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In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions
of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose
possible optimal values can be obtained by minimizing the averaged residual error, the method used
here provides us with a simple way to adjust and control the convergence region of the solution.
Compared with the usual homotopy analysis method, the optimal method can be used to get much
faster convergent series solutions.
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1. Introduction

In past decades, both mathematicians and physicists
have devoted considerable effort to the study of explicit
solutions of the partial differential equations. Many
powerful methods have been presented, such as inverse
scattering method [1], Bäcklund transformation [2],
Darboux transformation [3], Lie symmetry method [4],
Hirota method [5], etc. Along with the development
of computer technology and symbolic-numerical com-
putation software such as Matlab, Maple, Mathemat-
ica and so on, these methods exhibit powerful capa-
bilities. Among them, the homotopy analysis method
(HAM), which was firstly proposed by Liao [6], based
on the idea of homotopy in topology, is a general ana-
lytic method for nonlinear problems. Unlike the tradi-
tional methods (for example, perturbation techniques
and so on), the HAM contains auxiliary parameters
which provide us with a simple way to adjust and con-
trol the convergence region and rate of convergence of
the series solution and has been successfully employed
to solve explicit analytic solutions for many types of
nonlinear problems [7 – 15].

However, as illustrated in [15], the usual HAM has
only one convergence-control parameter c0 and it is
a pity that curves for convergence-control parameter
(i.e. c0-curves) can not tell us which value of c0 ∈ R
gives the fastest convergent series. Recently, to over-
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come this shortcoming, Liao [15] proposed an opti-
mal HAM with more than one convergence-control pa-
rameter. Liao also introduced the so called averaged
residual error to get the possible optimal convergence-
control parameters efficiently, which can give good
approximations of the optimal convergence-control
parameters of the exact residual error. In general, the
optimal HAM can greatly modify the convergence of
homotopy series solution.

The aim of this paper is to directly apply the optimal
HAM to reconsider the solitary wave solutions of the
Kuramoto-Sivashinsky equation. Three convergence-
control parameters are used in the method to acceler-
ate the convergence of homotopy series solution which
can give much better approximations. The optimal
convergence-control parameters have been determined
by minimizing the averaged residual error. The results
obtained here show that they convergence much faster
than those given by the usual HAM.

2. Optimal HAM for the Kuramoto-Sivashinsky
Equation

The Kuramoto-Sivashinsky equation

ut +αuux +βu2x + ku4x = 0, (1)

where α , β , and k are arbitrary constants, usually de-
scribes the fluctuations of the position of a flame front,
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the motion of a fluid going down a vertical wall, or a
spatially uniform oscillating chemical reaction in a ho-
mogeneous medium and has been the subject of exten-
sive research work in recent publications [16 – 18]. For
example, the solitary wave solutions of the Kuramoto-
Sivashinsky equation has been found in [14] by HAM.
In the following, we will apply the optimal HAM to
the Kuramoto-Sivashinsky equation to reconsider the
solitary wave solutions again.

According to [14], in order to find the solitary wave
solutions of (1), it is convenient to introduce a new de-
pendent variable w(ξ ) defined by

u(x, t) = aw(ξ ), (2)

where ξ = x− ct, a is the amplitude, and c is the wave
speed. Substitution of u given by (2) into (1) gives

kw(4) +βw′′+αaww′− cw′ = 0 (3)

and integrating once gives

kw′′′+βw′+
α

2
aw2− cw = 0, (4)

where the prime denotes the differentiation with re-
spect to ξ . Write

w(ξ )≈ Bexp(−µξ ) as ξ → ∞, (5)

where µ > 0 and B are constants. Substituting (5) into
(4) and balancing the main term yields

kµ
3 +β µ =−c, (6)

and we consider the smallest positive real value for µ .
Writing η = µξ , (4) becomes

kµ
3w′′′+β µw′+

α

2
aw2− cw = 0, (7)

where the prime denotes the derivative with respect
to η . Assume that the dimensionless wave solution
w(η) arrives its maximum at the origin. Obviously,
w(η) and its derivatives tend to zero when η→∞. Be-
sides, due to the continuity, the first derivative of w(η)
at crest is zero. Thus, the boundary conditions of the
solitary wave solutions are

w(0) = 1, w′(0) = 0, w(∞) = 0. (8)

According to (7) and the boundary conditions (8), the
solitary wave solution can be expressed by

w(η) =
+∞

∑
m=1

dm e−mη , (9)

where dm (m = 1,2, . . .) are coefficients to be deter-
mined. Moreover, according to the rule of solution ex-
pression denoted by (9) and the boundary conditions
(8), it is natural to choose w0(η) = 2e−η− e−2η as the
initial approximation of w(η).

Let p ∈ [0,1] denote the embedding parameter,
c0 6= 0 an auxiliary parameter, called the convergence-
control parameter, and φ(η ; p) a kind of continuous
mapping of w(η), respectively, we can construct fol-
lowing generalized homotopy:

(1−C(p))L[φ(η ; p)−w0(η)] =
c0B(p)N [φ(η ; p),A(p)],

(10)

where

L[φ(η ; p)] =
(

kµ
3 ∂ 3

∂η3 +β µ
∂

∂η
− c

)
φ(η ; p) (11)

is an auxiliary linear operator, with the property

L
[
C1 e−η +C2 eκ1η +C3 eκ2η

]
= 0, (12)

where C1, C2, and C3 are constants and

κ1,2 =
c+ kµ±

√
−3c2−2cβ µ +β 2µ2

2(c+ kµ)
, (13)

which in most cases are not positive integers. From (7),
we define the nonlinear operator

N [φ(η ; p),A(p)] = kµ
3 ∂ 3φ

∂η3 +β µ
∂φ

∂η

+
α

2
A(p)φ 2− cφ .

(14)

In (10), B(p) and C(p) are the so-called deformation
functions satisfying

B(0) = C(0) = 0, B(1) = C(1) = 1, (15)

whose Taylor series

B(p) =
+∞

∑
m=1

νm pm, C(p) =
+∞

∑
m=1

σm pm (16)

exist and are convergent for |p| ≤ 1.
Then when p = 0, according to the definition of L

and w0(η), it is obvious that φ(η ;0) = w0(η). When
p = 1, according to the definition (14), (10) is equiva-
lent to the original (7), provided φ(η ;1) = w(η). Thus,
as p increases from 0 to 1, the solution φ(η ; p) varies
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(or deforms) continuously from the initial guess w0(η)
to the solution w(η) of (7).

According to [15], there are infinite numbers of
deformation functions satisfying the properties (15)
and (16). And in theory, the more the convergence-
control parameters are used, the better approximation
one should obtain by this generalized HAM. But for
the sake of computation efficiency, we use here the fol-
lowing one-parameter deformation functions

B(c1; p) =
+∞

∑
m=1

νm(c1)pm, C(c2; p) =
+∞

∑
m=1

σm(c2)pm,

(17)

where |c1| < 1 and |c2| < 1 are constants, which are
convergence-control parameters too, and

ν1(c1) = 1− c1, νm(c1) = (1− c1)cm−1
1 , m > 1,

(18)

σ1(c2) = 1− c2, σm(c2) = (1− c2)cm−1
2 , m > 1.

(19)

The different values of c1 give different paths of
B(c1; p) as shown in Figure 1. Note that B(c1; p) and
C(c2; p) contain the convergence-control parameters c1
and c2, respectively. So, we have at most three un-
known convergence-control parameters c0, c1, and c2,
which can be used to ensure the convergence of solu-
tions series, as shown later.

Then the so-called zeroth-order deformation equa-
tion becomes

(1−C(c2; p))L[φ(η ; p)−w0(η)] =
c0B(c1; p)N [φ(η ; p),A(p)],

(20)

and according to (8), it should subject to following
boundary conditions:

φ(0; p) = 1,
∂φ(η ; p)

∂η

∣∣∣∣
η=0

= 0,

φ(∞; p) = 0,
∂φ(η ; p)

∂η

∣∣∣∣
η=+∞

= 0.

(21)

Obviously, φ(η ; p) is determined by the auxiliary
linear operator L, the initial guess w0(η), and the
convergence-control parameters c0, c1, and c2. Note
that we have great freedom to choose all of them. As-
suming that all of them are so properly chosen that the

c1=3/4
c1=1/2
c1=–3/4
c1=–1/2
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Fig. 1 (colour online). Deformation function B1(p;c1) de-
fined by (17) and (18). From top to bottom: yellow long-
dashed line: c1 = −3/4; blue space-dash line: c1 = −1/2;
green dotted line: c1 = 1/2; red solid line: c1 = 3/4.

Taylor series

φ(η ; p) = w0(η)+
+∞

∑
m=1

wm(η)pm,

A(p) = a0 +
+∞

∑
m=1

am pm

(22)

exist and converge at p = 1, we have the following ho-
motopy series solution:

w(η) = w0(η)+
+∞

∑
m=1

wm(η), a = a0 +
+∞

∑
m=1

am, (23)

where

wm(η) =
1

m!
∂ mφ(η ; p)

∂ pm

∣∣∣∣
p=0

, am =
1

m!
∂ mA(p)

∂ pm

∣∣∣∣
p=0

.

(24)

Let G denote a function of p ∈ [0,1] and define the so-
called mth-order homotopy derivative [19]:

Dm[G] =
1

m!
∂ mG
∂ pm

∣∣∣∣
p=0

. (25)

Taking above operator on both sides of the zeroth-
order deformation equation (20) and the boundary con-
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ditions (21), we have the following mth-order deforma-
tion equation:

L

[
wm(η)−χm

m−1

∑
n=1

σm−n(c2)wn(η)

]
=

c0

m−1

∑
n=0

νm−n(c1)Rn(η),

(26)

subject to the boundary conditions

wm(0) = w′m(0) = wm(+∞) = 0, (27)

where

Rn(η) = kµ
3w′′′n +β µw′n

+
α

2

n

∑
i=0

(
an−i

i

∑
j=0

w jwi− j

)
− cwn

(28)

and

χm =
{

0 m = 1,
1 m > 1.

(29)

Let w∗m(η) denote a special solution of (26) and L−1

the inverse operator of L, respectively. We have

w∗m(η) = χm

m−1

∑
n=1

σm−n(c2)wn(η)

+ c0

m−1

∑
n=0

νm−n(c1)L−1(Rn(η)).

(30)

So the common solution of (26) reads

wm(η) = w∗m(η)+C1 e−η +C2 e−κ1η +C3 eκ2η , (31)

which contains the unknown am−1. According to the
boundary conditions (27) and the rule of solution ex-
pression (9), we have C2 = C3 = 0. Moreover, the un-
known am−1 and C1 are governed by

w∗m(0)+C1 = 0, w∗m
′(0)−C1 = 0. (32)

Hence, the unknown am−1 can be obtained by solving
the linear algebraic equation

w∗m(0)+w∗m
′(0) = 0 (33)

and thereafter C1 is given by

C1 =−w∗m(0). (34)

In this way, we can derive wm(η) and am for m =
0,1,2,3, . . . successively. Then from (2) and (23),
we can obtain the travelling-wave solutions of the
Kuramoto-Sivashinsky equation. At the Mth-order ap-
proximation, we have the analytic solution of (7),
namely

w(η)≈WM(η) =
M

∑
m=0

wm(η), a≈ AM =
M

∑
m=0

am. (35)

As we know, there is only one unknown conver-
gence-control parameter c0 in usual HAM [10], and
we can determine the possible valid region of c0 by
the so called c0-curve. But unfortunately it can not tell
us which value of c0 gives the fastest convergent se-
ries. However, in the expression of the obtained so-
lution in this paper, there are at most three unknown
convergence-control parameters c0, c1, and c2, which
can make sure the convergence of the solutions. As
shown in [15], we can determined the possible optimal
values of convergence-control parameters by minimiz-
ing the averaged residual error

EM =
1
K

K

∑
j=0

[N(WM( j∆x),AM)]2, (36)

where we usually choose M = 15, ∆x = 1/2, and K =
10 in this paper. These possible optimal convergence-
control parameters will overcome the shortcomings
mentioned above in usual HAM and may give the
fastest convergent series.

3. Comparisons of Different Approaches

In this section, we will give optimal homotopy anal-
ysis approaches with different numbers of unknown
convergence-control parameters, and compare them
in details. For ease of comparison, we suppose α =
β = 1, and k =−1 as in [14].

3.1. Optimal c0 in Case of c1 = c2 = 0

In this case, the method proposed above degenerates
into the usual HAM and there is only one unknown
convergence-control parameter c0. In usual HAM, we
can investigate the influence of c0 on the series of a
by means of the so-called c0-curves. As pointed by
Liao [10], the valid region of c0 is a horizontal line
segment. Thus, the valid region of c0 in this example as
shown in Figure 2 is−1.5 < c0 <−0.8. So we can just
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Fig. 2. c0-curve for the wave amplitude a: 15-order approxi-
mation.

determine the possible valid region of c0. However, c0-
curves usually can not tell us which value of c0 gives
the fastest convergent series and it is a pity that the
exact square residual error defined in [15] needs too
much CPU time to calculate even if the order of ap-
proximation is not very high, and thus is often useless
in practice [15].

To overcome this shortcoming, Liao advised to de-
termine the possible optimal value of c0 by the mini-
mum of averaged residual error E10 [15], correspond-
ing to the nonlinear algebraic equation E ′10 = 0. Hence
from (6), we have µ = 1.875 for c = 1.5. Using the
symbolic computation software Maple, by minimizing
the averaged residual error (36), we can directly get the
optimal convergence-control parameter c0 =−1.1175.
According to Table 1, by means of c0 = −1.1175, the
value of the residual error converges much faster to 0
than the corresponding homotopy series solution given
by usual HAM [14] in case of c0 =−1 and c1 = c2 = 0,
which proves the conclusion drawn by Abbasbandy
in [14] that c0 = −1 may not be the best value for the
usual HAM. So, even the one-parameter optimal HAM
can give much better approximations.

Table 1. Comparison of averaged residual error given by dif-
ferent c0 in case of c1 = c2 = 0.

Order of Optimal Minimum Value of
approximation value of value of Em when

m c0 Em c0 =−1

5 −1.1175 1.1565×10−6 2.671×10−6

10 −1.0887 2.4742×10−11 2.5687×10−10

15 −1.1075 1.6871×10−12 3.2283×10−12

Table 2. Comparison of averaged residual error given by dif-
ferent c1 = c2 in case of c0 =−1.

Order of Optimal Minimum Value of
approximation value of value of Em when

m c1 = c2 Em c1 = c2 = 0

5 −0.1564 1.1422×10−6 2.671×10−6

10 −0.2442 4.1512×10−13 2.5687×10−10

15 −0.2119 7.787×10−17 3.2283×10−12

3.2. Optimal c1 = c2 in Case of c0 =−1

Here, we investigate another one-parameter optimal
approach in case c0 = −1 with the unknown c1 = c2.
Using the symbolic computation software Maple too,
we can directly get the possible optimal convergence-
control parameter c1 = c2 = −0.145. It is found that
the homotopy approximations given by c0 = −1 and
c1 = c2 = −0.2119 converges much faster than those
given by the usual HAM [14] in case of c0 = −1 and
c1 = c2 = 0, as shown in Table 2. This further illustrates
that the second one-parameter optimal HAM is as good
as the first one mentioned above.

3.3. Optimal c1 6= c2 in Case of c0 =−1

Here, we investigate the two-parameter optimal ap-
proach in case c0 = −1 with the unknown c1 6= c2.
According to above section, we can directly get the
optimal convergence-control parameter c1 = −0.164
and c2 = −0.154. As shown in Table 3, it is found
that the homotopy approximations given by c0 = −1,

Table 3. Comparison of averaged residual error given by dif-
ferent c1 6= c2 in case of c0 = 1.

Order of Optimal Minimum Value of
approximation value of value of Em when

m c1 6= c2 Em c1 = c2 = 0

5 c1 =−0.07105, 9.895×10−7 2.671×10−6

c2 =−0.06439

10 c1 =−0.164, 9.8934×10−12 2.5687×10−10

c2 =−0.154
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c1 =−0.164, and c2 =−0.154 converges much faster
than those given by the usual HAM [14] in case of
c0 = −1 and c1 = c2 = 0 too. This further proves
that the two-parameter optimal homotopy analysis ap-
proach is efficient too.

4. Conclusions

In this paper, a solitary wave solution of the
Kuramoto-Sivashinsky equation is reconsidered by the
optimal HAM. Compared with the usual HAM, more
convergence-control parameters are used in the above-
mentioned optimal HAM to guarantee the convergence
of the homotopy series solution. As shown in this pa-
per, by minimizing the averaged residual error, the pos-

sible optimal value of the convergence-control parame-
ters can be obtained which may give the fastest conver-
gent series. Note that the nonlinear operator N in (20)
is rather general so that the above-mentioned optimal
HAM can be employed to different types of equations
with strong nonlinearity to find the solitary wave solu-
tions with more fast convergence, which we will try in
following works.
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