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In this study, we used the homotopy perturbation method (HPM) for solving fractional nonlinear
differential equations. Three models with fractional-time derivative of order α , 0<α < 1, are consid-
ered and solved. The numerical results demonstrate that this method is relatively accurate and easily
implemented.
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1. Introduction

In recent years, it has been found that derivatives
of non-integer order are very effective for the descrip-
tion of many physical phenomena such as rheology,
damping laws, and diffusion processes. These findings
invoked the growing interest on studies of the frac-
tal calculus in various fields such as physics, chem-
istry, and engineering [1 – 4]. In general, there exists
no method that yields an exact solution for a fractional
differential equation. Only approximate solutions can
be derived using the linearization or perturbation meth-
ods. Some authors applied the homotopy perturbation
method (HPM) [5 – 9], the variational iteration method
(VIM) [10 – 12], and the reduced differential trans-
form method [13] to fractional differential equations
and revealed that HPM and VIM are alternative ana-
lytical methods for solving such type equations. No-
bel Laureate Gerardus’t Hooft once remarked that dis-
crete space-time is the most radical and logical view-
point of reality. Physical phenomena in a fractal space-
time are describable by the fractional calculus [14].
The fractional equations are used to describe discon-
tinuous problems. According to the fractal space-time
theory (El Naschie’s e-infinity theory), time and space
are discontinuous, and the fractional model is the best
candidate to describe such problems [14].

In this paper, we will use HPM for solving time
fractional nonlinear fractional differentials. This paper
gives an important example of the fractional Korteweg-
de Vries (KdV) equation, which, according to a re-
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cent report, admits a fractional variational princi-
ple [15]. Recently, El-Wakil et al. [16] used the Ado-
mian decomposition method for solving the governing
problem.

The homotopy perturbation method was proposed
by the Chinese mathematician Ji-Huan He [17 – 19].
This technique has been employed to solve a large va-
riety of linear and nonlinear problems [5 – 7, 20 – 22].
Unlike classical techniques, the nonlinear equations
are solved easily and elegantly without transforming
the equation by using the HPM. The technique has
many advantages over the classical techniques, mainly,
it avoids linearization and perturbation in order to find
explicit solutions of a given nonlinear equations.

2. Definitions

Definition 2.1: A real function f (x), x > 0, is
said to be in the space CM , M ∈ R, if there exists a
real number p(> M), such that f (x) = xp f1(x), where
f1(x) ∈C[0,∞), and it is said to be in the space Cm

M if
f m ∈CM , m ∈ N.

Definition 2.2: If f (x) ∈C[a,b] and a < x < b, then

Iα
a f (x) =

1
Γ (α)

x∫
a

f (t)
(x− t)1−α dt,

where −∞ < α < ∞, is called the Riemann-Liouville
fractional integral operator of order α .
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Definition 2.3: For 0 < α < 1, we let

Dα
a f (x) =

1
Γ (1−α)

d
dx

x∫
a

f (t)
(x− t)α dt,

which is called the Riemann-Liouville fractional
derivative operator of order α .

Lemma 2.1: If f (x) is an absolutely continuous
function in [a,b], then

d
dx

Iα f (x) = Iα d
dx

f (x)+
xα−1

Γ (α)
f (0).

Lemma 2.2: If f (x) is an absolutely continuous
function in [a,b], f ′′(x) exists and f ′(0) = 0, then

Dα Dβ f (x) = Dα+β f (x),

where α +β ∈ (1,2).

3. Illustrative Examples

Example 1: Firstly, we consider the nonlinear
fractional KdV equation [16] ∂ α u(x,t)

∂ tα +(p+ 1)upux +
uxxxx = 0, t > 0, 0 < α < 1, with the initial condition
u(x,0) = A[sech2(Kx)]

1
p , where p > 0, A and K are

constants. ∂ α

∂ tα is the fractional time derivative operator
of order α . This equation has a wide range of applica-
tions in plasma physics, fluid physics, capillary-gravity
waves, nonlinear optics, and chemical physics.

We construct the homotopy

∂ α u(x, t)
∂ tα + p̄ [(p+ 1)upux + uxxxx] = 0, p̄∈ [0,1]. (1)

In view of HPM, we use the homotopy parameter p to
expand the solution

u = u0 + pu1 + p2u2 + p3u3 + . . . (2)

Substituting (2) into (1) and equating the coefficients
of like powers of p, we get following set of differential
equations:

p̄0 :
∂ α u0(x, t)

∂ tα = 0,

p̄1 :
∂ α u1(x, t)

∂ tα +(p+ 1)up
0(u0)x +(u0)xxxx = 0,

p̄2 :
∂ α u2(x, t)

∂ tα +(up
0u1)x +(u1)xxxx = 0,

p̄3 :
∂ α u3(x, t)

∂ tα +(pup−1
0 u2

1/2+ up
0u2)x +(u2)xxxx = 0,

. . .

The solution reads

u0 = 0.2[sech(0.1x)]
1
4 ,

u1(x, t) =−0.136 ·10−5
[

cosh(0.1x)4− 78cosh(0.1x)2

+ 105− 80cosh(0.1x)sinh(0.1x)t3/4
]/

[
cosh(0.1x)6

(
1

cosh(0.1x)2

)3/4 ]
,

u2(x, t) =−0.75 ·10−16t9/4
[
0.24 ·1012 cosh(0.1x)2

−0.17 ·1012− 0.87 ·1011cosh(0.1x)4

+ 0.68 ·1011cosh(0.1x)sinh(0.1x)

−85005 · cosh(0.1x)8 + 0.41 ·1010cosh(0.1x)6

−0.49 ·1011 cosh(0.1x)3 sinh(0.1x)

+ 0.42 ·1010cosh(0.1x)5 sinh(0.1x)
]/

[
cosh(0.1x)10

(
1

cosh(0.1x)2

)3/4 ]
,

and so on. In the same manner the rest of components
of the homotopy perturbation series of u(x, t) can be
obtained. Then the solution of the homotopy method
may be constructed explicitly. The behaviour of the ho-
motopy solution for the fractional KdV equation with
different values of the fractional time derivative or-
der α are shown graphically in Figure 1.

In case of α = 1, the homotopy solution is compared
with the exact solution of KdV

u(x, t) = A[sech2(Kx− ct)]
1
p ,

where c is a constant. As shown in Figure 2 the two
solutions are equivalent.

Example 2: The second example is the fractional
time derivative Burgers-Fisher equation [16]

∂ α u(x, t)
∂ tα + purux− uxx = qu(1− ur),

t > 0, 0 < α < 1,
(3)

with the initial condition

u(x,0) =
√

1/2− tanh(Kx)/2, (4)

where p and q are constants and K = 1/2(1+ r).
This equation has been used as a basis for a wide

variety of models for the spatial of gene in population
and chemical wave propagation.
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(a)

(b)

Fig. 1 (colour online). HPM solution of the generalized frac-
tional time KdV equation with fixed values p = 6, K = 0.1,
A = 0.2, and c = 1: (a) α = 1/2, (b) α = 3/4.

We construct the homotopy which satisfies the rela-
tion

∂ α u(x, t)
∂ tα + p̄[purux− uxx− qu(1− ur)] = 0,

p̄ ∈ [0,1].
(5)

Substituting (2) into (5) and equating the coefficients
of like powers of p, we get following set of differential
equations:

p̄0 :
∂ α u0(x, t)

∂ tα = 0,

p̄1 : ∂ α u1(x,t)
∂ tα + pur

0(u0)x− (u0)xx− qu0(1− u0)
r = 0,

(a)

(b)

Fig. 2 (colour online). Solution of the generalized fractional
time KdV equation with fixed values p= 6, K = 0.1, A= 0.2,
c = 1, and α = 1: (a) HPM solution, (b) exact solution.

p̄2 :
∂ α u2(x, t)

∂ tα + pur
0(u1)x− (u1)xx− q(r+ 1)ur

0u1= 0,
. . .

In the same manner (as Example 1) the rest of the com-
ponents can be obtained.

The numerical behaviour of the approximate solu-
tions of the homotopy method with different values of
fractional time derivative order α are shown graphi-
cally in Figure 3. From this figure we see that our so-
lution agrees with the exact solution of the Burgers-
Fisher equation

u(x, t) = [1/2− tanh(K(x− ct))/2]1/r

in case of α = 1 and c = p2+q(1+r)2

p(1+r) .
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(a) (b)

(c) (d)

Fig. 3 (colour online). HPM solution of the generalized fractional Burgers-Fisher equation with fixed values p = 0.1, r = 4,
and q =−0.0025: (a) α = 1/2, (b) α = 3/4. Solution of the generalized fractional Burgers-Fisher equation with fixed values
p = 0.1, r = 2, and q =−0.0025: (c) HPM solution, (d) Exact solution.

Example 3: Finally, we consider the time fractional
coupled system of the diffusion-reaction equation [16]

∂ α u(x, t)
∂ tα = u(1− u2− v)+ uxx,

t > 0, 0 < α < 1,

∂ α v(x, t)
∂ tα = v(1− u− v)+ vxx

(6)

with initial conditions

u(x,0) =
ekx

(1+ ekx)
, v(x,0) =

1+(3/4)ekx

[1+ ekx]2
, (7)

where k is constant.

We construct the homotopy which satisfies the rela-
tion

∂ α u(x, t)
∂ tα + p̄[u(u2 + v− 1)− uxx] = 0,

∂ α v(x, t)
∂ tα + p̄[v(u+ v− 1)− vxx] = 0, p̄ ∈ [0,1].

(8)

Substituting (2) into (8) and equating the coefficients
of like powers of p, we get following set of differential
equations:

p̄0 :
∂ α u0(x, t)

∂ tα = 0,
∂ α v0(x, t)

∂ tα = 0,
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(a)

(b)

(c)

← Fig. 4 (colour online). HPM solution of (6) (for u) with
fixed values k = 1 and c = 1: (a) α = 1/2, (b) α = 3/4,
(c) α = 1.

p̄1 :
∂ α u1(x, t)

∂ tα + u3
0 + u0v0− u0− (u0)xx = 0,

∂ α v1(x, t)
∂ tα + u0v0 + v2

0− v0− (v0)xx = 0,

p̄2 :
∂ α u2(x, t)

∂ tα +3u2
0u1+u1v0+u0v1−u1−(u1)xx = 0,

∂ α v2(x, t)
∂ tα + u1v0 + u0v1 + 2v0v1−v1−(v1)xx = 0,

. . .

The solution reads

u0 =
ekx

(1+ ekx)
, v0 =

1+ 3
4 ekx

[1+ ekx]2
,

u1(x, t) :=−ekx(−5ekx− 4k2 + 4k2ekx)tα

4(1+ ekx)3Γ (α + 1)
,

v1 :=
ekx(4+ 3ekx− 20k2 + 16k2ekx + 12k2e2kx)tα

16(1+ ekx)4Γ (α + 1)
,

u2(x, t) :=−1
8

ekxt3α
[
2ekx− 8k4 + 88k4ekx− 11e(2kx)

−60k2ekx + 20e(3kx)− 20k2e3kx + 104k2e2kx−88k4e2kx

+ 8k4e3kx
]/[

(1+ ekx)5Γ (α + 1)Γ (2α + 1)
]
,

v2(x, t) :=− 1
32

ekxt3α
[
− 528k4e2kx− 50ekx− 8k2e2kx

+ 24k4e4kx− 112k4e3kx + 36k2e3kx− 40k4− 8− 30e3kx

−73e2kx− 92k2ekx + 528k4ekx + 16k2
]/

[
(1+ ekx)6Γ (α + 1)Γ (2α + 1)

]
.

The numerical behaviour of approximate solutions of
homotopy method with different values of fractional
time derivative order α are shown graphically in Fig-
ure 4.

It is noted that in the case α = 1, the homotopy so-
lution is equivalent to the exact solution

u(z) =
ekz

(1+ ekz)
, v(z) =

1+(3/4)ekz

(1+ ekz)2 ,

where z = x+ ct.

4. Conclusion

In this study, we used the homotopy perturbation
method for solving fractional time derivative nonlin-
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ear partial differential equations. We showed the use-
fulness of the homotopy perturbation method by three
examples. It is clear that HPM avoids linearization and
unrealistic assumptions and provides an efficient nu-
merical solution. The results so obtained reinforce the
conclusions made by many researchers that the effi-

ciency of the homotopy perturbation method and re-
lated phenomena gives it much wider applicability.
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