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Adomian decomposition and He’s variational iteration methods are analytical techniques, which
can be used for solving various kinds of problems. The main property of these methods is in their
flexibility and ability to solve nonlinear equations accurately. In this paper, the decomposition method
and the variational iteration technique are explained, and their merits as well as their drawbacks are
discussed. Then a new implementation of these methods is proposed, which yields an approximate
solution with high accuracy in large regions and less computational efforts. A system of integro-
differential equations arising in modelling of the biological species [1] living together is employed to
show how these techniques work efficiently.
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1. Introduction

Numerical methods can be efficient and accurate
tools for solving various types of equations. These
methods are based on the discretization techniques
which are implemented with limiting considerations to
guarantee the stability and convergence. This feature is
the main problem in the numerical methods, especially
for nonlinear equations, because the small perturbation
in the given data which is not avoidable in the numer-
ical schemes causes large amount of perturbations in
the approximate solution. Although analytical methods
are not always applicable, these schemes are efficient
for avoiding the perturbation.

In this work, we consider two efficient methods for
finding an approximate solution of a large class of
linear and nonlinear problems. These techniques are
known as the Adomian decomposition method (ADM)
and the variational iteration method (VIM).

The ADM has been proposed by the American
mathematician G. Adomian. It is based on the search
for a solution in the form of a series and on decompos-
ing the nonlinear operator in to a series in which the
terms are calculated recursively using Adomian poly-
nomials [2]. It can be used for many kinds of differ-
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ential equations [3]. For solving problems in calcu-
lus of variations, this scheme is investigated in [4].
Furthermore, this method is used for finding the solu-
tion of higher-order differential equations [5 – 7]. The
Adomian decomposition method is employed in [8] to
solve the pantograph equation which arises in the mod-
elling of electrodynamic problems.

This approach is proposed in [9] to solve the Eikonal
nonlinear partial differential equation. This approach
which accurately computes the series solution is of
great interest to engineering, physics, biology, and so
on. This scheme provides the solution in a rapidly
convergent series with components that can be ele-
gantly computed [10 – 12]. In [13] the Adomian de-
composition method and the modified Adomian de-
composition method are improved for solving approxi-
mately homogeneous and inhomogeneous two-dimen-
sional heat equations using Padé approximations. Also
this approach was used to find approximate solutions
of the coupled Burgers equations [13]. The results
show that these techniques increase efficiently the ac-
curacy of approximate solutions and lead to conver-
gence with a rate faster than using the Adomian de-
composition and the modified Adomian decomposition
methods [13]. Also in [14] authors used the Adomian-



94 M. Tatari et al. · ADM and VIM for Modelling Biological Species Living Together

Padé and modified Adomian-Padé techniques for solv-
ing approximately inhomogeneous systems of Volterra
functional equations. The results demonstrate that the
ADM-Padé (modified ADM-Padé) technique gives the
approximate solution with faster convergence rate and
higher accuracy than using the standard ADM (mod-
ified ADM) [14]. The well-known delay differential
equation, namely pantograph equation of order m, is
investigated in [15] using the Adomian decomposition
method.

Using the ADM, we get a series solution. The series
often coincides with Taylor expansion of the true solu-
tion. Although this series has high accuracy in a very
small region, it does not have desired accuracy in the
wider region.

To remedy this drawback, we introduce the local
Adomian decomposition method (LADM). This new
idea is based on using the Adomian decomposition
method repeatedly in the prescribed subregions.

The well known He’s variational iteration method
is a very powerful method for solving a large amount
of problems. This technique is developed by the Chi-
nese researcher J. H. He [16]. This scheme is applied to
find the solution of several classes of variational prob-
lems [17]. Application of this method to Helmholtz
equation is investigated in [18]. The variational iter-
ation method is used for solving autonomous ordinary
differential systems in [16]. In [19], this method has
been used for studying nonlinear oscillators. The effi-
ciency of this method for solving various type of prob-
lems is shown in [1, 18, 20 – 25]. The variational itera-
tion procedure is employed in [26] to solve the nonlin-
ear mixed Volterra-Fredholm integral equations. This
method is applied in [27] to find the solution of tele-
graph and fractional telegraph equations. Also the use
of this method for solving linear fractional partial dif-
ferential equations arising from fluid mechanics is pre-
sented in [28, 29]. The study of singular value prob-
lems of Lane-Emden type has been carried out in [30].
For more information in this field see [31, 32].

The variational iteration method is a very efficient
method for solving initial value problems. It provides
a sequence which converges to the solution of the prob-
lems without discretization of the variables. Although
the method is rapidly convergent, it is only accurate
in a small region. To find the solution in the larger
regions, more terms of the sequence should be found
which is impossible or difficult.

In this study we introduce a local variant of He’s
variational iteration method (LVIM), which is pro-

posed in [33]. The main idea behind the new method is
the successive use of the variational iteration method in
the subregions. This approach remedies the growth of
the approximate solution in He’s variational iteration
method.

Integro-differential equations play an important role
in modelling of physical and biological phenomena. In
this paper the following nonlinear system of integro-
differential equations which arises in modelling of the
biological species living together [1] is considered:

dp
dt

= p(t)
[

k1 − γ1q(t)−
∫ t

t−T0

f1(t − τ)q(τ)dτ
]

+ g1(t), k1,γ1 > 0, 0 ≤ t ≤ l,
(1)

dq
dt

= q(t)
[
− k2 + γ2 p(t)+

∫ t

t−T0

f2(t − τ)p(τ)dτ
]

+ g2(t), k2,γ2 > 0, 0 ≤ t ≤ l,
(2)

with the initial conditions

p(0) = α1, q(0) = α2,

where p and q are unknown, and f1, f2, g1, and g2 are
given functions.

The rest part of this paper is organized as fol-
lows: In Section 2, the decomposition method is re-
viewed and the new technique is introduced. Descrip-
tions of He’s variational iteration method and local-
ization technique are carried out in Section 3. In Sec-
tion 4, implementation of these methods on the system
of integro-differential equations is given. Some exam-
ples of integro-differential equations [1] have been pre-
sented to show the efficiency of the new methods in
Section 5. Finally, a conclusion is drawn in Section 6.

2. Adomian Method and its New Implementation
Based on the Localization Technique

Let us consider a problem in an operator form [2]:

Ly−Ny = f (t), t ≥ t0, (3)

where generally L is an invertible linear operator,
which is taken as highest-order derivative, N repre-
sents the nonlinear operator which contains less-order
derivatives, and f is a given function. Operating L−1

on two sides of (3) yields

L−1Ly = L−1Ny+L−1 f .
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An equivalent expression is

y = Φ +L−1Ny+L−1 f ,

where Φ is the integration constant. If L is a second-
order derivative, then L−1 is a two-fold integration and
is defined for a function g(t) as follows:

L−1(g(t)) =
∫ t

t0

∫ x2

t0
g(x1)dx1dx2.

Applying the operator L−1 = d2

dt2 to both sides of (3)
yields

y(t)−y(t0)−y′(t0)t +y′(t0)t0 = L−1N(y)+L−1 f ,

or equivalently

y = Φ +L−1Ny+L−1 f , (4)

where Φ = y(t0)+ y′(t0)t − y′(t0)t0. According to the
decomposition procedure of Adomian, the solution y is
represented as the infinite sum of series

y =
∞

∑
n=0

yn(t) (5)

and takes the nonlinear expression N(y) by the infinite
series of Adomian polynomial, given by

N(y) =
∞

∑
n=0

Nn. (6)

The components Nn are appropriate Adomian polyno-
mials, which are calculated in the following form [3]:

Nn(y0,y1, . . . ,yn) =
1
n!

dn

dλ n N
( ∞

∑
k=0

λ kyk

)∣∣∣∣
λ=0

,

n ≥ 0.

Putting (6) and (5) into (4) gives

∞

∑
n=0

yn = Φ +L−1 f +L−1
∞

∑
n=0

Nn.

Each term of series (5) is given by the recurrent relation

y0 = Φ +L−1 f , yn = L−1Nn−1, n ≥ 1. (7)

However, in practice all terms of the series (5) can not
be determined, and the solution will be approximated
by a truncated series

Ψn =
n

∑
i=0

yi(t), n ≥ 0. (8)

Since this method finds a solution of the given equa-
tion without any requirement to discretization and lin-
earization, we should use symbolic computation for
finding approximate solution.

Although the series solutions converge rapidly only
in a small region, in a wider region, they may have very
slow convergence, and then their truncations yield in-
accurate results. For description of the behaviour of Ψn
in a large region, we generally consider the initial value
problem

y′ = N(y)+ f (t) (9)

with the initial term y0 = y(t0). In fact, problem (9)
is the general form of the integro-differential equa-
tions (1) and (2). In this case L = d

dt and implement-
ing (7) yields

y0(t) = y0 +

∫ t

t0
f (s)ds,

yn+1 =

∫ t

t0
Nn(y0, . . . ,yn)ds, n ≥ 0.

(10)

Thus, according to (10) for k ∈ N, we have

k

∑
i=1

yi =
k

∑
i=1

∫ t

t0
Ni−1(y0, . . . ,yi−1)ds

=

∫ t

t0

k

∑
i=1

Ni−1(y0, . . . ,yi−1)ds.

(11)

Therefore (10) and (11) yield

k

∑
i=0

yi = y0+

∫ t

t0
f (s)ds+

∫ t

t0

k

∑
i=1

Ni−1(y0, . . . ,yi−1)ds.

(12)

Also the differential equation (9) can be written as

y = y0 +

∫ t

t0
(N(y(s))+ f (s))ds. (13)

Finally, using (12) and (13), we deduce

∣∣∣∣y−
k

∑
i=0

yi

∣∣∣∣=∣∣∣∣
∫ t

t0

(
N(y(s))−

k

∑
i=1

Ni−1(y0, . . . ,yi−1)

)
ds
∣∣∣∣

≤
∫ t

t0

∣∣∣∣N(y(s))−
k

∑
i=1

Ni−1(y0, . . . ,yi−1)

∣∣∣∣ds
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≤ (t − t0)
(∥∥∥∥N(y)−

k

∑
i=1

Ni−1(y0, . . . ,yi−1)

∥∥∥∥
∞

)

≤ (t − t0)‖N(y)‖∞ +(t − t0)
k

∑
i=1

‖Ni−1(y0, . . . ,yi−1)‖∞.

According to (9), we get N(y) = y′ − f (t). Hence,

∥∥∥∥y−
k

∑
i=0

yi

∥∥∥∥
∞
≤ (t − t0)

(
‖y′‖∞ + ‖ f‖∞

+
k

∑
i=1

‖Ni−1(y0, . . . ,yi−1)‖∞

)
.

(14)

On the other hand (10) yields

y′n+1 = Nn(y0, . . . ,yn), n ≥ 0.

So, (14) gives

∥∥∥∥y−
k

∑
i=0

yi

∥∥∥∥
∞
≤ (t − t0)

(
‖y′‖∞ + ‖ f‖∞+

k

∑
i=1

‖y′i‖∞

)
,

(15)

which results that the maximum error increases by the
growth of t. Moreover, the maximum error depends
on f and y′i for 1 ≤ i ≤ k and y′. Therefore, if f and y′i
converge to infinity by the growth of t, the maximum
error converges rapidly to infinity.

In the new method we try to reduce the error of this
method by controlling the right hand side in (15). Ac-
cording to (15) an idea for reducing the error is to de-
crease k and t − t0. For a moderate n0, ∑n0

i=0 y0
i is found

as an approximation of the solution in the region [t0, t1]
by means of

y0
0(t) = y(t0)+

∫ t

t0
f (s)ds, y0

i+1 =

∫ t

t0
N0

i ds,

0 ≤ i ≤ n0 − 1.

Therefore, we write

y0 =
n0

∑
i=0

y0
i .

Then the initial value problem (9) is considered for t >
t1 with the initial condition y0(t1). So the new solution
is written as

y1
0(t) = y0(t1)+

∫ t

t1
f (s)ds, y1

i+1 =

∫ t

t1
N1

i ds,

0 ≤ i ≤ n1 − 1,

with the initial term y1
0 = y0(t1). Hence,

y1 =
n1

∑
i=0

y1
i . (16)

This is an approximate solution in [t1, t2] where t2 is
chosen in a region so that ∑n1

i=0 y1
i be sufficiently accu-

rate in [t1, t2].
Generally for t ∈ [tm, tm+1], we have ym

0 = ym−1(tm)
and

ym
0 (t) = ym

0 +
∫ t

tm
f (s)ds, ym

i+1 =
∫ t

tm
Nm

i ds,

0 ≤ i ≤ nm − 1.

Therefore,

ym =
nm

∑
i=0

ym
i ,

where the choice of ni depends on hi = ti+1 − ti.
This procedure is called local Adomian decomposi-
tion method (LADM). For convenience, we can as-
sume ni = n and hi = h for i = 0, . . . ,m, then we set

F0 = a+
∫ t

b
f (s)ds, Fi+1 =

∫ t

b
Ni(F0, . . . ,Fi)ds,

0 ≤ i ≤ n− 1.

So Fn = Fn(a,b). Therefore, the solution of the prob-
lem is provided in the piecewise form as

yn(t) = Fn(yn(ti), ti) if ti ≤ t ≤ ti+1,

for i = 0,1,2, . . . ,

where ti = t0 + ih for i = 1,2, . . . . Since it needs only
a symbolic computation in finding Fn for a small n, the
new technique provides the solution of the problem in
a short time. We can apply the above scheme on the
system of equations

L(yl)−Nl(y1, . . . ,ys) = fl , l = 1,2, . . . ,s, (17)

where Nl for l = 1, . . . ,s, are nonlinear operators and fl
for l = 1, . . . ,s, are given functions. Thus we have

yl(t) = yl(t0)+L−1 fl +L−1Nl(y1,y2, . . . ,ys),

l = 1,2, . . . ,s.

By ADM, the following recursive relation is deduced:

yl0(t) = yl(t0)+L−1 fl(t), yl(n+1)(t) = L−1Nln,

n ≥ 0, l = 1,2, . . . ,s,
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and the series solution is given in the following form:

yl(t) =
∞

∑
n=0

yln(t), l = 1,2, . . . ,s.

Now we implement LADM. So for t ∈ [tm, tm+1], we
have ym

l0 = ym−1
l (tm), for l = 1,2, . . . ,s, and

ym
l0(t) = ym

l0 +

∫ t

tm
fl(s)ds, ym

l(i+1) =

∫ t

tm
Nm

li ds,

0 ≤ i ≤ nm − 1.

Therefore, the approximate solution for t ∈ [tm, tm+1] is

ym
l (t) =

nm

∑
i=0

ym
li (t). l = 1,2, . . . ,s.

3. Variational Iteration Method and the New
Implementation

In this method the problem is considered as

Ly+Ny = g(t), (18)

where L is a linear operator, N is a nonlinear operator,
and g(t) is a given function. In this scheme, a correc-
tion functional is constructed by a general Lagrange
multiplier, which can be identified optimally via the
variational theory [20]. Using the variational iteration
method (VIM), the following correction functional is
considered:

yn+1 = yn +
∫ t

t0
λ (Lyn(s)+Nỹn(s)−g(s))ds, (19)

where the initial condition has been given in t0, λ is
Lagrange multiplier, the subscript n denotes the n-th
approximation, ỹn is considered as a restricted vari-
ation which means that δ ỹn = 0 [34]. By taking the
variation from both sides of the correction functional
with respect to the independent variable yn and impos-
ing δyn+1 = 0, the stationary conditions are obtained.
Using the stationary conditions, the optimal value of λ
is identified and is classified for different forms of dif-
ferential equations in [31].

Since this method avoids the discretization of the
problem, it is possible to find a closed form solution
without any round off error.

A description of VIM for solving integro-differen-
tial equations (1) – (2) is given in [1].

In this study we consider integro-differential equa-
tion (1) and (2) in the general form

y′ = N(y)+ g(t) (20)

with the given initial condition y(t0). So for this prob-
lem He’s variational iteration method is given in the
form

yn+1 = yn +
∫ t

t0
λ (y′n(s)−Nyn(s)− g(s))ds

with the initial term y0 = y(t0).
In some problems finding more terms of the se-

quence (yn) is difficult or impossible. So an accurate
approximation is provided near the initial condition
only. Namely, the approximate solution is accurate in
t0 ≤ t ≤ t1. Since yn has been found by successive
integrations, it contains terms with high powers of t.
Therefore, yn converges to infinity faster than y as t in-
creases. For studying the behaviour of yn, VIM yields

yn+1 = yn +

∫ t

t0
λ (y′n(s)−Nyn(s)− g(s))ds.

Also the differential equation can be written as

y = y(t0)+
∫ t

t0
(Ny(s)+ g(s))ds.

Therefore, we have

|y− yn+1|=
∣∣∣∣y(t0)− yn +

∫ t

t0

(
Ny(s)+ g(s)

+ λ Nyn(s)+λ g(s)−λ y′n(s)
)

ds
∣∣∣∣.

(21)

The integro-differential equations (1) and (2) can be
written as y′ +αy+ f (y, t) = 0, so the optimal value
of λ according to [31] is −eα(s−t) for t0 ≤ s ≤ t.

Hence, −1 ≤ λ ≤ 0 and Ny = y′ − g(t), and we can
write

|y− yn+1| ≤ |y(t0)− yn|
+

∫ t

t0
|y′+λ Nyn(s)+λ g(s)−λ y′n(s)|ds

≤ |y(t0)− yn|+
∫ t

t0

(|y′(s)|+ |λ Nyn(s)|
+ |λ g(s)|+ |λ y′n(s)|

)
ds.

So we have

‖y− yn+1‖∞ ≤ ‖y(t0)− yn‖∞ +(t − t0)
(‖y′‖∞

+ ‖Nyn(s)‖∞ + ‖g‖∞+ ‖y′n‖∞
)
,

(22)
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which results that the maximum error increases by the
growth of t, y′n, y′, and g. In fact, the approximate so-
lution is not accurate in the larger regions.

In the new method using the approximations which
have been resulted from less iterations, we try to over-
come this problem. For an appropriate n0, y0

n0
is found

as an approximation of the solution of the problem in
a small region [t0, t1] by the sequence

y0
n+1 = y0

n +

∫ t

t0
λ (y′0n (s)−Ny0

n(s)− g(s))ds

with initial term y0
0 = y(t0). Then the initial value prob-

lem (20) is considered for t > t1 with the initial condi-
tion y0

n0
(t1). The new sequence is written as

y1
n+1 = y1

n +

∫ t

t1
λ (y′1n (s)−Ny1

n(s)− g(s))ds

with the initial term y1
0 = y0

n0
(t1). Similarly for an inte-

ger n1, yn1 is an approximation of the solution in [t1, t2]
where t2 is chosen in a way that y1

n1
be sufficient accu-

rate in [t1, t2].
This technique can be continued to find an accurate

approximation ym
nm in [tm, tm+1], using the following se-

quence

ym
n+1 = ym

n +

∫ t

tm
λ (y′mn (s)−Nym

n (s)− g(s))ds

with the initial term ym
0 = ym−1

nm−1
(tm). The values of

ni depend directly on hi = ti+1 − ti. We name the
new method as local He’s variational iteration method
(LVIM).

Generally, the values of ni, i = 0,1,2, . . . are not
equal. For equal choice of ni and hi, a simple symbolic
computation finds the solution easily. In fact, if ni = n
and hi = h for i = 0,1,2, . . ., we set

F0 = a, Fk+1 = Fk −
∫ t

b
λ1(F ′

k(s)−NFk(s)− g(s))ds,

k = 0, . . .n− 1.

So Fn = Fn(a,b). Therefore, the solution of the prob-
lem is provided in the piecewise form as

yn(t) = Fn(yn(ti), ti) if ti ≤ t ≤ ti+1,

for i = 0,1,2, . . . ,

where ti = t0 + ih for i = 1,2, . . ..

4. Solving a System of Integro-Differential
Equations

In this section we first implement the scheme of Sec-
tion 2 for solving (1) and (2), hence we write [1]

L−1 =
d
dt
, y = (p,q)t , N(y) = (N1(y),N2(y))t ,

N1((p,q)) = p(t)
[

k1−γ1q(t)−
∫ t

t−T0

f1(t−τ)q(τ)dτ
]
,

N2((p,q)) =

q(t)
[
− k2 + γ2 p(t)+

∫ t

t−T0

f2(t − τ)p(τ)dτ
]
.

Therefore, we find the solution in the following form:

p0(t) = p(t0)+
∫ t

t0
g1(s)ds,

q0(t) = q(t0)+
∫ t

t0
g2(s)ds,

pn+1(t) = L−1N1n, qn+1(t) = L−1N2n, n ≥ 0.

Thus, we obtain n-th approximations of p and q in form

Pn =
n

∑
i=0

pi, Qn =
n

∑
i=0

qi.

A description of Adomian’s procedure for solving (1)
and (2), is given in [35]. Using LADM, n-th approxi-
mations of p and q are

P̄n(t) = Pm
n (t) if tm ≤ t ≤ tm+1,

for m = 0,1,2, . . . ,

Q̄n(t) = Qm
n (t) if tm ≤ t ≤ tm+1,

for m = 0,1,2, . . . ,

where Pm
n and Qm

n are approximate solutions in tm ≤
t ≤ tm+1 which are found using ADM and ti = t0 + ih
for i = 1,2, . . .. According to VIM, the sequences pn
and qn are constructed such that these sequences con-
verge to the exact solution, which are calculated by a
correction functional as follows:

pn+1(t) = pn(t)+
∫ t

0
λ1

[
dpn

ds
− k1 pn(s)+ γ1 p̃n(s)qn(s)

+ p̃n(s)
∫ s

s−T0

f1(s− τ)qn(τ)dτ − g1(s)
]

ds, (23)

qn+1(t) = qn(t)+
∫ t

0
λ2

[
dqn

ds
+ k2qn(s)− γ2q̃n(s)pn(s)

−q̃n(s)
∫ s

s−T0

f2(s− τ)pn(τ)dτ − g2(s)
]

ds. (24)
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This system has been solved by using VIM [1]. Taking
variations of (23) and (24) with respect to pn and qn,
respectively, and making the correction functional sta-
tionary, we obtain

δ pn+1 = 0, δqn+1 = 0.

Therefore, the Lagrange multipliers λ1 and λ2 can be
identified as [31]:

λ1(s) =−e−k1(s−t), λ2(s) =−ek2(s−t).

Then we obtain the following variational iteration for-
mulas:

pn+1(t) = pn(t)−
∫ t

0
e−k1(s−t)

[
dpn

ds
−k1 pn(s)+ γ1 p̃n(s)qn(s)

+ p̃n(s)
∫ s

s−T0

f1(s− τ)qn(τ)dτ − g1(s)
]

ds,

(25)

qn+1(t) = qn(t)−
∫ t

0
ek2(s−t)

[
dqn

ds
+ k2qn(s)− γ2q̃n(s)pn(s)

−q̃n(s)
∫ s

s−T0

f2(s− τ)pn(τ)dτ − g2(s)
]

ds.

(26)

So n-th approximations of p and q using LVIM are

p̄n(t) = pm
n (t) if tm ≤ t ≤ tm+1, for m = 0,1,2, . . . ,

q̄n(t) = qm
n (t) if tm ≤ t ≤ tm+1, for m = 0,1,2, . . . ,

where ti = t0 + ih for i = 1,2, . . .. According to the de-
scription of Sections 2 and 3, we can improve the ac-
curacy of these methods via LADM and LVIM tech-
niques.

5. Numerical Examples

As an application of the new methods, we imple-
ment them on some integro-differential equations as
the test problems [1].

5.1. Example 1.

In this example we consider the system (1) and (2)
with

f1(t) = 1, f2(t) = t − 1,

k1 = 1, k2 = 2, γ1 =
1
3
, γ2 = 1,

T0 =
1
2
, α1 = 1, α2 = 0,

(a)

(b)

Fig. 1 (colour online). Plot of P2(t)− (−3t +1) and P̄2(t)−
(−3t +1) (a) for the Adomian method and LADM with h =
0.001 also, p2(t)− (−3t + 1) and p̄2(t)− (−3t + 1) (b) for
VIM and the new technique (LVIM) with h = 0.001.

g1(t) =−5
2

t3 +
49
12

t2 +
17
12

t − 23
6
,

and

g2(t) =
15
8

t3 − 1
4

t2 +
3
8

t − 1.

The exact solution is

p(t) =−3t + 1, q(t) = t2 − t.

Using ADM, we found two terms of iteration. Finding
more terms causes consuming high computer memory.
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Table 1. Results from ADM, LADM, VIM, LVIM in Exam-
ple 1 for error of p.

t |P2(t)− p(t)| |P̄2(t)− p(t)| |p2(t)− p(t)| |p̄2(t)− p(t)|
0.1 0.4406×10−3 0.4099×10−3 0.1852×10−2 0.2065×10−2

0.2 0.8636×10−4 0.4422×10−3 0.2573×10−2 0.3073×10−2

0.3 0.1527×10−2 0.3431×10−3 0.2860×10−2 0.3590×10−2

0.4 0.4547×10−2 0.4635×10−3 0.3003×10−2 0.4015×10−2

0.5 0.8650×10−2 0.1246×10−2 0.3162×10−2 0.4561×10−2

0.6 0.1300×10−1 0.3166×10−2 0.3551×10−2 0.5247×10−2

0.7 0.1633×10−1 0.6615×10−2 0.4528×10−2 0.5885×10−2

0.8 0.1694×10−1 0.1173×10−1 0.6615×10−2 0.6067×10−2

0.9 0.1276×10−1 0.1821×10−1 0.1041×10−1 0.5143×10−2

1.0 0.1290×10−2 0.2498×10−1 0.1644×10−1 0.2198×10−2

Table 2. Results from ADM, LADM, VIM, LVIM in Exam-
ple 1 for error of q.

t |Q2(t)−q(t)| |Q̄2(t)−q(t)| |q2(t)−q(t)| |q̄2(t)−q(t)|
0.1 0.4406×10−3 0.4099×10−3 0.1465×10−3 0.1425×10−3

0.2 0.8636×10−4 0.4422×10−3 0.4027×10−3 0.3414×10−3

0.3 0.1527×10−2 0.4635×10−3 0.6223×10−3 0.4077×10−3

0.4 0.4547×10−2 0.4635×10−3 0.6904×10−3 0.3045×10−3

0.5 0.8650×10−2 0.1246×10−2 0.4371×10−3 0.8561×10−4

0.6 0.1300×10−1 0.3166×10−2 0.3700×10−3 0.1561×10−3

0.7 0.1633×10−1 0.6615×10−2 0.1984×10−2 0.3294×10−3

0.8 0.1694×10−1 0.1173×10−1 0.4600×10−2 0.3772×10−3

0.9 0.1276×10−1 0.1821×10−1 0.8237×10−2 0.3032×10−3

1.0 0.1290×10−2 0.2498×10−1 0.1256×10−1 0.1960×10−3

Table 3. Results from ADM, LADM, VIM, LVIM in Exam-
ple 2 for error of p.

t |P2(t)− p(t)| |P̄2(t)− p(t)| |p2(t)− p(t)| |p̄2(t)− p(t)|
0.1 0.5894×10−6 0.1627×10−6 0.1482×10−7 0.5327×10−7

0.2 0.3666×10−4 0.4998×10−5 0.9407×10−6 0.7147×10−6

0.3 0.2984×10−3 0.3689×10−4 0.6566×10−5 0.6114×10−5

0.4 0.1283×10−2 0.1336×10−3 0.2894×10−4 0.2838×10−4

0.5 0.3956×10−2 0.3514×10−3 0.9841×10−4 0.9042×10−4

0.6 0.9914×10−2 0.7690×10−3 0.2759×10−3 0.2274×10−3

0.7 0.2155×10−1 0.1494×10−2 0.6664×10−3 0.4875×10−3

0.8 0.4227×10−1 0.2675×10−2 0.1431×10−2 0.9323×10−3

0.9 0.7659×10−1 0.4514×10−2 0.2801×10−2 0.1637×10−2

1.0 0.1304 0.7285×10−1 0.5092×10−2 0.2694×10−2

Table 4. Results from ADM, LADM, VIM, LVIM in Exam-
ple 2 for error of q.

t |Q2(t)−q(t)| |Q̄2(t)−q(t)| |q2(t)−q(t)| |q̄2(t)−q(t)|
0.1 0.1627×10−4 0.1329×10−6 0.1847×10−8 0.2506×10−7

0.2 0.2502×10−3 0.5812×10−6 0.8553×10−6 0.2733×10−7

0.3 0.1233×10−2 0.2480×10−5 0.7296×10−5 0.6491×10−8

0.4 0.3818×10−2 0.7962×10−5 0.3474×10−4 0.9162×10−7

0.5 0.9163×10−2 0.1990×10−5 0.1205×10−3 0.6056×10−6

0.6 0.1871×10−1 0.4182×10−4 0.3386×10−3 0.2355×10−5

0.7 0.3419×10−1 0.7785×10−4 0.8147×10−3 0.6764×10−5

0.8 0.5749×10−1 0.1327×10−3 0.1740×10−2 0.1587×10−4

0.9 0.9065×10−1 0.2117×10−3 0.3382×10−2 0.3224×10−4

1.0 0.1356 0.3209×10−3 0.6089×10−2 0.5871×10−4

Table 5. Results from ADM, LADM, VIM, LVIM in Exam-
ple 3 for error of p.

t |P2(t)− p(t)| |P̄2(t)− p(t)| |p2(t)− p(t)| |p̄2(t)− p(t)|
0.1 0.6353×10−5 0.2190×10−5 0.1929×10−4 0.1036×10−4

0.2 0.6441×10−4 0.7332×10−5 0.4860×10−4 0.2670×10−4

0.3 0.2708×10−3 0.1501×10−4 0.8455×10−4 0.3855×10−4

0.4 0.7558×10−3 0.2457×10−4 0.5058×10−3 0.4436×10−4

0.5 0.1654×10−2 0.3481×10−4 0.1218×10−2 0.4592×10−4

0.6 0.3078×10−2 0.4467×10−4 0.2130×10−2 0.4569×10−4

0.7 0.5100×10−2 0.5362×10−4 0.3098×10−2 0.4560×10−4

0.8 0.7773×10−2 0.6168×10−4 0.3972×10−2 0.4682×10−4

0.9 0.1116×10−1 0.6926×10−4 0.4624×10−2 0.4982×10−4

1.0 0.1542×10−1 0.7694×10−4 0.4957×10−2 0.5461×10−4

Table 6. Results from ADM, LADM, VIM, LVIM in Exam-
ple 3 for error of q.

t |Q2(t)−q(t)| |Q̄2(t)−q(t)| |q2(t)−q(t)| |q̄2(t)−q(t)|
0.1 0.1008×10−3 0.7705×10−5 0.2490×10−3 0.1546×10−3

0.2 0.1181×10−2 0.1970×10−4 0.3173×10−3 0.1786×10−3

0.3 0.4276×10−2 0.4726×10−4 0.6642×10−3 0.1562×10−3

0.4 0.1022×10−1 0.6680×10−4 0.3122×10−2 0.1236×10−3

0.5 0.1933×10−1 0.7788×10−4 0.6722×10−2 0.9414×10−4

0.6 0.3108×10−1 0.8213×10−4 0.1064×10−1 0.7116×10−4

0.7 0.4406×10−1 0.8156×10−4 0.1395×10−1 0.5440×10−4

0.8 0.5618×10−1 0.7805×10−4 0.1587×10−1 0.4259×10−4

0.9 0.6507×10−1 0.7315×10−4 0.1585×10−1 0.3444×10−4

1.0 0.6868×10−1 0.6809×10−4 0.1372×10−1 0.2897×10−4

Table 7. Results from ADM, LADM, VIM, LVIM in Exam-
ple 4 for error of p.

t |P2(t)− p(t)| |P̄2(t)− p(t)| |p2(t)− p(t)| |p̄2(t)− p(t)|
0.2 0.6882×10−6 0.7474×10−7 0.1835×10−5 0.2075×10−6

0.4 0.1487×10−4 0.9987×10−6 0.7068×10−4 0.2977×10−5

0.6 0.9982×10−4 0.3868×10−5 0.5451×10−3 0.1133×10−4

0.8 0.4343×10−3 0.1029×10−4 0.2213×10−2 0.2755×10−4

1.0 0.1453×10−2 0.2267×10−4 0.6289×10−2 0.5269×10−4

1.2 0.3966×10−2 0.4405×10−4 0.1416×10−1 0.8629×10−4

1.4 0.9139×10−2 0.7736×10−4 0.2702×10−1 0.1265×10−3

1.6 0.1825×10−1 0.1246×10−3 0.4547×10−1 0.1708×10−3

1.8 0.3226×10−1 0.1859×10−3 0.6923×10−1 0.2164×10−3

2.0 0.5135×10−1 0.2597×10−3 0.9713×10−1 0.2618×10−3

Table 8. Results from ADM, LADM, VIM, LVIM in Exam-
ple 4 for error of q.

t |Q2(t)−q(t)| |Q̄2(t)−q(t)| |q2(t)−q(t)| |q̄2(t)−q(t)|
0.2 0.1978×10−5 0.2943×10−7 0.8801×10−6 0.2836×10−6

0.4 0.2878×10−4 0.4891×10−6 0.3443×10−4 0.3670×10−5

0.6 0.1359×10−3 0.2345×10−5 0.2607×10−3 0.1288×10−4

0.8 0.3962×10−3 0.7342×10−5 0.1035×10−2 0.2859×10−4

1.0 0.8658×10−3 0.1772×10−4 0.2865×10−2 0.4921×10−4

1.2 0.1550×10−2 0.3536×10−4 0.6257×10−2 0.7136×10−4

1.4 0.2418×10−2 0.6076×10−4 0.1152×10−1 0.9092×10−4

1.6 0.3502×10−2 0.9244×10−4 0.1861×10−1 0.1043×10−3

1.8 0.5055×10−2 0.1270×10−3 0.2702×10−1 0.1097×10−3

2.0 0.7731×10−2 0.1604×10−3 0.3586×10−1 0.1076×10−3
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(a)

(b)

Fig. 2 (colour online). Plot of Q2(t)− (t2 − t) and Q̄2(t)−
(t2 − t) (a) for the Adomian method and LADM with h =
0.001 also, q2(t)− (t2 − t) and q̄2(t)− (t2 − t) (b) for VIM
and the new technique (LVIM) with h = 0.001.

Using LADM, we implement this method on this sys-
tem with h = 0.001 and n = 2.

Using VIM, we found two iterations of the se-
quence. With n = 2 we obtain p2 and q2 as the
approximate solutions. In Figure 1, the errors of
the approximation of p by ADM and LADM with
n = 2 and h = 0.001 are presented. Also, the er-
rors of VIM (p2(t) − p) with n = 2 and LVIM
( p̄2(t) − p) with n = 2 and h = 0.001 have been
plotted.

In Figure 2, the errors of approximation of q with
the above information have been plotted. In Tables 1
and 2, the results from ADM, LADM, VIM, and LVIM
are shown. In this example the polynomials g1 and g2
are affected to errors of p and q. The error increases
rapidly as t grows, because g1 and g2 converge to in-
finity as t increases.

5.2. Example 2.

In this example we consider

f1(t) = 2t − 3, f2(t) = t,

k1 = 2, k2 = 2, γ1 = 1, γ2 = 1,

T0 =
1
3
, α1 = 0, α2 = 0,

g1(t) =

t2
(

2− 3te−t − 7
2

e−t +
13
6

te
1
3−t +

22
9

e
1
3−t

)
− 2t,

and

g2(t) =
1

648
e−t(342t3 − 8t2 + 325t+ 324).

Here, p(t) = −t2 and q(t) = 1
2 te−t are the exact solu-

tions.
Similar to the previous example, we consider ADM

and LADM with n = 2, and h = 0.004. Also we get
similar results for VIM and LVIM. We plotted the error
of solutions p and q in Figures 3 and 4, respectively. In
Tables 3 and 4, the results from ADM, LADM, VIM,
and LVIM are shown.

5.3. Example 3.

In this example, we solve the system of equa-
tions (1) and (2) with

f1(t) = t, f2(t) = t + 1,

k1 = 1, k2 = 1, γ1 =
1
2
, γ2 = 3,

T0 =
1
4
, α1 = 0, α2 =−1,

g1(t) = 2t − 1− (t2− t)
(

1+
11
18

e−3t − 1
36

e
3
4−3t

)
,

and

g2(t) =
1

3072
e−3t(10080t2− 10304t+ 6275).
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(a)

(b)

Fig. 3 (colour online). Plot of P2(t)−(−t2) and P̄2(t)−(−t2)
(a) for the Adomian method and LADM with h = 0.004 also,
p2(t)− (−t2) and p̄2(t)− (−t2) (b) for the He’s variatinal
iteration method (VIM) and the new technique (LVIM) with
h = 0.004.

Here, p(t) = t2 − t and q(t) = −e−3t are the exact so-
lutions.

Such as previous examples, we consider ADM and
LADM, with n = 2 and h = 0.004. Also we have sim-
ilar information for VIM and LVIM. The efficiency of
the new methods is clear from Figures 5 and 6. In Ta-
bles 5 and 6, the results from ADM, LADM, VIM, and
LVIM are shown.

(a)

(b)

Fig. 4 (colour online). Plot of Q2(t)− ( 1
2 te−t) and Q̄2(t)−

( 1
2 te−t) (a) for the Adomian method and LADM with h =

0.004 also, q2(t)− ( 1
2 te−t) and q̄2(t)− ( 1

2 te−t) (b) for VIM
and the new technique (LVIM) with h = 0.004.

5.4. Example 4.

As the last example, we solve the system of equa-
tions (1) and (2) with

f1(t) = 1, f2(t) = e−t ,

k1 =
1
3
, k2 =

1
2
, γ1 = 2, γ2 = 1,
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(a)

(b)

Fig. 5 (colour online). Plot of P2(t)− (t2 − t) and P̄2(t)−
(t2 − t) (a) for the Adomian method and LADM with h =
0.004 also, p2(t)− (t2 − t) and p̄2(t)− (t2 − t) (b) for the
He’s variational iteration method (VIM) and the new tech-
nique (LVIM) with h = 0.004.

T0 =
3

10
, α1 = 0, α2 = 0,

g1(t) =
1
4

cos(t)− 1
4

sin(t)
[

1
3
+

1
2

sin(t)

− 1
4

cos(t)+
1
4

cos
(

t − 3
10

)]
,

(a)

(b)

Fig. 6 (colour online). Plot of Q2(t)− (−e−3t) and Q̄2(t)−
(−e−3t) (a) for the Adomian method and LADM with h =
0.004 also, q2(t)− (−e−3t ) and q̄2(t)− (−e−3t) (b) for the
He’s variational iteration method (VIM) and the new tech-
nique (LVIM) with h = 0.004.

and

g2(t) =−1
4

cos(t)+
1
4

sin(t)
{
− 1

2
+

3
8

sin(t)

−1
8

cos(t)+
1
8

e−
3
10

[
cos

(
t − 3

10

)
− sin

(
t − 3

10

)]}
.
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(a)

(b)

Fig. 7 (colour online). Plot of P2(t)− ( 1
4 sin(t)) and P̄2(t)−

( 1
4 sin(t)) (a) for the Adomian method and LADM with

h = 0.005 also, p2(t)− ( 1
4 sin(t)) and p̄2(t)− ( 1

4 sin(t)) (b)
for the He’s variational iteration method (VIM) and the new
technique (LVIM) with h = 0.005.

Here, p(t) = 1
4 sin(t) and q(t) =− 1

4 sin(t) are the exact
solutions.

Using ADM and LADM with n = 2 and h = 0.005,
also using VIM and LVIM, we plotted errors in Fig-
ures 7 and 8. Additionally, the numerical results are
shown in Tables 7 and 8. It is clear from these tables
that the use of the new methods provides more accurate
solution in a larger domain.

(a)

(b)

Fig. 8 (colour online). Plot of Q2(t) − (− 1
4 sin(t)) and

Q̄2(t)− (− 1
4 sin(t)) (a) for the Adomian method and LADM

with h = 0.005 also, q2(t) − (− 1
4 sin(t)) and q̄2(t) −

(− 1
4 sin(t)) (b) for the He’s variational iteration method

(VIM) and the new technique (LVIM) with h = 0.005.

6. Conclusion

The Adomian decomposition [10 – 15] and varia-
tional iteration techniques [21 – 25] are efficient meth-
ods for solving various kinds of problems. The main
advantage of these methods is that they do not require
discretization of the variables [36]. Also, these are not
affected by computation round off errors. In this paper,
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these techniques are implemented in a new way, which
is based on the successive use of these methods in
smaller regions. The results show the efficiency of the
new techniques for solving integro-differential equa-
tions. The main idea behind the approach in the current
paper can be employed to solve ordinary differential or
partial differential equations to improve the results of

applying the classic Adomian decomposition method
or the classic variational iteration method. It is worth
to mention that the use of the new approach to improve
the homotopy perturbation method [1, 8, 9, 37] or the
homotopy analysis method [38, 39] can be a useful in-
vestigation.
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