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This paper presents results on observations of a temperature difference between the top and bottom
of a vessel filled with gas in a gravitational field. The observed temperature at the top of the vessel
was always lower than the temperature at the bottom of the vessel, and this temperature difference
was persistent and steady over more than 20 h. The magnitude of the temperature difference depends
on the types of gas molecules present but is independent of the gas pressure in the vessel within
the range from 2.7× 104 Pa to 27 Pa. A temperature difference between the top and the bottom is
only observed along the vertical direction and is only observed when the vessel contains a gas. These
experimental results indicate a gravity effect on molecular heat transfer which enables the transport
of energy in the gas without a thermal gradient.
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1. Introduction

The thermal steady states of gases in a gravitational
field are usually considered to have uniform temper-
ature along the direction of the gravitational force.
If a gas contains different types of gas molecules,
it is generally considered that fractionation of the
molecules occurs along the direction of the gravita-
tional force. For gravitational effects on the steady state
of a gaseous system, the author could not find any pre-
vious reports on experimental investigations to deter-
mine the existence of a vertical thermal gradient in
a gaseous system. Investigations on gravitational sep-
aration of molecules in a gas mixture were initiated
two centuries ago by I. L. Gay-Lussac. However, re-
ports presenting a proof of such separation appeared
only about 20 years ago. These include analysis of
gases trapped in polar ice [1], analysis of gases trapped
in Antarctic and Greenland ice [2], gas preserved in
Greenland ice [3], air in the lower atmosphere at Bor-
rego Sink 1 [4], and major atmospheric components in
the stratosphere [5].

Based on general understanding of the steady state
of a gas in a gravitational field, a gaseous system falls
to a stable state with minimum free energy [6]. How-
ever, the gas in a gravitational field has a vertical pres-
sure gradient which makes the free energy of the sys-
tem ambiguous. Sommerfeld [7] calculated the thermal
state of a gas system with a vertical pressure gradient
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arguing that the steady state of an isolated gaseous sys-
tem corresponds to its entropy maximum state. The en-
tropy of a gaseous system with a given total energy in-
cluding potential energy was calculated under the as-
sumption that the movement of the center of gravity
of the gas in the container alters the potential energy
of the system. This means that the container of such a
gaseous system is fixed in the coordinates of the gravi-
tational field. Moving the center of gravity of the gas in
the container changes the potential energy of the sys-
tem and also changes the gravitational field outside the
system. If we can neglect this change in the gravita-
tional field, the system becomes an isolated system and
its entropy maximum state corresponds to its steady
state. Since the entropy maximum state of this gaseous
system has no vertical thermal gradient, Sommerfeld
concluded that the gas in a gravitational field also has
no vertical thermal gradient.

If instead of the container, the center of gravity of
the gaseous system was fixed in the coordinate system
of the gravitational field, the movement of the center of
gravity of the gas gives no change in the gravitational
field outside the gaseous system. In this case the state
of entropy maximum has a thermal gradient along the
gravitational force, as will be shown in the last section
of this report. The expected vertical thermal gradient
of this isolated system is the same as it appears in the
convective equilibrium state [8], and the top of the sys-
tem is always colder than the bottom. Thus, statistical
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thermodynamics seems to give ambiguous predictions
of the thermal equilibrium state for an isolated gaseous
system in a gravitational field.

2. Experimental

In order to obtain information on the thermal steady
state of a gas in a gravitational field, the temperature
difference between the top and the bottom of the ves-
sel filled with gas was measured. The vessel was kept
in a high vacuum and in a strictly controlled homoge-
nous thermal environment. If the steady state of the gas
has a homogeneous temperature, the gas must have the
same temperature for the controlled ambient tempera-
ture. Since the gas in the vessel has no thermal effect
on the wall of the vessel, the temperature of the wall
of the flask must have the same temperature as that
of the flask without the gas. If we could experimen-
tally prove that the top and the bottom temperatures
of the vessel are the same, the steady state of the gas
in a gravitational field has no thermal gradient along
the gravitational force. If, instead, a temperature dif-
ference between the top and the bottom of the vessel
is detected which is obtained only when the gas is in
the vessel, then the isolated gas in the vessel has a non-
homogeneous thermal steady state.

The experiment requires a uniform and well con-
trolled thermal environment of the vessel and precise
measurement of the temperature difference between
the top and the bottom. In this study, two thermistors A
and B were fixed on the inner surface of the flask at op-
posite sides. The flask can be rotated by 180◦ around a
horizontal axis located at the center of the flask. This
180◦ rotation of the flask exchanges the positions of
the two thermistors A and B in the flask. After the
gas reached its thermal steady state, the temperatures
at the top and the bottom of the vessel were simulta-
neously measured by A and B as TA and TB, respec-
tively. The temperature difference is denoted as ∆T
(= TA−TB). In order to reduce the measurement errors
of TA and TB, we used half the difference between two
values of ∆T measured by A and B, respectively, be-
fore and after the 180◦ turn of the vessel. The obtained
temperature difference includes errors from the mea-
surements of the temperature difference by only one
thermometer.

2.1. Apparatus

In the experiment, the vessel of the gas was a 4 liter
crown glass spherical flask set in an aluminum drum,

Fig. 1. Schematic of the measurement system used. A spher-
ical crown glass flask with a cock having two thermistors A
and B, fixed respectively at the inside opposite sides of the
diameter of the flask. At the center of the flask, shafts S1 and
S2 enable rotating the flask. The motor M drives this turning
which changes the relative positions of the two thermistors A
and B. If A and B occupy positions at the top and the bot-
tom of the flask, respectively, after a 180◦ turn of the flask,
A and B take their position at the bottom and the top of the
flask, respectively. The flask was covered by the aluminum
drum D. Drum D was surrounded by six heating panels H1,
H2, H3, H4, H5, and H6. Each panel had its own thermometer
and its temperature is controlled by a computer.

as shown in Figure 1. The temperature difference be-
tween the top and the bottom of the vessel was mea-
sured by the two thermistors A and B which were fixed
on the inner surface of the flask. The distance between
the two thermistors A and B was 19 cm. The elec-
tric resistance of the thermistors used in this experi-
ment is about 3 kΩ at room temperature. The differ-
ence in the electric resistance of A and B was mea-
sured by a 0.6 or 1.2 V, 4 × 10−4 sec square pulse.
The mean power consumption of each thermistor in
the flask was about (2 or 8)× 10−10 W. The detection
limit of the temperature difference between the ther-
mistors A and B was 1× 10−5 ◦C for a power con-
sumption of 8× 10−10 W and 4× 10−5 ◦C for a power
consumption of 2× 10−10 W. We confirmed that the
difference in the power consumption at the thermistors
within the above range had no effect on the measure-
ment results.

The thermal environment of the flask was controlled
by the temperature of the inner surface of the alu-
minum drum which covers the flask. The aluminum
drum was boxed in six heating panels H1, H2, H3, H4,
H5, and H6, arranged as shown in Figure 1. The tem-
peratures of these heating panels control the heat flow
from the aluminum drum to the outside environment.
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Fig. 2. Schematic of the arrangement of the apparatus. The
measurement system (1) shown in Figure 1 was in a vessel of
70 cm height, 70 cm diameter iron cylinder (2). The temper-
ature of the wall of the cylinder was kept at 24.0±0.1 ◦C by
the circulation of constant temperature water through a vinyl
tube (3) which was coiled outside the iron vessel (4). The out-
side of a vinyl tube was thermally insulated by Styrofoam (5).
The motor (6) drives the turning of the flask and (7) drives the
rotation of the aluminum drum. The iron vessel was evacu-
ated by a turbo molecular pump (8) and a rotary pump con-
nected to the vacuum line (9). A vacuum gauge (10) was set
on the top of the glass lid.

Each heating panel has its own thermometer and the
temperature is controlled by a computer to maintain
a uniform and constant temperature of the aluminum
drum. The temperature of the inner surface of the alu-
minum drum was equalized by continuous rotation of
the drum.

This measurement system was placed in a cylin-
drical iron vessel which was evacuated by a turbo-
molecular pump as shown in Figure 2. The tempera-
ture of the wall of the iron vessel was kept at 24.0±
0.1 ◦C by the circulation of constant temperature water
through a vinyl tube coiled around the outside of the
iron vessel.

2.2. Aluminum Drum as a Tool to Improve Thermal
Environment of the Flask

In order to measure the reduction in thermal non-
uniformity in the environment of the flask by the alu-
minum drum, we created a horizontal thermal gradi-
ent in the outside environment of the drum by setting
the temperatures of heating panels H1, H3, H5, and H6
to 24.30± 0.01 ◦C, H2 to 24.55± 0.01 ◦C, and H4 to
24.05± 0.01 ◦C. With this horizontal 0.5 ◦C tempera-
ture difference in the outside environment of the drum,

the thermistors A and B set on a horizontal line in the
flask gave a temperature difference of 2.8× 10−3 ◦C.
When the drum was rotating with an angular veloc-
ity ω of 0.14 rad/sec, the same 0.5 ◦C temperature dif-
ference was measured as 2×10−4 ◦C by thermistors A
and B which were on a vertical line. However, when
the thermistors were on a horizontal line, no tempera-
ture difference was detected indicating that the angular
pattern of the non-uniformity of the thermal environ-
ment of the flask was rotated π/2 from the original
pattern by the continuous rotation of the drum.

In order to obtain details of the reduction in thermal
non-uniformity for the temperature of the wall of the
cylinder (see Fig. 3) rotating in vacuum with angular
velocity ω , the following analysis was carried out. We
assume the thermal environment outside the cylinder
to be

TexD = T0 +∆TexD cosϑ , (1)

where TexD is the temperature of the outside of the
cylinder, T0 is the mean temperature of the outside en-
vironment of the cylinder, ∆TexD is half the maximum
temperature difference in the outside environment of
the cylinder, and ϑ is the angular coordinate as shown
in Figure 3. The calculations of the temperature at the
wall of the cylinder (TD) under thermal steady state are

TD = T0 +αD∆TexD cos(ϑ −ψ), (2)

αD = 4σϕexT 3
0 /A1/2, (3)

ψ = sin−1(HDω/A1/2), (4)

A = (HDω)2 +(λD/R2
D +4σ(ϕex +ϕi)T 3

0 )
2, (5)

Fig. 3. Coordinate system of a cylinder which was used as a
simplified model of the aluminum drum.
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Symbol Stand for Magnitude
HD Heat capacity of unit area of wall of the drum 0.36 J/cm2∗
Hw Heat capacity of unit area of wall of the flask 0.28 J/cm2∗
RD Radius of the drum 13 cm
Rf Radius of the flask 9.5 cm
λD Thermal conductivity of wall of the drum along surface 0.36 W/K∗
λs Thermal conductivity of wall of the flask along surface 0.0011 W/K∗
ω Angular velocity of rotation of the drum 0.14 rad/sec
τ Thermal relaxation time of the flask 410±10 sec
ϕ Absorption and emission coefficient of thermal radiation
ϕex ϕ of outside surface of the drum 0.04
ϕi ϕ of inside surface of the drum 0.85
ϕf ϕ of outside surface of the flask 0.9 ∗

Table 1. Symbols used and their magnitudes.

∗ Estimated value.

Fig. 4. Thermal history of the temperature
difference ∆T measured by A and B in
the flask. Two thermistors A and B were
set on a horizontal line in the flask. The
flask was first thermally equilibrated with
the thermal environment with a 0.5 ◦C tem-
perature difference between the heating pan-
els H2 and H4. At time t = 0, the flask
was turned 180◦ . The thermal history after
this turn is shown by this figure plotting the
change of ∆T (temperature measured by A
− temperature measured by B).

where HD, λD, RD, ϕex, ϕi are listed in Table 1, σ is
the Stefan-Boltzmann constant, and ψ is the shift angle
of the angular pattern of the thermal non-uniformity
in TD. Using the numerical values listed in Table 1,
(3) and (5) become

αD = 2.39× 10−5/A1/2, (6)

A = (0.35ω)2 +(2.66× 10−3)2 W/Kcm2. (7)

Without rotation (ω = 0), the reduction factor is αD =
1/111. However when the drum is rotating with an an-
gular velocity of ω = 0.14 rad/sec, then αD = 5×10−4

and shift angle ψ = π/2.

2.3. Thermal Characteristics of the Flask

Figure 4 shows the change in the temperature dif-
ference measured by thermistors A and B in the flask
set on a horizontal line. At first, the flask was kept

for a long time in a thermal environment with tem-
peratures of the heating panels H1, H3, H5, and H6
at 24.30± 0.01 ◦C, H2 at 24.55± 0.01 ◦C, and H4 at
24.05±0.01 ◦C. The drum boxed by these heating pan-
els was not rotated. Inside the drum, there was a ther-
mal gradient along the horizontal direction. After the
thermal state of the flask equilibrated with that of the
drum, the flask was rotated 180◦. Subsequent to this ro-
tation, the temperature at the wall of the flask changed
to a new thermal equilibrium state. This change of tem-
perature is plotted in Figure 4. The observed tempera-
ture change could be fitted well to an exponential decay
curve and gave a thermal relaxation time of the flask of
410± 10 sec.

At first, the flask was kept for a long time in the
thermal environment of Texf0 given by

Texf0 = T0 +∆Texf cosϑ , (8)

where ∆Texf is half the horizontal temperature differ-
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Sample Press [∆T ]turn −
(

dTg
dz

)
ob

−Γg −
(

dTg
dz

)
clc

gas /Pa /10−4 ◦C /10−5 ◦C cm−1 /10−5 ◦C cm−1 /10−5 ◦C cm−1

Helium 2.0×104 1.0±0.1 0.26 1.38 1.90
530 0.94±0.13

Neon 5.0×103 1.9±0.2 0.53 7.56 9.50
660 2.0±0.2
27 2.1±0.2
13 1.1±0.3

Argon 2.7×104 1.25±0.15 0.38 14.48 18.8
330 1.5±0.2
73 1.6±0.3

Nitrogen 2.5×104 1.1±0.2 0.30 7.88 9.50
930 1.2±0.3

Table 2. Observed [∆T ]turn, thermal gra-
dient in the gas, estimated Γ g, and ther-
mal gradient in the gas which has maxi-
mum entropy as an isolated system in a
gravitational field.

Fig. 5. Coordinate system of a spherical flask.

ence in the outside environment of the flask and ϑ is
the angular coordinate as shown in Figure 5. After a
180◦ turn of the flask, the thermal environment of the
flask changes to

Texf = T0 +∆Texf cos(ϑ +π). (9)

At the time of the 180◦ turn of the flask, we consider
t = 0, consequently, the temperature at the wall of the
flask Tf(t,ϑ) can be written as

Tf(t,ϑ) = T0 −∆Texf

(
1− 2λs

αR2
f

)

· cosϑ(1− 2exp(−αt/Hw)),

(10)

where λs, Rf, Hw are as shown in Table 1 and

α = 4σϕfT 3
0 + 2λs/R2

f , (11)

where ϕf is shown in Table 1.
The plotted temperature difference (∆T ) in Figure 4

is given by (10) as

∆T = Tf(t,0)−Tf(t,π). (12)

As shown in Figure 4, the observed temperature differ-
ence between the values at t = 0 and t > 1300 sec is

5.3×10−3 ◦C. This temperature difference gives ∆Texf
in (10) to be 2.8× 10−3 ◦C.

On the other hand, ∆Texf is estimated as the tem-
perature at the inside of the drum. The temperature of
the outside environment of the drum is given by (1) as
∆TexD = 0.25 ◦C. The temperature at the inside of the
drum is given by (2). In this case, the drum is not ro-
tating, and αD = 1/111. From this estimation ∆Texf be-
comes 2.3× 10−3 ◦C. About a 20 % disagreement be-
tween the two estimates of the temperature of the out-
side environment of the flask might be a good indicator
of the accuracy of the estimation in this experiment.

The relaxation time (τ) for the approach to thermal
steady state of the flask given by (10) is

τ = Hw/α, (13)

which corresponds to the observed relaxation time
(τ = 410± 10 sec) given by Figure 5. The magnitude
of α ,

α = Hw/410, (14)

is 6.8× 10−4, which is more reliable than the value
of 5.6× 10−4 obtained by (11) using the values listed
in Table 1. Moreover, in this case, the discrepancy be-
tween the two estimations is about 20 %.

2.4. Experimental Results

All measurements were made under the following
setup of the apparatus. The measurement system was
placed in the iron cylinder as shown in Figure 2 and
evacuated to a pressure lower than 3× 10−4 Pa. The
temperature of the wall of the iron vessel was kept
at a constant temperature of 24.0 ± 0.1 ◦C. All six
heating panels were kept at a constant temperature of
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Fig. 6. Observed ∆T on the flask without the gas. Every 5 h,
the flask was turned 180◦ and the time of the turn is indicated
by the vertical lines. The horizontal dotted lines indicate the
mean value of ∆T measured after the thermal state recovered
its steady state after the flask was turned.

24.20±0.01 ◦C. The aluminum drum was rotated con-
tinuously with an angular velocity of 0.14 rad/sec. The
flask with the gas sample was set with the thermome-
ters A and B placed on a vertical line. After attainment
of thermal steady state of the flask, measurements of
the temperature difference between the pair of thermis-
tors A and B were made every 180 sec. This tempera-
ture difference is denoted as ∆T .

∆T = (temperature measured by A)
− (temperature measured by B). (15)

The mean of ten successive values of ∆T are plotted
in Figures 6, 7, and 8 together with the vertical position
of thermistors A and B. The exact temperature differ-
ence between the top and the bottom of the flask was
set to half the difference of ∆T values obtained before
and after the 180◦ turn of the flask. We denoted the
value of this observed difference of ∆T to be [∆T ]turn.
In Figures 6 to 8, the vertical lines indicate the time
of turning of the flask and the horizontal broken lines
indicate the mean value of ∆T .

Almost all of the [∆T ]turn values listed in Table 2
were obtained by the 180◦ turn of the flask with a
5-h interval. In order to confirm that the 5-h interval
is sufficient for attaining a thermal steady state, the
measurements of [∆T ]turn with a turn with 20-h inter-
val were carried out on the flask with 27 Pa neon and
2.7× 104 Pa argon.

Figure 6 shows the measured thermal history with a
flask without a gas. Figure 7 shows the thermal history

Fig. 7. Observed ∆T filled with 660 Pa neon. The process and
procedure of the measurements are the same as those used in
Figure 6. The temperature difference [∆T ]turn was obtained
as the difference in the mean values of ∆T obtained before
and after the 180◦ turn of the flask.

measured for the flask with 660 Pa neon. All [∆T ]turn
values listed in Table 2 were obtained by observed ther-
mal histories similar to the thermal histories shown in
Figures 7 and 8. Figure 8 shows the thermal history ob-
served for 2.7×104 Pa argon. In this case, at 10 h after
the start of the measurement, the direction of rotation
of the drum was reversed keeping the same angular ve-
locity of rotation. By this reversal of the rotation of
the drum, the angular pattern of the non-uniformity of
the thermal environment of the flask was shifted by π ,
but this did not affect the observed ∆T values. This
is a proof of the thermal uniformity in the environ-
ment of the flask during the ∆T measurements. The
observed thermal gradients of the gases in the flask are
listed in the fourth column of Table 2 assuming that
the temperature of the gas in contact with the wall of
the flask is equal to the temperature of the wall of the
flask.

As shown in Figures 7 and 8, when the flask con-
tained a gas, the top of the flask was always cooler
than the bottom, whereas when the flask contained no
gas, no significant temperature difference between the
top and the bottom of the flask was observed. Taking
the accuracy of the measurements into consideration,
the magnitude of the temperature difference between
the top and the bottom of the flask depends only on
the kind of gas molecules present, and is independent
of the pressure of gas within the pressure range from
2.7× 104 Pa to 27 Pa.
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Fig. 8. Observed ∆T for the flask filled with
2.7×104 Pa argon. In this case, 10 h after the
start of the measurement, the direction of ro-
tation of the drum was reversed, maintaining
a constant angular velocity ω = 0.14 rad/sec.
If the thermal environment of the flask had
a temperature difference between the upper
and lower sides of the flask, reversal of the
direction of rotation of the drum changes the
sign of this difference, maintaining the mag-
nitude of the difference. As shown in Fig-
ure 8, [∆T ]turn was not affected by the rever-
sal of the rotation of the drum.

3. Discussion

3.1. Thermal Phenomena Causing the Observed
Vertical Temperature Difference at the Flask
Wall

There should be transient thermal disturbances asso-
ciated with the rotation of the flask, such as heat gen-
eration by agitation of gas in the flask and friction at
the stem of the flask. These transient thermal distur-
bances cannot sustain the persistent thermal gradient
in the gas. The experimental results gave evidence for
the existence of an object with a non-uniform verti-
cal temperature. The object was in a box which was
evacuated to a vacuum level better than 3× 10−4 Pa
and the wall of the box had a homogeneous and steady
temperature. The thermal state of this object was also
steady and persistent for more then 20 h. The surface
of the cold part of this object receives energy from the
vacuum environment by thermal radiation, and the sur-
face of the high temperature part of the object emits en-
ergy as thermal radiation. These movements of energy
at the surface of the object requires persistent energy
transportation from the low temperature region to the
high temperature region. This peculiar energy flow ap-
peared only when this object contained a gas and only
appeared in the vertical direction. This indicates that
this peculiar energy flow only appears in the gas in-
duced by the gravitational field. In the gas, energy is
transported mainly by molecular heat conduction or by
the convective movement of the gas as a mass. Usu-
ally, molecular thermal conduction in the gas is consid-

ered to be independent of the gravitational field, how-
ever, the convective mass motion in the gas requires the
presence of gravity.

The amount of transported energy per unit time by
this peculiar energy flow in the gas must be equal to the
emitting and absorbing energy per unit time at the sur-
face of the vessel which has a temperature difference of
[∆T ]turn/2. This means that this peculiar flow of energy
must be specific to the species of molecules present in
the gas and does not depend on the pressure of the gas.
This characteristic of the peculiar thermal energy flow
is in accord with molecular thermal conduction of the
gas but is not in accord with energy transport by con-
vection of the gas. It is known that the velocity of the
convective flow of the gas is proportional to the pres-
sure of the gas, and the amount of energy transported
by convection in unit time is proportional to the square
of the pressure of the gas [9].

In order to clarify the thermal restriction for the ap-
pearance of a temperature difference between the top
and the bottom of the vessel, we measured [∆T ]turn
with different settings of the heating panel temperature
for the runs with 1× 104 Pa argon and 27 Pa nitrogen.
The observed [∆T ]turn values were not appreciably af-
fected when either of the setting temperatures of H5
and H6 deviated by less than 0.01 ◦C from 24.20 ◦C.
When the deviation of either of H5 or H6 was 0.02 ◦C
from 24.20 ◦C, some of the observed [∆T ]turn values
decreased by more than half of the normal value. When
either H5 and H6 deviated more than 0.04 ◦C, we could
not observe any clear temperature change upon turn-
ing the flask. Usually, the expected thermal state due to
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molecular thermal conduction of a gas is not observed
by the disturbance of convective flow in the gaseous
system. The disappearance of a temperature difference
between the top and the bottom of the gas vessel by the
slight change in the thermal environment suggests that
there is an unknown mode of molecular energy trans-
portation.

At present, we concluded that the observed differ-
ence in temperature between the top and the bottom
of the flask is created by molecular energy transport
of the gas in the flask, because the temperature differ-
ence appears only when the flask contains a gas with-
out mass motion and the magnitudes of the observed
temperature differences are specific to the molecular
species of the gas but are independent of the pressure
of the gas in the flask. A gas molecule in a gravitational
field changes its vertical velocity due to the gravita-
tional force during flight after collision with another
molecule. Then, in the gas without a thermal gradi-
ent in a gravitational field, molecules passing down-
ward through a horizontal plane have a higher mean
kinetic energy than molecules passing upward through
the same horizontal plane. In a gas devoid of mass
motion, the number of molecules passing downward
through an unit area of the horizontal plane per unit
time is equal to that passing upward. We then supposed
that there is a downward energy flux − fg accompany-
ing the gravitational field in the gas. We assumed that
in a gravitational field, the vertical energy flux −F in
the gas accompanies the energy flux − fg in addition to
the energy flux of the ordinary thermal conduction as

F =−λg
dTg

dz
+ fg.

Here, λg is the ordinary thermal conductivity of the
gas, Tg is the temperature of the gas, and z is the verti-
cal coordinate with z increasing upward.

In the equilibrium state of the isolated gaseous sys-
tem, there must be no thermal energy flow; conse-
quently, the energy flow F becomes zero. Denoting the
vertical gradient in the equilibrium state by (dTg/dz)eq,
F = 0 gives (dTg/dz)eq = fg/λ g. At present, we know
nothing about the thermal state of the gas in the equi-
librium state in a gravitational field experimentally. We
can use the value of (dTg/dz)eq as an unknown con-
stant Γg. Using this constant Γg, we assumed that the
vertical energy flux F in the gas under the gravitational
field is given by

F =−λg

(
dTg

dz
−Γg

)
. (16)

Here, λ g is the ordinary thermal conductivity of the
gas, (dTg/dz) is the vertical thermal gradient in the
gaseous system, z is the vertical coordinate increasing
upward, and Γg is a constant which is expected to be the
same as the vertical thermal gradient in the equilibrium
state of this gas under a gravitational field.

Equation (16) makes it possible to estimate the mag-
nitude of energy flux in the gas even if thermal energy
was transported from a cold location to a hot location.
Using (16), we can find the relation between the ob-
served values of [∆T ]turn and the thermal gradient in
the gaseous system which is in an entropy maximum
state under the gravitational field.

3.2. Estimation of Γg from Observed [∆T ]turn

The following calculation gives the magnitude of Γg
from the observed values of [∆T ]turn as the requirement
for energy conservation. We consider the origin of the
coordinate to be the center of the flask and the z-axis
to be vertical upward with increasing z as shown in
Figure 5. When thermal flow per unit area across an
horizontal plane of z= Z in the gas is given by (16), the
total thermal flux Fg in the flask toward the increasing
z direction is

Fg =−
∫ √

R2
f −Z2

0
λg

(
dTg

dz
−Γg

)
2πrdr, (17)

where Rf is the radius of the flask, λg is the thermal
conductivity of the gas, Tg is the temperature of the gas
in the flask, and r is the distance from the center of the
flask in the plane z = Z (see Fig. 5).

Along the wall of the flask, across the plane z = Z,
the thermal energy flux toward increasing z is given by

Fw =
λs

Rf

dTw

dϑ
2π

√
R2

f −Z2, (18)

where λs is the same as that used in (10) and Tw is
the temperature of the wall of the flask under thermal
steady state.

At thermal steady state, the energy flux at the sur-
face of the flask above the plane z = Z toward the out-
side of the flask is

Fs =
∫ Rf

Z
σϕf(T 4

w −T4
0 )2πRfdz, (19)

where ϕf and σ are the same as in (11) and (5), and
T0 is the temperature of the environment of the flask.
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For the conservation of energy, Fs must equal Fw +
Fg, then:

Fs = Fg +Fw. (20)

Computer simulations of the variation of the tempera-
ture of the gas in the flask were performed using the
assumption that the thermal flux in the gas is given
by (16). All the simulations showed that the temper-
ature in the gas approaches a linear function of z and is
independent of r, in accord with the approach to steady
state. Then, at thermal steady state, we can assume

Tg = T0 +

(
dTg

dz

)
ob

z. (21)

Neglecting the small difference between the tempera-
ture at the wall of the flask and that of the gas in contact
with this wall, we can assume Tw as:

Tw = T0 +

(
dTg

dz

)
ob

z. (22)

Using (21) and (22), (20) gives the relation between Γg
and the observed thermal gradient in the gas as

Γg =

(
dTg

dz

)
ob

(
1+ 2λs/(Rfλg)+ 4σϕfRfT 3

0 /λg
)
.

(23)

Using (11) and (13), (23) becomes

Γg =

(
dTg

dz

)
ob

(
1+RfHw/τλg

)
. (24)

Using the observed vertical thermal gradient in the gas
listed in the fourth column of Table 2, (24) gives the
values of Γg in (16) and these values are listed in the
fifth column of Table 2.

3.3. Comparison of Γg with the Thermal Gradient
in the Gas which is the Entropy Maximum State in
a Gravitational Field

When the gas in the container has a constant total
energy including the potential energy, the entropy max-
imum state of this gaseous system has no thermal gra-
dient [4]. However, when the center of gravity of the
gas in the container is fixed in the coordinate of grav-
ity as an isolated gaseous system, the entropy maxi-
mum state of this system has a vertical thermal gra-
dient as shown by following calculation. Comparison

of this vertical temperature gradient with the value of
Γg calculated using (24) may give the relation between
the observed temperature difference between the top
and the bottom of the gas vessel and the gravitational
field.

Let us consider the state of an ideal gas which is in
a column of cross section S and vertical height L. We
assume L is small, and we can approximate the vertical
changes in the molecular density and temperature in
the column as a linear functions of z as

n = n0(1+ kz), (25)

T = T0 + bz, (26)

where n is the molecular density (mol/cc), T is the tem-
perature of the gas in the column, k and b are param-
eters indicating a vertical change in molecular density
and temperature, respectively, z is the vertical coordi-
nate increasing upward, and the z coordinates of the top
and the bottom of the column are L/2 and −L/2, re-
spectively. We denote this gaseous system as system A.
The gravitational field increases the pressure in accord
with the decrease in z in the column as

dp =−mngdz, (27)

where p is the pressure of the gas in the column, m is
the molecular weight of the gas molecule, and g is the
acceleration of gravity. If we assume that the gas in the
column is an ideal gas, then ∂ p/∂n = RT , ∂ p/∂T =
nR and

dp
dz

=
∂ p
∂n

dn
dz

+
∂ p
∂T

dT
dz

. (28)

These relations give

dp
dz

= RT n0k+ nRb, (29)

where R is the gas constant. From (27) and (29), we get
the following relation between b and k at z = 0 which
is the necessary condition for the gaseous system A in
a gravitational field:

−b = mg/R+T0k. (30)

We assume that the vertical coordinate of the center
of gravity of system A is fixed in the coordinate sys-
tem of a gravitational field. Then, the variation of the
molecular density in the column does not affect the in-
ternal energy of the gas in the system.
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We assume that at first, system A contains n0SL mol
ideal gas with a uniform molecular density n0 and a
uniform temperature TI in a gravitational field. Real-
izing this state of the gas requires a large number of
partitions in the column. When these partitions are re-
moved, the state of the gaseous system goes to the state
indicated by k, T0, and b, namely, to the state with
n = n0(1+ kz) and T = T0 + bz. After this change, k,
T0, and b must satisfy (30). If removal of the partitions
in the column was a change in the isolated system, that
is this change yields no change in the outside of sys-
tem A, then the internal energy of the gas in the column
maintains a constant value, and the following equation
must be satisfied:

∫ L/2

−L/2
Cvmn0((1+ kz)(T0 + bz)−TI)Sdz =

Cvmn0SL
(

T0 +
L2

12
kb−TI

)
= 0,

(31)

where Cv is the heat capacity at constant volume. Equa-
tion (31) gives the mean temperature T0 as

T0 = TI − L2

12
kb. (32)

We can substitute TI for T0 in (30) because the dif-
ference between TI and T0 is on the order of 0(L2) as
shown by (32). Then, when the value of k is given for
an isolated system A, its thermal state T = T0 + bz is
determined by (30) and (32).

In order to find the entropy maximum state, we can
calculate the entropy change from the initial state with
n = n0 and T = TI to the final state with n = n0(1+kz)
and T = T0 + bz. This change in the entropy is cal-
culated here in a three step transition. The first step
transition is from the initial state to the state with
n = n0(1 + kz) and T = TI, the second transition is
from the last state of the first transition to the state with
n = n0(1+kz) and T = TI +bz, and the third transition
is from the last state of the second step to the final state.

The first step transition is an isothermal change, then
the entropy change (∆S1) by this transition is

∆S1 =−W
TI

=−SL3

24
n0Rk2 + 0(L5), (33)

where W is the work required to form the final molecu-
lar distribution n = n0(1+ kz) from the initial uniform
distribution by the isothermal transition. The entropy

change at the second step transition is

∆S2 =

L/2∫

−L/2

TI+bz∫
TI

1
T

Cvmn0(1+ kz)SdTdz

=
SL3

12TI
Cvmn0b

(
k− b

2TI

)
+ 0(L5).

(34)

The entropy change at the third step transition is calcu-
lated as

∆S3 =

∫ L/2

−L/2

∫ T0+bz

TI+bz

1
T

Cvmn0(1+ kz)SdTdz

=− SL3

12TI
Cvmn0bk+ 0(L5).

(35)

The entropy change (∆S) from the initial state of the
system A with n = n0 and T = TI to the final state with
n = n0(1+ kz) and T = T0 + bz is

∆S = ∆S1 +∆S2 +∆S3

=−SL3

24
n0

(
Rk2 +Cvm

b2

T 2
I

)
+ 0(L5).

(36)

The entropy maximum state of the gaseous system A
has the value k determined by (d∆S/dk) = 0 as

k =− Cvm2g
TIR(R+Cvm)

, (37)

where (30) was used for the differentiation of (36).
With this k, (30) gives b as

(
dTg

dz

)
clc

=− g
Cv +R/m

, (38)

where the left side of (38) is b which is the thermal
gradient in the gas at the entropy maximum state. This
thermal gradient is identical to that in the convective
equilibrium state [5]. For a comparison of these values
of the thermal gradient with the observed Γg, the values
of the thermal gradient given by (38) are listed in the
last column of Table 2.

Taking the numerical accuracy of the observed val-
ues of [∆T ]turn and that of the estimation by (24) into
consideration, we conclude that the values of Γg shown
in the fifth column of Table 2 agree with the thermal
gradient of the gas in the equilibrium state in a grav-
itational field shown in the last column of Table 2.
This coincidence of Γg with the thermal gradient given
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by (38) makes the assumption given by (16) plausible
but the assumption is still unusual. We suggest further
verification of the experimental results of this study
and further investigations into the assumption made
by (16).
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