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This investigation looks at the peristaltic flow of a magnetohydrodynamic (MHD) Jeffrey fluid in
a channel with compliant walls. The flow induced is due to sinusoidal waves on the channel walls.
A series solution of the resulting boundary value problem is derived when the wave amplitude is
small. Effects of various interesting flow parameters are discussed with the help of graphs.
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1. Introduction

The motion of a fluid in a channel or pipe due to
a sequence of waves which introduces clasping and
compressing in the boundary walls is known as peri-
staltic motion. The study of peristaltic flow of non-
Newtonian fluids [1 – 5] has attracted the attention of
many researchers in the recent years. There are various
applications in physiology where this motion is used
by the body to propel or mix the contents of a tube. It
appears to be the major mechanism for urine transport
in ureter, food mixing and chyme movement in the gas-
trointestinal tract, transport of spermatozoa in cervical
canal, transport of bile in bile ducts and so on. Tech-
nical roller and finger pumps also operate according to
this rule. The literature on peristaltic motion in a vis-
cous fluid is abundant and its complete survey in the
domain of biomechanics has been given by Jaffrin and
Shapiro [6]. However, it is an established fact now that
many of the physiological fluids are non-Newtonian.

The study of biomagnetic fluids has attracted the at-
tention of recent researchers. In fact, such attraction is
due to the extensive applications of biomagnetic flu-
ids in bioengineering and medical sciences. Special
relevance of such fluids appears in the development
of magnetic devices for cell separation, cancer tumor
treatment causing magnetic hyperthermia, reduction of
bleeding during surgeries and many others. The most
characteristic biomagnetic fluid is blood. Blood is a
biomagnetic fluid due to the complex interaction of
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intercellular protein, cell membrane, and hemoglobin.
On the other hand the motion of a magnetohydrody-
namic (MHD) fluid across the magnetic field induces
electric currents which change the magnetic field and
the flow of the fluid [7]. The MHD flow in a channel
having an elastic, rhythmically contracting wall (peri-
staltic flow) is of great interest in connection with cer-
tain problems of the movement of conductive phys-
iological fluids (e.g. the blood and blood pump ma-
chines). Sud et al. [8] studied the influence of a mov-
ing magnetic field on blood flow. The blood flow in
the context of magnetohydrodynamics is also investi-
gated by Srivastava and Agrawal [9]. The MHD blood
flow through an equally branched channel with flexible
boundaries inducing peristaltic waves has been exam-
ined by Agrawal and Anwaruddin [10]. Now the MHD
peristaltic flows of viscous and non-Newtonian fluids
under different aspects have been analyzed in details
(the interested readers may see the studies [11] and
several references there in). Some recent analytic and
numerical solutions for the peristaltic flows can be seen
in the investigations [12 – 27].

Literature survey witnesses that very little attention
has been given to the peristaltic motion with compli-
ant walls. Such consideration explains how a progres-
sive wave may be imparted to the walls. The com-
pliant wall is excited by the muscles whose tension
controls its deformation. Such action of muscles can
be described by equations in terms of compliant wall
displacement [28]. Abd Elnaby and Haroun [29] dis-
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cussed the peristaltic flow of a viscous fluid in a two-
dimensional channel with compliant walls. They pre-
sented the flow analysis under the assumption of small
amplitude ratio. Later Ali et al. [30] analyzed the peri-
staltic flow of a Maxwell fluid in a channel with com-
pliant walls. The objective of this study is to ana-
lyze the peristaltic flow of non-Newtonian fluids in a
channel with compliant walls. For that the constitutive
equations of a linear Jeffrey fluid have been used. The
considered fluid model is simplest and can describe the
rheological characteristics in terms of relaxation and
retardation time parameters. The paper is organized
as follows. In Section 2, we provide the mathemati-
cal modelling and problem statement. The nonlinear
differential equations subject to appropriate boundary
conditions are solved analytically in Section 3. Sec-
tion 4 describes the graphical results. Closing remarks
are presented in Section 5.

2. Problem Definition

We consider a two-dimensional channel of uniform
width 2h filled with a homogenous Jeffrey fluid. The
fluid motion in the channel is induced by imposing
small amplitude sinusoidal waves on the compliant
walls of the channel. The physical model of the prob-
lem is given as follows:

The geometry of the walls are given by

y =±h±η (1)

in which the vertical displacement η of the upper wall
from its normal position is defined as

η = acos
2π

λ
(x− ct) , (2)

Fig. 1. Scheme of the problem.

where a is the wave amplitude, c is the constant wave
speed, λ is the wavelength, for lower wall η is replaced
by −η , and in the Cartesian coordinate system x is
measured in the direction of wave propagation and y
is measured in the direction normal to the x-axis. The
relation describing the compliant nature of the wall is
given by[
m

∂ 2

∂ t2 +d
∂

∂ t
+B

∂ 4

∂x4 −T
∂ 2

∂x2 +K

]
η = p− p0. (3)

In above equation m denotes the plate mass per unit
area, d is the wall damping coefficient, B is the flex-
ural rigidity of the plate, T is the longitudinal tension
per unit width, K is the spring stiffness and p0 is the
pressure on the outside surface of the wall. We as-
sume p0 = 0 and the channel walls are inextensible
so that only their lateral motions normal to the unde-
formed positions occur. The horizontal displacement
of the walls is taken zero and hence the boundary con-
ditions are

Ψy = 0 and Ψx =∓∂η

∂ t
at y =±h±η , (4)

where the stream function Ψ(x,y, t) is defined as

u =
∂Ψ

∂y
, v =−∂Ψ

∂x
. (5)

Here u and v are the x- and y-components of the veloc-
ity V, respectively.

The fundamental equations describing the MHD
flow of an incompressible fluid are

div V = 0, (6)

ρ
dV
d t

=−∇p+ div S−σB2
0V, (7)

with p as the pressure, d/d t the material time deriva-
tive, S an extra stress tensor which for a Jeffrey fluid is

(1+λ1) S = 2µ

(
1+λ2

d
d t

)
A1. (8)

It should be pointed out that (7) holds when an induced
magnetic field is neglected and B0 is an applied mag-
netic field. In above equation µ is the dynamic viscos-
ity, λ1 is the ratio of relaxation to retardation times,
λ2 is the relaxation time, and A1 is the first Rivlin-
Erickson tensor.
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Equations (7) and (8) in scalar form can be written
as

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
=

− ∂ p
∂x

+
∂Sxx

∂x
+

∂Sxy

∂y
−σB2

0u,

(9)

ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+

∂Sxy

∂x
+

∂Syy

∂y
, (10)

Sxx =
2µ

1+λ1

[
1+λ2

(
∂

∂ t
+u

∂

∂x
+ v

∂

∂y

)]
∂u
∂x

, (11)

Sxy =
µ

1+λ1

[
1+λ2

(
∂

∂ t
+u

∂

∂x
+ v

∂

∂y

)]

·

(
∂u
∂y

+
∂v
∂x

)
,

(12)

Syy =
2µ

1+λ1

[
1+λ2

(
∂

∂ t
+u

∂

∂x
+ v

∂

∂y

)]
∂v
∂y

. (13)

The complete formulation of the problem allows the
continuity of stresses which requires that at the inter-
faces of the walls and the fluid p must be the same as
that which acts on the fluid at y =±h±η . Employing
(9), we have

∂

∂x

[
m

∂ 2η

∂ t2 +d
∂η

∂ t
+B

∂ 4η

∂x4 −T
∂ 2η

∂x2 +Kη

]
=

−ρ
(
Ψyt +ΨyΨyx−ΨxΨyy

)
+Sxx,x +Sxy,y−σB2

0Ψy,
(14)

in which subscripts indicate partial differentiation and
the incompressibility condition (6) is identically satis-
fied through (5).

Introducing the following dimensionless quantities

x̂ =
x
h
, ŷ =

y
h
, û =

u
c
, v̂ =

v
c
, t̂ =

ct
h

,

p̂ =
p

ρc2 , η̂ =
η

h
, Ψ̂ =

Ψ

ch
, m̂ =

m
ρh

,

d̂ =
dh
ρν

, B̂ =
B

ρhν2 , T̂ =
T h
ρν2 , K̂ =

Kh3

ρν2 ,

Ŝ =
hS
µc

, λ̂2 =
c
h

λ2,

(15)

the resulting problem statement after suppressing hats
take the form as

∂

∂ t
∇

2
Ψ +Ψy∇

2
Ψx−Ψx∇

2
Ψy =

1
R

(Sxx,xy +Sxy,yy−Sxy,xx−Syy,xy)−M2
Ψyy,

(16)

Sxx =
2

1+λ1
(Ψxy +λ2(Ψxyt +ΨyΨxxy−ΨxΨxyy)), (17)

Sxy =
1

1+λ1
((Ψyy−Ψxx)+λ2(Ψyyt +ΨyΨxyy−ΨxΨyyy

−Ψxxt −ΨyΨxxx +ΨxΨxxy)), (18)

Syy =
2

1+λ1
(−Ψxy +λ2 (−Ψxyt −ΨyΨxxy +ΨxΨxyy)) ,

(19)

η = ε cosα (x− t) , (20)

Ψy = 0 at y =±1±η , (21)

∂

∂x

(
m

∂ 2η

∂ t2 +
d
R

∂η

∂ t
+

B
R2

∂ 4η

∂x4 −
T
R2

∂ 2η

∂x2 +
K
R2 η

)
=

1
R

(Sxx,x +Sxy,y)− (Ψyt +ΨyΨyx−ΨxΨyy)−M2
Ψy

at y =±1±η , (22)

where ε = a/h is the amplitude ratio, α = 2πh/λ is
the wave number, R = ch/ν is the Reynolds number,
and ν = (µ/ρ) is the kinematic viscosity.

3. Method of Solution

Adopting a similar approach as in [31], the flow
quantities in powers of ε can be expanded as

Ψ = Ψ0 + εΨ1 + ε
2
Ψ2 + . . . , (23)

∂ p
∂x

=
(

∂ p
∂x

)
0
+ ε

(
∂ p
∂x

)
1
+ ε

2
(

∂ p
∂x

)
2
+ . . . , (24)

Sxx = Sxx0 + εSxx1 + ε
2Sxx2 + . . . , (25)

Sxy = Sxy0 + εSxy1 + ε
2Sxy2 + . . . , (26)

Syy = Syy0 + εSyy1 + ε
2Syy2 + . . . . (27)

Note that the first term on the right-hand side in (24)
corresponds to the imposed pressure gradient and the
other terms correspond to the peristaltic motion. Using
the above equations into (16) – (22) and then collect-
ing terms of like powers of ε , we obtain three sets of
coupled differential equations with the corresponding
boundary conditions in ε0, ε1, and ε2.
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In actual practice the ε0 set of differential equations
subject to a steady parallel flow and transverse symme-
try assumption for a constant pressure gradient in the
x-direction corresponds to the classical Poiseuille flow,
i.e.

Ψ0 (y) =
2K0

RM2

[
y− sinhΓ y

Γ coshΓ

]
+ c1, (28)

K0 =−R
2

(
d p
dx

)
0
,

in which Γ = M
√

R(1+λ1) and c1 is an arbitrary con-
stant.

The second and third sets of differential equations
in Ψ1 and Ψ2 can be written in the forms:

Ψ1 (x, y, t) =
1
2

[
Φ1 (y) eiα(x−t) +Φ

∗
1 (y) e−iα(x−t)

]
,

(29)

Sxx1 =
1
2

[
Φ2 (y) eiα(x−t) +Φ

∗
2 (y) e−iα(x−t)

]
, (30)

Sxy1 =
1
2

[
Φ3 (y) eiα(x−t) +Φ

∗
3 (y) e−iα(x−t)

]
, (31)

Syy1 =
1
2

[
Φ4 (y) eiα(x−t) +Φ

∗
4 (y) e−iα(x−t)

]
, (32)

Ψ2 (x, y, t) =
1
2

[
Φ20 (y)+Φ22 (y) e2iα(x−t)

+Φ
∗
22 (y) e−2iα(x−t)

]
,

(33)

Sxx2 =
1
2

[
Φ30 (y)+Φ33 (y) e2iα(x−t)

+Φ
∗
33 (y) e−2iα(x−t)

]
,

(34)

Sxy2 =
1
2

[
Φ40 (y)+Φ44 (y) e2iα(x−t)

+Φ
∗
44 (y) e−2iα(x−t)

]
,

(35)

Syy2 =
1
2

[
Φ50 (y)+Φ55 (y) e2iα(x−t)

+Φ
∗
55 (y) e−2iα(x−t)

]
,

(36)

where the asterisk shows the complex conjugate. In-
voking above equations into the differential equations
and their corresponding boundary conditions in Ψ1 and
Ψ2, we have three sets of coupled linear differential
equations with their corresponding boundary condi-
tions which are fourth-order ordinary differential equa-
tions with variable coefficients, and the boundary con-
ditions are not all homogeneous and the problem is

not an eigenvalue problem. For the free pumping case
(∂ p/∂x)0 = 0 which means K0 = 0, we have

iαR

[
d 2

dy2 −α
2
]

Φ1 (y) = RM2
Φ
′′
1 (y)

+ iαΦ
′
4 (y)−Φ

′′
3 (y)−α

2
Φ3 (y)− iαΦ

′
2 (y) ,

(37)

(1+λ1)Φ2 (y) = 2iα (1− iαλ2) Φ
′
1 (y) , (38)

(1+λ1)Φ3 (y) = (1− iαλ2)
(
Φ
′′
1 (y)+α

2
Φ1 (y)

)
,
(39)

(1+λ1)Φ4 (y) =−2iα (1− iαλ2) Φ
′
1 (y) , (40)

Φ
′
1 (±1) = 0, (41)

iαRΦ
′
1 (±1)+ iαΦ2 (±1)

+Φ
′
3 (±1)−RM2

Φ
′
1 (±1) = Rδ ,

(42)

δ =− iα
R2

(
α

2R2m+ iαRd−α
4B−α

2T −K
)

,

Φ
′′
40 (y) =

iαR
2

[
Φ
∗
1 (y) Φ

′′
1 (y)−Φ1 (y) Φ

∗′′
1 (y)

]′
+RM2

Φ
′′
20 (y) , (43)

Φ30 (y) =− α2λ2

1+λ1

[
Φ1 (y) Φ

∗′′
1 (y)+Φ

∗
1 (y) Φ

′′
1 (y)

+2Φ
′
1 (y) Φ

∗′
1 (y)

]
, (44)

Φ40 (y) =
1

1+λ1
Φ
′′
20 (y)− iαλ2

2(1+λ1)
[
Φ1 (y) Φ

∗′′
1 (y)

−Φ
∗
1 (y) Φ

′′
1 (y)

]′
, (45)

Φ50 (y) =
α2λ2

1+λ1

[
Φ1 (y) Φ

∗′′
1 (y)+Φ

∗
1 (y) Φ

′′
1 (y)

+2Φ
′
1 (y) Φ

∗′
1 (y)

]
, (46)

Φ
′
20 (±1) =∓1

2

[
Φ
′′
1 (±1)+Φ

∗′′
1 (±1)

]
, (47)

Φ
′
40 (±1) =− iαR

2

[
Φ1 (±1) Φ

∗′′
1 (±1)

−Φ
∗
1 (±1) Φ

′′
1 (±1)

]
+RM2

Φ
′
20 (±1)

∓ iαR
2

[
Φ
′′
1 (±1)−Φ

∗′′
1 (±1)

]
± RM2

2

[
Φ
′′
1 (±1)+Φ

∗′′
1 (±1)

]
∓ iα

2

[
Φ
′
2 (±1)−Φ

∗′
2 (±1)

]
∓ 1

2

[
Φ
′′
3 (±1)+Φ

∗′′
3 (±1)

]
, (48)
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2iαR

[
d2

dy2 −4α
2
]

Φ22 (y) = RM2
Φ
′′
22 (y)

+
iαR

2

[
Φ
′
1 (y) Φ

′′
1 (y)−Φ1 (y) Φ

′′′
1 (y)

]
−Φ

′′
44 (y)

−4α
2
Φ44 (y)−2iαΦ

′
33 (y)+2iαΦ

′
55 (y) , (49)

(1+λ1)Φ33 (y) =
α2λ2

(1+λ1)
[
Φ1 (y) Φ

′′
1 (y)−Φ

′2
1 (y)

]
+

4iα (1−2iαλ2)
(1+λ1)

Φ
′
22 (y) , (50)

(1+λ1)Φ44 (y) =
iαλ2

2

[
Φ
′
1 (y) Φ

′′
1 (y)

−Φ1 (y) Φ
′′′
1 (y)

]
+

(1−2iαλ2)
(1+λ1)

Φ
′′
22 (y)

· 4α2 (1−2iαλ2)
(1+λ1)

Φ22 (y) , (51)

(1+λ1)Φ55 (y) =− α2λ2

(1+λ1)
[
Φ1 (y) Φ

′′
1 (y)−Φ

′2
1 (y)

]
− 4iα (1−2iαλ2)

(1+λ1)
Φ
′
22 (y) , (52)

Φ
′
22 (±1) =∓1

2
Φ
′′
1 (±1) , (53)

2Φ
′
44 (±1) = iαRΦ

′
1 (±1) Φ

′
1 (±1)−4iαRΦ

′
22 (±1)

−4iαΦ33 (±1)∓Φ
′′
3 (±1)

+2RM2
Φ
′
22 (±1)∓ iαΦ

′
2 (±1)

∓ iαRΦ
′′
1 (±1)− iαRΦ1 (±1) Φ

′′
1 (±1)

±RM2
Φ
′′
1 (±1) , (54)

where primes signify differentiation with respect to y.
The solutions of (37) – (42) are

Φ1 (y) =A1 sinhα1y+B1 sinhβ1y, (55)

Φ2 (y) =A2 coshα1y+B2 coshβ1y, (56)

Φ3 (y) =A3 sinhα1y+B3 sinhβ1y, (57)

Φ4 (y) =−A2 coshα1y−B2 coshβ1y, (58)

A1 =− (1+λ1) Rδ

(1− iαλ2)
(
β 2

1 −α2
1

)
α1 coshα1

,

B1 =
(1+λ1) Rδ

(1− iαλ2)
(
β 2

1 −α2
1

)
β1 coshβ1

,

A2 =
2iαα1 (1− iαλ2)

(1+λ1)
A1,

B2 =
2iαβ1 (1− iαλ2)

(1+λ1)
B1,

A3 =
(1− iαλ2)
(1+λ1)

(
α

2 +α
2
1

)
A1,

B3 =
(1− iαλ2)
(1+λ1)

(
α

2 +β
2
1

)
B1,

α
2
1 =

N +
√

N2−4αβ 2

2
,

β
2
1 =

N−
√

N2−4αβ 2

2
,

N = α
2 +β

2−
i
(
α2−β 2

)
M2

α
.

The solution of (43) – (48) is

Φ
′
20 (y) =F (y)+2C1

[
coshΓ y− coshΓ

Γ 2 coshΓ

]
+(D−F (1))

coshΓ y
coshΓ

.

(59)

The peristaltic mean flow is

ū(y) =
ε2

2
Φ
′
20 (y)

=
ε2

2

[
F (y)+2C1

(
coshΓ y− coshΓ

Γ 2 coshΓ

)

+(D−F (1))
coshΓ y
coshΓ

]
,

(60)

D = − 1
2

[
A1α

2
1 sinhα1 +A∗1α

∗2
1 sinhα

∗
1 +B1β

2
1 sinhβ1

+B∗1β
∗2
1 sinhβ

∗
1

]
,

C1 = − RM2 (1+λ1)
2

D+A4 sinhα1 +A∗4 sinhα
∗
1

+B4 sinhβ1 +B∗4 sinhβ
∗
1 ,

A4 =− (1+λ1)
4

[
iαα

2
1 RA1 + iαα1A2 +A3α

2
1

]
,

B4 =− (1+λ1)
4

[
iαβ

2
1 RB1 + iαβ1B2 +B3β

2
1

]
,

F (y) =s1 cosh2αy+ s2 cosh(α +β )y

+ s3 cosh(α−β )y+ s4 cosh(α +β
∗)y

+ s5 cosh(α−β
∗)y+ s6 cosh(β +β

∗)y

+ s7 cosh(β −β
∗)y,
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s1 =
iαA1A∗1

(
α2

1 −α∗21

)
4
[(

α1 +α∗1
)2−Γ 2

]
·
[
R(1+λ1)−λ2 (α1 +α

∗
1 )2
]
,

s2 =
iαA1A∗1

(
α2

1 −α∗21

)
4
[(

α1−α∗1
)2−Γ 2

]
·
[
−R(1+λ1)+λ2 (α1−α

∗
1 )2
]
,

s3 =
iαA1B∗1

(
α2

1 −β ∗21

)
4
[(

α1 +β ∗1
)2−Γ 2

]
·
[
R(1+λ1)−λ2 (α1 +β

∗
1 )2
]
,

s4 =
iαA1B∗1

(
α2

1 −β ∗21

)
4
[(

α1−β ∗1
)2−Γ 2

]
·
[
−R(1+λ1)+λ2 (α1−β

∗
1 )2
]
,

s5 =
iαB1A∗1

(
β 2

1 −α∗21

)
4
[(

α∗1 +β1
)2−Γ 2

]
·
[
R(1+λ1)−λ2 (α∗1 +β1)

2
]
,

s6 =
iαB1A∗1

(
α∗21 −β 2

1

)
4
[(

α∗1 −β1
)2−Γ 2

]
·
[
R(1+λ1)−λ2 (β1−α

∗
1 )2
]
,

s7 =
iαB1B∗1

(
β 2

1 −β ∗21

)
4
[(

β1 +β ∗1
)2−Γ 2

]
·
[
R(1+λ1)−λ2 (β1 +β

∗
1 )2
]
,

s8 =
iαB1B∗1

(
β 2

1 −β ∗21

)
4
[(

β1−β ∗1
)2−Γ 2

]
·
[
−R(1+λ1)+λ2 (β1−β

∗
1 )2
]
.

At critical reflux condition, ū is zero at y = 0 [29] and
so invoking (60) we have

Tcritical reflux =
H1 +

√
H2

1 −4H2

2
, (61)

H =
(h1 +h2)

α1α∗1 coshα1 coshα∗1
+

(h3 +h4)
α1β ∗1 coshα1 coshβ ∗1

+
(h5 +h6)

α∗1 β1 coshα∗1 coshβ1
+

(h7 +h8)
β1β ∗1 coshβ1 coshβ ∗1

,

H1 =
1

α2 [2L3 +g3 +g∗3] ,

H2 =
1

α4 [L4L∗4 +L4g3 +L∗4g∗3] ,

g =
iαR2 (1+λ1)

2

4
(
1+α2λ 2

2

)(
β 2

1 −α2
1

)(
β ∗21 −α∗21

) ,
g1 = − R(1+λ1)

2(1− iαλ2)
(
β 2

1 −α2
1

) [(1− coshΓ

Γ 2 coshΓ

)
·
(
−iαR(1+λ1)+(1− iαλ2)

(
α

2−α
2
1

))
−1

]
,

g2 = − R(1+λ1)
2(1− iαλ2)

(
β 2

1 −α2
1

) [(1− coshΓ

Γ 2 coshΓ

)
·
(

iαR(1+λ1)+(1− iαλ2)
(
β

2
1 −α

2))−1

]
,

g3 = − iR2

αH
[g1α1 tanhα1 +g2β1 tanhβ1] ,

L3 = α
2R2m−α

4B−K, L4 = iαRd +L3,

h1 =
g
(
α2

1 −α∗21

)[(
α1 +α∗1

)2−Γ 2
] [1− cosh(α1 +α∗1 )

coshΓ

]
·
[
R(1+λ1)−λ2 (α1 +α

∗
1 )2
]
,

h2 =
g
(
α2

1 −α∗21

)[(
α1−α∗1

)2−Γ 2
] [1− cosh(α1−α∗1 )

coshΓ

]
·
[
−R(1+λ1)+λ2 (α1−α

∗
1 )2
]
,

h3 =
−g
(
α2

1 −β ∗21

)[(
α1 +β ∗1

)2−Γ 2
] [1− cosh(α1 +β ∗1 )

coshΓ

]
·
[
R(1+λ1)−λ2 (α1 +β

∗
1 )2
]
,

h4 =
−g
(
α2

1 −β ∗21

)[(
α1−β ∗1

)2−Γ 2
] [1− cosh(α1−β ∗1 )

coshΓ

]
·
[
−R(1+λ1)+λ2 (α1−β

∗
1 )2
]
,



112 T. Hayat et al. · Electrically Conducting Jeffrey Fluid with Compliant Wall and Peristalsis

h5 =
−g
(
β 2

1 −α∗21

)[(
α∗1 +β1

)2−Γ 2
] [1− cosh(α∗1 +β1)

coshΓ

]
·
[
R(1+λ1)−λ2 (α∗1 +β1)

2
]
,

h6 =
−g
(
α∗21 −β 2

1

)[(
α∗1 −β1

)2−Γ 2
] [1− cosh(α∗1 −β1)

coshΓ

]
·
[
R(1+λ1)−λ2 (β1−α

∗
1 )2
]
,

h7 =
g
(
β 2

1 −β ∗21

)[(
β1 +β ∗1

)2−Γ 2
] [1− cosh(β1 +β ∗1 )

coshΓ

]
·
[
R(1+λ1)−λ2 (β1 +β

∗
1 )2
]
,

Fig. 2. Variation of D with wave number α for four different values of (a): the wall damping d, (b): Hartman number M, (c):
the ratio of the relaxation time to the retardation time λ1, and (d): the retardation time λ2. The other parameters are chosen
as: (a) m = 0.01, B = 2, T = 1, K = 1, M = 2, R = 10, λ1 = 0.8, and λ2 = 0.5; (b) m = 0.01, B = 2, T = 1, K = 1, R = 10,
d = 0.5, λ1 = 0.8, and λ2 = 0.4; (c) m = 0.01, B = 2, T = 1, K = 1, R = 10, M = 1, d = 0.5, and λ2 = 0.2; (d) m = 0.01,
B = 2, T = 1, K = 1, R = 10, M = 1, d = 0.5, and λ1 = 1.5.

h8 =
g
(
β 2

1 −β ∗21

)[(
β1−β ∗1

)2−Γ 2
] [1− cosh(β1−β ∗1 )

coshΓ

]
·
[
−R(1+λ1)+λ2 (β1−β

∗
1 )2
]
.

4. Results and Discussion

This section describes the effects of various
emerging flow parameters. For this purpose, the
mean-velocity at the boundaries of the channel, the
time-averaged mean axial velocity distribution and
reversal flow are calculated and the results are dis-
cussed graphically when K0 = 0. The constant D which
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Fig. 3. Variation of D with wave number α for different flu-
ids. The values of the other parameters are m = 0.01, B = 2,
T = 1, K = 1 , M = 2, R = 10, and d = 0.5.

Fig. 4. Variation of mean-velocity distribution and reversal flow for three different values of (a): the wall damping d, (b):
Hartman number M, (c): the ratio of the relaxation time to the retardation time λ1, and (d): the retardation time λ2. The values
of other parameters are: (a) m = 0.01, B = 2, T = 1, K = 1, R = 1, α = 0.5, ε = 0.15, λ1 = 0.8, and λ2 = 0.4; (b) m = 0.01,
B = 2, K = 1, T = 1, R = 1, d = 0.5, α = 0.5, ε = 0.15, λ1 = 0.8, and λ2 = 0.4; (c) m = 0.01, B = 2, T = 1, K = 1, R = 1,
M = 1, d = 0.5, α = 0.5, ε = 0.15, and λ2 = 0.4, and (d) m = 0.01, B = 2, T = 1, K = 1, R = 1, M = 1, d = 0.5, α = 0.5,
ε = 0.15, and λ1 = 0.4.
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Fig. 5. Variation of mean-velocity distribution and reversal
flow for different fluids. The values of other parameters are
m = 0.01, B = 2, T = 1, K = 1, M = 1, R = 10, α = 0.5,
ε = 0.15, and d = 0.5.

Fig. 6. Variation of critical values of wall tension T with wave number α for three different values of (a): the Reynolds
number R, (b): Hartman number M, (c): the ratio of the relaxation time to the retardation time λ1, and (d): the retardation time
λ2. The values of other parameters are: (a) m = 0.01, B = 2, K = 1, d = 0.5, M = 0.5, λ1 = 0.7, and λ2 = 0.4; (b) m = 0.01,
B = 2, K = 1, d = 0.5, R = 8, λ2 = 0.4, and λ1 = 0.7; (c) m = 0.01, B = 2, K = 1, R = 8, M = 0.5, d = 0.5, and λ2 = 0.4,
and (d) m = 0.01, B = 2, K = 1, R = 8, M = 0.5, d = 0.5, and λ1 = 1.5.

initially arises from the no-slip condition of the axial-
velocity on the wall is due to the value of Φ ′20 (y) at
the boundary. The mean-velocity at the boundaries of
the channel is ū(±1) = ε2

2 Φ ′20 (±1) = ε2

2 D [29]. Fig-
ure 2a depicts wall damping (d) effects on the bound-
aries D. We conclude that D decreases upon increas-
ing d. The effects of Hartman number M on the mean
velocity at the boundaries are shown in Figure 2b. It
is found from this figure that the mean velocity at the
boundaries increases with increasing Hartman number
M. Figure 2c elucidates the effect of the ratio of the re-
laxation time to the retardation time λ1 on the mean ve-
locity at the boundaries of the channel. It is noticed that
D decreases with an increase in λ1. However, an oppo-
site behaviour is observed in Figure 2d which shows
the effect of the retardation time λ2 on D. The effects
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Fig. 7. Variation of critical values of wall tension T with
wave number α for different fluids. The values of other pa-
rameters are m = 0.01, B = 2, K = 1, M = 0.5, R = 10,
α = 0.5, and d = 0.5.

of different fluids on the mean velocity at the bound-
aries of the channel are depicted in Figure 3. This fig-
ure shows that the mean velocity at the boundaries is
greater in the case of the Newtonian fluids when com-
pared to a Jeffrey fluid. It is noted that damping may
cause the mean flow reversal at the walls which is not
possible in the elastic case. Furthermore, for small α

the damping occurs which indicate some disturbances
during the motion. The variations of d and M on the
mean velocity distribution and reversal flow are plot-
ted in Figures 4a and b. It is revealed that the possibil-
ity of flow reversal increases by increasing M (Fig. 4b)
while in case of d the situation is reversed (Fig. 4a).
The variations of λ1 and λ2 on the mean velocity dis-
tribution and reversal flow are shown in the Figures 4c
and d. It is noticed that the flow reversal increases by
increasing λ1 and λ2 (Figs. 4c and d). The behaviour
of different fluids on the mean velocity distribution and
reversal flow is depicted in Figure 5. This figure indi-
cates that magnitude of the velocity is large for the lin-
ear Jeffrey fluid when compared with the Newtonian
fluid. Following Fung and Yih [31], the mean-velocity

perturbation function G(y) is defined by

G(y) =− 200
α2R2 [F (y)−F (1)] . (62)

From Figures 6a and b it is observed that the criti-
cal value of T increases when Reynolds number R and
the Hartman number M are increased. It is seen from
Figure 6c that the effect of the ratio of the relaxation
time to the retardation time λ1 on critical value of T is
quite opposite to that of λ2 (Fig. 6d). We further note
that the critical value of T is very high for small values
of the wave number α when compared with its large
values. Figure 7 reveals the fact that the critical values
of T are greater in comparison of the Newtonian fluid
with Jeffrey fluid.

5. Closing Remarks

This study describes the peristaltic flow of an in-
compressible Jeffrey fluid. The two-dimensional equa-
tions are modeled and the analytical results are pre-
sented for the free pumping case. The main results of
this analysis are as follows:

• There is a decrease in the constant D when λ1 is
increased.

• The role of λ2 on D is quite opposite to that of λ1.
• The flow reversal increases by increasing λ1 and λ2

while the flow reversal decreases when d increases.
• The magnitude of velocity in Jeffrey fluid is greater

than that of Newtonian fluid.
• The corresponding results of viscous fluid [29] can

be deduced when λ1 and λ2 are equal to zero.
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