduction

The coupled Schrödinger-Boussinesq (SB) system
can govern the coupled wave propagation in nonlin-
ear dispersive media wherein an amplitude modulated
high-frequency wave is coupled to a suitable low-
frequency eignemode of the medium. For instance, the
SB equations were derived to govern the stationary
propagation of coupled upper-hybrid and magnetoa-
coustic waves in a magnetized plasma [1], where the
generic Hamiltonian of the SB was presented. It was
shown that the nonlinear propagation of coupled Lang-
muir and ion-acoustic waves in a two-electron tem-
perature plasma could also be governed by the gener-
alized SB system [2], where a new class of coupled
Langmuir-ion-acoustic solitons propagating with su-
personic speeds but accompanied by density rarefac-
tions was found. Later, nonlinear propagation of in-
tense electromagnetic waves in a hot electron-positron
relativistic plasma containing a small fraction of cold
electron-ion component was investigated by the gener-
alized SB system [3].

In the present paper, we consider the following cou-
pled generalized Schrödinger-Boussinesq (SB) system

i(Et +λ1Ex)+λ2Exx +λ4E = λ3NE, (1)

Ntt +µ1Nxx+µ2Nxxxx +µ3(N2)xx = µ4(|E|2)xx, (2)
where µi and λi (i = 1,2,3,4) are real constants. It
is noted that a more general system could be intro-
duced by adding a cubic term in (2) arising from the
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self-interaction of the waves [3, 4] or in (1) by consid-
ering a higher-order nonlinearity [2, 3]. On the other
hand, this system can be reduced to the nonlinear
Schrödinger (NLS) equation and the Zakharov equa-
tion. Many solutions for the generalized SB system
for an appropriate choice of parameters have been re-
ported [1 – 3, 5 – 8]. For instance, the homoclinic so-
lution of the SB system with the parameters λ1 = 0,
λ2 = λ3 = µ3 = 1, µ2 =−1/3, µ4 = 1/3 has been ob-
tained via the bilinear method [5]. By means of the
same method, one-soliton solution exists for the SB
equations if λ1 = λ4 = 0, λ2 = −1, λ3 = 1, µ3 = 3µ2,
and µ4 = µ1. If one assumes µ3 =−1 further, then the
system allows an N-soliton solution [6]. The Painlevé
analysis of the SB system has been carried out for
λ4 = 0 [8], where two branches of leading singulari-
ties were identified, and it was revealed that the sys-
tem is completely integrable in one of the branches,
for which the associated Bäcklund transformation was
explicitly given. The existence and the orbital stability
of solitary waves of the SB system for λ1 = λ4 = 0,
λ2 = µ2 = 1, λ3 = µ1 = µ4 =−1, µ3 = 3 has also been
investigated [9].

In this paper, we are focused on the generalized SB
system of (1) and (2) to investigate their modulational
instabilities and possible new exact solutions. The pa-
per is organized as follows. In Section 2, we investi-
gate the linear modulational instability of the SB sys-
tem. A general nonlinear dispersion relation associated
with the frequency and wave number of the modulat-
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ing perturbations is derived. It is found that instability
might arise in many different regions. In Section 3, by
deforming to the φ4 model, we obtain two general so-
lutions constructed on the solutions of the φ4 model.
In detail, we present three types of exact periodic so-
lutions expressed by Jacobian elliptic functions. Rep-
resentative profiles of the waves are graphically dis-
played. In Section 4, we give a brief conclusion.

2. Modulational Instability Analysis

It is known that the modulational instability (MI)
occurs in various fields such as plasmas, fluids, and
nonlinear optics. It is the outcome of the interplay
between the dispersion or diffraction effects with the
nonlinearities. The MI of nonlinear waves has been
studied extensively. For instance, some recent inves-
tigations are the MI of broadband optical pulses in a
four-state atomic system governed by the generalized
NLS equation [10], the interaction between nucleon
and neutral scalar mesons governed by the coupled
Schrödinger-Klein-Gordon equation [11, 12], the inter-
action of nonlinear dispersive waves on three channels,
namely, laser beams on some dispersive material, mod-
eled by the three coupled vector nonlinear Schrödinger
equations [13].

Generally, one can analyze the modulational insta-
bility of a system through the following steps: (i) find
an equilibrium state of the system; (ii) perturb the equi-
librium state with a smaller perturbation wave num-
ber and frequency; (iii) derive a set of equations for
the small perturbation functions, which will lead to the
nonlinear dispersion relation; (iv) from the dispersion
relation one can obtain a complex frequency revealing
the growth of the amplitude modulated wave packet.
From the above analysis, one can finally conclude if a
wave under small perturbations moving along the sys-
tem is stable or not.

An equilibrium state, namely, the simple and exact
monochromatic wave solution of the SB equations, can
be easily found by making the assumption

E = E0eiωt , N = N0, (3)

where constants ω , N0 are real, and E0 is complex.
Substituting (3) into (1) – (2), we get

ω = λ4 −λ3N0. (4)

Next, we cause a small perturbation of the wave solu-
tion (3) in the form of

E = (E0 + εE1)ei(λ4−λ3N0)t , N = N0 + εN1, (5)

where E1 is a complex quantity and N1 is real. Then
substituting (5) into (1) – (2), linearizing the result with
respect to E1 and N1, writing E1 = u+ iv, E0 = a+
ib, (u,v,a,b are real), and then separating the real and
imaginary parts of the linearized equations (the first-
order terms of ε), we finally obtain

ut +λ1ux +λ2vxx −λ3bN1 = 0, (6)

vt +λ1vx −λ2uxx +λ3aN1 = 0, (7)

and

N1tt + µ1N1xx + µ2N1xxxx + 2µ3N0N1xx

−2aµ4uxx − 2bµ4vxx = 0.
(8)

Now inserting u= u0ei(Kx−Ωt)+c.c., v= v0ei(Kx−Ωt)+
c.c., and N1 = N10ei(Kx−Ωt) + c.c., where K and Ω are
the perturbation wave number and the frequency, re-
spectively, and c.c. stands for the complex conjugate,
into (6) – (8) yields a dispersion law for the perturba-
tion wave

Ω 4 − 2λ1KΩ 3

−K2[(µ2 +λ 2
2 )K

2 − 2µ3N0 − µ1 −λ 2
1 ]Ω 2

+ 2λ1(µ2K2 − µ1 − 2µ3N0)K3Ω + µ2λ 2
2 K8

− (µ1λ 2
2 + 2µ3λ 2

2 N0 + µ2λ 2
1 )K

6

− (2µ4λ2λ3|E0|2 − µ1λ 2
1 − 2µ3λ 2

1 N0)K4 = 0.

(9)

It is noted that the coupled SB equations are modu-
lationally stable for any wave number K if and only if
four roots Ω of (9) are all positive real numbers. How-
ever, it is not so easy to find the roots of (9), since
we have to employ the existing complicated analyti-
cal formulae and the associated criteria for the roots
of a fourth-order polynomial. Therefore, we consider a
special case, namely, λ1 = 0, which simplifies (9) to

Ω 4 −PΩ 2 +Q = 0, (10)

with P and Q given by

P = K2 [(µ2 +λ 2
2 )K

2 − 2µ3N0 − µ1
]

(11)

and

Q = λ2
[
µ2λ2K4 − (µ1 + 2µ3N0)λ2K2

−2µ4λ3|E0|2
]

K4,
(12)

respectively, and thus we get the solution

Ω 2
± =

1
2

[
P±

√
P2 − 4Q

]
. (13)
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In order to have positive real Ω 2±, it is easy to check
that the following three conditions should be simulta-
neously satisfied:

P > 0, Q > 0, ∆ > 0, (14)

where ∆ = P2 − 4Q is the discriminant quantity given
by

∆= [(µ2−λ 2
2 )K

2−µ1−2µ3N0]
2+8λ2λ3µ4|E0|2. (15)

The first stability condition, P > 0, is satisfied for
any K �= 0 when µ2 + λ 2

2 > 0 and 2µ3N0 + µ1 < 0.
However, if µ2 +λ 2

2 < 0 and 2µ3N0 + µ1 > 0, then P
is always negative for any K �= 0. Otherwise, P = 0 has
two non-zero roots

KP± =±
√

2µ3N0 + µ1

µ2 +λ 2
2

, (16)

and thus P is negative when K ∈ (KP−,KP+) for µ2 +
λ 2

2 > 0, or K ∈ (−∞,KP−)∪ (KP+,+∞) for µ2 +λ 2
2 <

0. In the case of P < 0, we either have Ω 2− < 0 < Ω 2
+

or Ω 2− < Ω 2
+ < 0 depending on the sign of Q.

Let us consider the second stability condition, Q >
0, in detail. We see that Q = 0 has two non-zero roots
for K2, namely,

K2
Q± =

1
2µ2λ2

{
(µ1 + 2µ3N0)λ2 ±

[
(µ1 + 2µ3N0)

2λ 2
2

+ 8µ2µ4λ2λ3|E0|2
] 1

2
}
≡ µ1 + 2µ3N0

2µ2
±

√
∆Q

2µ2λ2
.

(17)

Therefore, Q > 0 for any K requires either

(i) that ∆Q < 0. This is only possible for the pertur-
bation amplitudes E0 and N0 satisfying a specific re-
lation. Thus, this case cannot be generally ensured for
arbitrary perturbation amplitudes, or

(ii) that ∆Q > 0 and K2
Q± are both negative real

values. It is ensured if µ2(µ1 + 2µ3N0) < 0 and
µ2µ4λ2λ3 < 0; Otherwise,

if µ2 > 0, µ1 + 2µ3N0 > 0, µ4λ3 < 0, and λ2 > 0,
then we have K2

Q+ > K2
Q− > 0, and thus instability will

arise when K2 ∈ (K2
Q−,K

2
Q+);

if µ2 < 0, µ1 + 2µ3N0 < 0, µ4λ3 < 0, and λ2 < 0,
then we have K2

Q+ > K2
Q− > 0, and thus instability will

arise when K2 ∈ (0,K2
Q−)∪ (K2

Q+,+∞);
if µ2 > 0, µ1 + 2µ3N0 > 0, µ4λ3 > 0, and λ2 < 0,

then we have K2
Q− > K2

Q+ > 0, and thus instability will
arise when K2 ∈ (K2

Q+,K
2
Q−);

if µ2 < 0, µ1 + 2µ3N0 < 0, µ4λ3 > 0, and λ2 > 0,
then we have K2

Q− > K2
Q+ > 0, and thus instability will

arise when K2 ∈ (0,K2
Q+)∪ (K2

Q−,+∞);
if µ2 > 0, µ1 + 2µ3N0 < 0, µ4λ3 > 0, and λ2 > 0,

then K2
Q− < 0 < K2

Q+, and thus instability will arise
when K2 ∈ (0,K2

Q+);
if µ2 < 0, µ1 + 2µ3N0 > 0, µ4λ3 > 0, and λ2 < 0,

then K2
Q− < 0 < K2

Q+, and thus instability will arise
when K2 ∈ (K2

Q+,∞);
if µ2 > 0, µ1 + 2µ3N0 < 0, µ4λ3 < 0, and λ2 < 0,

then K2
Q+ < 0 < K2

Q−, and thus instability will arise
when K2 ∈ (0,K2

Q−); and
if µ2 < 0, µ1 + 2µ3N0 > 0, µ4λ3 < 0, and λ2 > 0,

then K2
Q+ < 0 < K2

Q−, and thus instability will arise
when K2 ∈ (K2

Q−,∞).

Finally, we have to check the last stability condi-
tion, ∆> 0. Evidently, this condition is always satisfied
when Q < 0. However, ∆ > 0 is ensured for any K if
µ4λ2λ3 > 0, or in the cases that two roots for ∆ = 0,
which are in the form of

K2
∆± =

µ1 + 2µ3N0 ±
√−8λ2λ3µ4|E0|2

µ2 −λ 2
2

, (18)

have both negative values. Otherwise, instability will
arise in the regions identified from (18) when one or
both K2

∆± are positive depending on the parameters.
All the situations can be generally summarized as

follows.

For ∆ > 0:
(i) If P > 0 and Q > 0, then Ω 2± are both positive,

therefore, we have four different real roots of (10);
(ii) If Q < 0, then Ω 2− < 0<Ω 2

+, therefore, we have
two different real roots and two nonreal complex (pure
imaginary) conjugate roots of (10);

(iii) If P < 0 and Q > 0, then Ω 2− < Ω 2
+ < 0, there-

fore, we have four nonreal (two pure imaginary conju-
gate pairs of) roots of (10).

For ∆ < 0, we have four nonreal (two pure imagi-
nary conjugate pairs of) roots of (10).

For ∆ = 0:
(i) If P > 0, we have two different real roots and

one pair of pure imaginary conjugate roots of (10);
(ii) If P < 0, we have double pure imaginary roots

of (10).

It is discovered that the SB system (1) – (2) might be
modulationally unstable in several different unstable
wave number regimes, either partially superimposed
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Fig. 1. Instability growth rate σ =
√
−Ω 2− plotted versus the

perturbation wave number K for the parameter values µ4 = 1,
|E0|= 1/4, and µ2 = λ2 = µ1+2µ3N0 = 1, λ3 =−1 (dashed
line), µ2 = −2, λ2 = λ3 = µ1 + 2µ3N0 = −1 (dotted line),
µ2 = −1, λ2 = −2, λ3 = µ1 + 2µ3N0 = 1 (dark line), and
µ2 = −2, λ2 = 1, λ3 = µ1 + 2µ3N0 = −1 (solid line), re-
spectively.

or distinct from each other. The growth rate σ of in-
stability is given by the imaginary part Im(Ω). In the

case of P < 0,Q < 0, we have σ =
√
−Ω 2− as a purely

growing mode, and the corresponding wave number
ranges can be determined by several situations, such as
(−KP−,KP+)∩ (0,KQ+), or (−∞,KP−)∩ (KQ−,KQ+),
etc., depending on the parameter values. For given val-
ues of parameters and wave numbers, one can easily
specify the growth rate. Figure 1 displays the growth
rate in four particular sets of parameters.

3. Stationary Waves

Many approaches have been developed for finding
exact solutions of nonlinear partial differential equa-
tions, such as the Darboux transformation, inverse
scattering transformation, nonlinear variable separa-
tion approaches, and so on. Among them, the function
expansion methods in various forms and generaliza-
tions are direct and powerful while relatively simple
to command. Here, we look for solutions of the SB
system through deforming them to the non-integrable
φ4 model, which possesses abundant known solutions.
Moreover, some special Bäcklund transformations and
nonlinear superpositions have been obtained for the
N + 1-dimensional φ4 model [14], and thus more new
solutions might be produced accordingly.

To look for stationary solitary waves of (1) and (2),
we can write the complex E as E = uexp(ikx− iωt),
where u(x, t) is a real function, k and ω are real con-

stants. Thus, (1) – (2) can be cast into the following
system of three coupled equations:

λ2uxx +(λ4 −λ3N +ω − kλ1 −λ2k2)u = 0, (19)

ut +(λ1 + 2kλ2)ux = 0, (20)

and

Ntt + 2µ3N2
x +(µ1 + 2µ3N)Nxx − 2µ4u2

x

+ µ2Nxxxx − 2µ4uuxx = 0.
(21)

The general solution of (20) is in the form of

u = u(a(x− (2kλ2+λ1)t))≡ u(ξ ), (22)

thus, (19) becomes

a2λ2uξ ξ +(λ4−λ3N+ω −kλ1−λ2k2)u = 0, (23)

and (21) can be rebuilt by N(x, t)≡ N(ξ ) as

((λ1 + 2kλ2)
2 + µ1 + 2µ3N)Nξ ξ + 2µ3N2

ξ

+ a2µ2Nξ ξ ξ ξ − µ4(u2)ξ ξ = 0.
(24)

It is easy to find that the following auto-Bäcklund
transformation,

u =U0+U1φ +U2φ2, N =V0+V1φ +V2φ2, (25)

with undetermined constants Ui,Vi (i = 0,1,2) can be
used to deform the solutions of (23) and (24) to those
of the φ4 model [14 – 16]

φ2
ξ = Pφ4 +Qφ2 +R (26)

with constants P, Q, and R.
Substituting (25) into (23) and (24), making use

of (26), and then vanishing the coefficients of different
powers of φ , a system of algebraic equations regard-
ing the unknown constants is obtained, which has two
classes of solutions.

Class I:

U0 =U2 =V1 = 0, V2 =−6µ2a2P
µ3

, λ3 =−µ3λ2

3µ2
, (27)

V0 =−3µ2(a2λ2Q+λ4 +ω − kλ1 −λ2k2)

µ3λ2
, (28)

U1 =±{
6µ2a2P[6(λ4 +ω)µ2

−2k(2λ 2
2 + 3µ2)(λ2k+λ1)

+λ2(2Qµ2a2 − µ1 −λ 2
1 )]/µ3µ4λ2

}1/2
.

(29)
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Fig. 2. Profiles of periodic wave solutions of (a) W ≡ |E|2 and (c) N given by (34) and (35), respectively, with the parame-
ters (39). The waves in the long wave limit under m → 1 are shown in (b) and (d), correspondingly.

Class II:

U1 =V1 = 0, V2 =
6λ2a2P

λ3
,

U2 =±6a2P
λ 3

√
λ2(µ2λ3 +λ2µ3)

µ4
,

(30)

U0 =±2a2(Q+ δ
√

Q2 − 3PR)
λ3

·
√

λ2(µ2λ3 + µ3λ2)

µ4
,

(31)

V0 =− 1
λ3

(
2λ2a2δ

√
Q2 − 3PR+λ4

− kλ1 −λ2k2 +ω + 2a2λ2Q
)
,

(32)

µ1 =
1
λ3

[
2k(µ3 − 2λ2λ3)(kλ2 +λ1)−λ3λ 2

1

− 2µ3λ4 − 2µ3ω
]
,

(33)

with δ 2 = 1.

Therefore, many solitary waves can be explored via
the abundant waves of the model (26). In the following,
we list three examples.

Example 1. It is known that (26) with P = m2,
Q =−1−m2, and R= 1 has the solution φ = sn(ξ ,m).
In this case, the solutions of the SB system can be ob-
tained as

E =±
{

6µ2a2m2[6(λ4 +ω)µ2

− 2k(2λ 2
2 + 3µ2)(λ2k+λ1)

−λ2(2(1+m2)µ2a2 + µ1 +λ 2
1 )]/µ3µ4λ2

} 1
2

· sn(ξ ,m)eikx−iωt ,

(34)

N =
3µ2(a2λ2(1+m2)−λ4 −ω + kλ1 +λ2k2)

µ3λ2

− 6µ2a2m2

µ3
sn2(ξ ,m),

(35)

with ξ = a(x − (2kλ2 + λ1)t) and the condition
3µ2λ3 + µ3λ2 = 0, which are also valid to the follow-
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Fig. 3. Profiles of periodic wave solutions of (a) W ≡ |E|2 and (b) N given by (36) and (37) with the parameters (40),
respectively. The waves in the long wave limit under m → 1 are shown in (b) and (d), correspondingly.

ing cases and thus will not be declared again below,
and

E =±2a2

λ3

√
λ2(µ2λ3 +λ2µ3)

µ4

· [cδ −m2 − 1+ 3m2sn2(ξ ,m)
]

eikx−iωt ,

(36)

N =− 1
λ3

[
2a2λ2(cδ − 4m2 − 1)+λ4− kλ1

−λ2k2 +ω
]
sn2(ξ ,m),

(37)

with δ 2 = 1, c =
√

1−m2+m4 and the condition

2k(2λ2λ3 − µ3)(kλ2 +λ1)+λ3(µ1 +λ 2
1 )

+ 2µ3(λ4 +ω) = 0,
(38)

which are also valid to the following cases and thus
will not be pointed out again below.

Representative wave structures of W ≡ |E|2 and N
determined by (34) and (35), respectively, are dis-

played in Figure 2 with the parameters

a = k = λ2 = λ4 = ω = µ1 = µ2 = µ3 = µ4 = 1,

λ1 =−1, m = 0.9.
(39)

It is seen from Figures 2a and 2c that the high and low
frequency modes have similar periodic wave profiles,
while in the limit of modulus m approaching unity, they
show opposite behaviours, namely, becoming dark and
bright solitary waves, respectively, as shown in Fig-
ures 2b and 2d. Figure 3 shows the wave profiles of
W ≡ |E|2 and N determined by (36) and (37), respec-
tively, with the parameters

a = k = δ1 = λ2 = λ3 = λ4 = µ1 = µ2 = µ3 = µ4 = 1,

λ1 =−1, m = 0.9. (40)

It is observed from this figure, different from the pre-
vious case, that the two modes now possess different
periodic waves as shown in Figures 3a and 3c. In addi-
tion, when m goes to unity, N turns into a simple dark
solitary wave, while W is a ‘W’ shaped wave, exhibited
in Figures 3b and 3d.
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Fig. 4. Profiles of periodic wave solutions of (a) W ≡ |E|2 and (b) N given by (45) and (46) with the parameters (39),
respectively; (c) W ≡ |E|2 and (d) N given by (47) and (48) with the parameters (40), respectively.

Example 2. If we suppose P = R = m2/4 and Q =
−1+m2/2, then the φ4 equation (26) possesses the
solution φ = m sn(ξ ,m)/(1+ dn(ξ ,m)). In this case,
the exact solutions of (1) – (2) are in the form of

E =±
{

3µ2a2m2[6µ2(λ4 +ω)

+ µ2λ2a2(m2 − 2)−λ2(µ1 +λ 2
1 )

−2k(2λ 2
2 + 3µ2)(λ2k+λ1)]/2µ3µ4λ2

} 1
2

· m sn(ξ ,m)

1+ dn(ξ ,m)
eikx−iωt ,

(41)

N =
3µ2a2λ2(2−m2)− 6µ2(λ4 +ω − kλ1 −λ2k2)

2µ3λ2

− 3µ2a2m3sn2(ξ ,m)

2µ3(1+ dn(ξ ,m))2 , (42)

and

E =± a2

λ3

√
λ2(µ2λ3 +λ2µ3)

µ4

·
[

δ
2

√
2(m2 + 4)(2−m2)+m2

− 2+
3m4sn2(ξ ,m)

2(1+ dn(ξ ,m))2

]
eikx−iωt , (43)

N =− 1
2λ3

[
λ2a2

(
δ
√

2(m2 + 4)(2−m2)−m2 − 4
)

+ 2(λ4− kλ1 −λ2k2 +ω)
] m2sn2(ξ ,m)

(1+ dn(ξ ,m))2 . (44)

Example 3. Equation (26) has the solution φ =
dn(ξ ,m)/(1 + m sn(ξ ,m)) when P = R = (m2 −
1)/4,Q = (m2 + 1)/2. Therefore, the corresponding
solutions of the SB system are determined to be

E =±
{

3µ2a2(m2 − 1)[6(λ4+ω)µ2

−λ2(µ1 +λ 2
1 − µ2a2(m2 + 1))

− 2k(2λ 2
2 + 3µ2)(λ2k+λ1)]/2µ3µ4λ2

} 1
2

· dn(ξ ,m)

1+m sn(ξ ,m)
eikx−iωt ,

(45)
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N =−3µ2a2λ2(m2 + 1)+ 6µ2(λ4 +ω − kλ1 −λ2k2)

2µ3λ2

− 3µ2a2(m2 − 1)dn2(ξ ,m)

2µ3(1+m sn(ξ ,m))2 , (46)

and

E =± a2

2λ3

√
λ2(µ2λ3 +λ2µ3)

µ4

·
[

δ
√

1+ 14m2+m4 + 2(m2 + 1)

+
3(m2 − 1)dn2(ξ ,m)

(1+m sn(ξ ,m))2

]
eikx−iωt ,

(47)

N =− 1
2λ3

[
λ2a2(δ

√
1+ 14m2+m4 −m2 + 5)

+ 2(λ4− kλ1 −λ2k2 +ω)
] dn2(ξ ,m)

(1+m sn(ξ ,m))2 .

(48)

Representative profiles of the periodic wave solu-
tions given by (45) and (46) with parameters (39), and
by (47) and (48) with parameters (40), respectively, are
displayed in Figure 4. However, in this case, the waves
will disappear (i. e., having constant W and N) in the
long wave limit m → 1.

It is remarkable that in some cases, some solu-
tions expressed by the Jacobian elliptic functions have
singularities and thus they might blow up at some
points. Nonetheless, in the long wave limit the mod-
ulus approaching unity, these solutions become regu-
lar. For instance, when P = R = 1/4 and Q = (1 −
2m2)/2, (26) has a singular solution in the form of

φ = (1 − cn(ξ ,m))/sn(ξ ,m), which can lead to an-
other type of solutions for the SB system. It is obvi-
ous that in the limit m → 1, this solution turns into
φ = (1− sech(ξ ))/ tanh(ξ ), and thus one can obtain
a regular wave solution of the SB equation.

4. Summary

The modulational instability of the generalized
Schrödinger-Boussinesq system is investigated in de-
tail. The nonlinear dispersion relation associated with
the perturbation wave number is discovered. Due to
the intrusion of many parameters in the model, many
possibilities exist for instabilities might arise in differ-
ent regions of the perturbed wave number, as observed
from Figure 1 in which four cases are displayed.

A Bäcklund transformation in a polynomial form
between the SB system and the φ4 model can be
straightforwardly derived via the Painlevé truncation
method. In such a way, abundant solutions of the
φ4 model can act as the building blocks of the solutions
of the SB system. Two classes of solutions in general
forms are first obtained, followed by three types of ex-
plicit periodic wave solutions. It is shown that the high-
frequency and the low-frequency modes can have rich
nonlinear wave excitations either of the same or differ-
ent depending on the parameters. Some representative
profiles are graphically displayed.

Since the SB system can model an amplitude modu-
lated high-frequency wave coupled to a suitable low-
frequency eigenmode in nonlinear dispersive media
like plasma, our solutions might be useful to describe
those associated nonlinear phenomena.
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