
On Atom-Bond Connectivity Index

Bo Zhou and Rundan Xing

Department of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

Reprint requests to B. Z.; E-mail: zhoubo@scnu.edu.cn

Z. Naturforsch. 66a, 61 – 66 (2011); received January 23, 2010 / revised June 5, 2010

The atom-bond connectivity (ABC) index, introduced by Estrada et al. in 1998, displays an ex-
cellent correlation with the formation heat of alkanes. We give upper bounds for this graph invariant
using the number of vertices, the number of edges, the Randić connectivity indices, and the first Za-
greb index. We determine the unique tree with the maximum ABC index among trees with given
numbers of vertices and pendant vertices, and the n-vertex trees with the maximum, and the second,
the third, and the fourth maximum ABC indices for n ≥ 6.
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1. Introduction

Topological indices are numbers reflecting certain
structural features of a molecule that are derived from
its molecular graph [1]. They may be used in theoret-
ical chemistry for the design of chemical compounds
with given physicochemical properties or given phar-
macologic and biological activities.

Let G be a simple graph with vertex set V (G) and
edge set E(G). For u ∈ V (G), dG(u) or du denotes the
degree of u in G. Estrada et al. [2] proposed a topolog-
ical index named the atom-bond connectivity (ABC)
index. It is defined as

ABC(G) = ∑
uv∈E(G)

√
du + dv− 2

dudv
.

This index has proven to be a valuable predictive in-
dex in the study of the formation heat in alkanes [2].
Estrada [3] developed a basically topological approach
on the basis of the ABC index which explains the dif-
ferences in the energy of linear and branched alka-
nes both qualitatively and quantitatively. Recently, Fur-
tula et al. [4] determined the extremal (minimum and
maximum) values of this index for chemical trees and
showed that the star is the unique tree with the maxi-
mum ABC index.

For a graph G, two types of Randić connectivity in-
dices are defined as [5]

R−1/2 = R−1/2(G) = ∑
uv∈E(G)

1√
dudv

,
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R−1 = R−1(G) = ∑
uv∈E(G)

1
dudv

.

The former is one of the most popular descriptors and
has found countless quantitative structure-property re-
lationship (QSPR) and quantitative structure-activity
relationship (QSAR) applications, see, e. g., [5 – 7],
while the latter is also used to develop structure-based
correlations for physical properties, see, e. g., [8].
See [9] for history and [10] for mathematical proper-
ties of R−1/2 and R−1.

Another molecular descriptor in QSPR and QSAR
used here is the first Zagreb index. For a graph G, it is
defined as M1 = M1(G) = ∑u∈V (G) d 2

u , see [5].
In this paper, we give upper bounds for the ABC in-

dex using the number of vertices, the number of edges,
the Randić connectivity indices, and the first Zagreb
index, and we determine the unique tree with the max-
imum ABC index among trees with given numbers of
vertices and pendant vertices, and the n-vertex trees
with the maximum and the second maximum ABC in-
dices for n ≥ 4, the third maximum ABC index for
n ≥ 5, and the fourth maximum ABC index for n ≥ 6.

2. ABC Index of Graphs

A graph is a semiregular bipartite graph of degrees
r, s if it is bipartite and each vertex in one partite set
has degree r and each vertex in the other partite set has
degree s. Define the auxiliary value of such a graph to
be r+s−2

rs .
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Proposition 1 Let G be a graph with n vertices and m
edges. Then

ABC(G)≤
√

m(n− 2R−1)

with equality if and only if one of the following condi-
tions is satisfied:
(i) m = 0;
(ii) G has no isolated vertices, and every edge is inci-
dent with a vertex of degree two;
(iii) G has no isolated vertices and no vertex of de-
gree two, and every component of G is either a reg-
ular graph of degree, say r for all such components
(if exist), or a nonregular semiregular bipartite graph
and all such components (if exist) have equal auxiliary
value, which is equal to 2r−2

r2 if there exist both types of
the components.

Proof: By the Cauchy-Schwarz inequality,

ABC(G) = ∑
uv∈E(G)

√
du + dv− 2

dudv

≤
√

m ∑
uv∈E(G)

du + dv− 2
dudv

=

√√√√m ∑
uv∈E(G)

(
1
du

+
1
dv

− 2
dudv

)

=

√√√√√√m


 ∑

u∈V(G)
du≥1

1
du

·du − 2R−1




≤
√

m(n− 2R−1)

with equalities if and only if either m = 0 or G has no
isolated vertices and for any edge uv of G, du+dv−2

dudv
is a

constant, say c. Obviously, c ≥ 0.
Suppose that the bound for ABC(G) is attained in

the proposition and m > 0. If c = 0, then G is a regular
graph of degree one. Suppose that c > 0, then there is
at least one vertex with degree at least two. Let u be
a vertex of degree at least two. For two distinct neigh-
bours v and w of u, we have du+dv−2

dudv
= du+dw−2

dudw
and

then du−2
dv

= du−2
dw

, which implies that either du = 2

or dv = dw. If du = 2, then c = du+dv−2
dudv

= 1
2 for any

neighbour v of u. Note that du+dv−2
dudv

= 1
2 if and only if

(du − 2)(dv − 2) = 0, i. e., du = 2 or dv = 2. If there is

at least one vertex in G with degree two, then c = 1
2 ,

and thus G is a graph in which every edge is incident
with a vertex of degree two.

Suppose that there is no vertex of degree two in G.
Then for any vertex of degree greater than two, all of
its neighbours have the same degree. Thus, every com-
ponent of G is either regular or is not regular but has
only two different degrees. In the latter case, the end
vertices of all edges have the same two different de-
grees. It follows that every component of G is either a
regular graph of degree, say r for all such components
(if exist), or a nonregular semiregular bipartite graph
and all such components (if exist) have equal auxiliary
value, which is equal to 2r−2

r2 if there exist both types
of the components.

Conversely, it is easily seen that the bound for
ABC(G) is attained if G is a graph satisfying (i), (ii)
or (iii). �

We note that actually the above proof suggests a
slightly sharper result: If G is a graph with n1 vertices
of degree at least one and m edges, then

ABC(G)≤
√

m(n1 − 2R−1)

with equality if and only if (i) n1 = m = 0, or (ii) every
edge is incident with a vertex of degree two, or (iii) G
has no vertex of degree two, and every nontrivial com-
ponent of G is either a regular graph of degree, say r for
all such components (if exist), or a nonregular semireg-
ular bipartite graph and all such components (if exist)
have equal auxiliary value, which is equal to 2r−2

r2 if
there exist both types of the components.

Obviously, the ABC index for any of the three
graphs with one or two vertices is equal to zero.

Corollary 1 Let G be a graph with n ≥ 3 vertices.
Then

ABC(G)≤ n

√
n− 2

2

with equality if and only if G is the complete graph.

Proof: Recall that [11] R−1 ≥ n
2(n−1) with equality if

and only if G is the complete graph. Now the result
follows from Proposition 1. �

Corollary 2 [4] Let G be a tree with n ≥ 2 vertices.
Then

ABC(G)≤
√
(n− 1)(n− 2)

with equality if and only if G is the star.
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Proof: Recall that from [12], R−1 ≥ 1 with equality if
and only if G is the star. Now the result follows from
Proposition 1. �

Corollary 3 Let G be a graph with n vertices and m ≥
1 edges. Then

ABC(G)≤
√

m
(

n− 4m
4m+ 1−√

8m+ 1

)

with equality if and only if G is a complete graph.

Proof: For a graph with m ≥ 1 edges, we have [13]
R−1 ≥ 2m

4m+1−√
8m+1

with equality if and only if G con-
sists of a complete graph and possibly isolated vertices.
Now the result follows from Proposition 1. �

The complete bipartite graph with a vertices in one
partite set and b vertices in the other partite set is de-
noted by Ka,b.

Proposition 2 Let G be a triangle-free graph with n ≥
3 vertices.

ABC(G)≤√
n− 2R−1/2,

ABC(G)≤ n
2

√
n− 2

with equality in the first inequality if and only if G is
a complete bipartite graph, and with equality in the
second inequality if and only if G = Kn/2,n/2.

Proof: Note that for any uv ∈ E(G), du+dv ≤ n. Then

ABC(G)≤ ∑
uv∈E(G)

√
n− 2√
dudv

=
√

n− 2R−1/2

with equality if and only if for any uv ∈ E(G), du +
dv = n, i. e., G is a complete bipartite graph.

Then the second inequality follows and equality
holds if and only if G is a regular complete bipartite
graph, i. e., G = Kn/2,n/2. �

The result in previous proposition may be improved
by using better lower bound for R−1/2. An example is
as follows: If G is a connected triangle-free graph with
n ≥ 2 vertices, m edges, maximum vertex degree ∆,

and minimum vertex degree δ ≥ 1, then [14] R−1/2 ≤
n
2 − 1

2m

(
1√
δ
− 1√

∆

)2
, and thus

ABC(G)≤ n
2

√
n− 2−

√
n− 2
2m

(
1√
δ
− 1√

∆

)2

.

Corollary 4 Let G be a bipartite graph with n≥ 3 ver-
tices. Then

ABC(G)≤
√
(n− 2)

⌊n
2

⌋⌈n
2

⌉
with equality if and only if G = K�n/2�,	n/2
.

Proof: Let X and Y be the two partite sets of G with
|X | ≤ |Y |. From [15], we have R−1/2 ≤

√|X ||Y | , im-

plying that R−1/2 ≤
√⌊ n

2

⌋⌈ n
2

⌉
, and if equality holds,

then |X | = � n
2� and |Y | = 	 n

2
. Now the result follows
from Proposition 2. �

Proposition 3 Let G be a graph with m edges. Then

ABC(G)≤
√
(M1 − 2m)R−1

with equality if and only if either m = 0, or every com-
ponent of G is either a regular graph of degree, say
r for all such components (if exist), or a nonregular
semiregular bipartite graph of degrees, say s and t (de-
pending on the component) and all such components (if
exist) have equal st(s+ t − 2)-value, which is equal to
r2(2r− 2) if there exist both types of the components.

Proof: Note that M1 = ∑uv∈E(G)(du + dv). By the
Cauchy-Schwarz inequality,

ABC(G)≤
√

∑
uv∈E(G)

(du + dv − 2) ∑
uv∈E(G)

1
dudv

=
√
(M1 − 2m)R−1

with equality if and only if either m = 0 or for any edge
uv of G, dudv(du+dv−2) is a constant. Now the result
follows easily by similar arguments as in the proof of
Proposition 1. �

The clique number of a graph is the number of
vertices in a largest complete subgraph of the graph.
A particular case of Theorem 1 in [16] says that if
G is a graph with clique number ω , then R−1 ≤
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ω−1
2ω

(
∑u∈V (G)

1
du

)2
with equality if and only if G is the

regular complete ω-partite graph. By Proposition 3, we
have:

Corollary 5 Let G be a graph with m edges and clique
number ω . Then

ABC(G)≤
√

ω − 1
2ω

(M1 − 2m) ∑
u∈V (G)

1
du

with equality if and only if G is the regular complete
ω-partite graph.

Note that there are relations between Randić indices
R−1/2, R−1 and some other graph parameters, which,
together with Propositions 1 – 3 may be used possibly
to find relations between ABC index and these graph
parameters.

3. ABC Index of Trees

In this section we consider ABC index of trees in
more detail.

Let a, x be positive integers with a ≥ 2. Let fa(x) =√
x+a−2

ax −
√

x+a−3
(a−1)x , i. e.,

fa(x) =
2− x√

a(a− 1)x
√
(a− 1)(x+ a− 2)+

√
a(x+ a− 3)

.

Thus fa(x) ≤ fa(1) with equality if and only if x = 1,
and if x ≥ 2, then fa(x) ≤ fa(2) = 0 with equality if
and only if x = 2. Obviously, fa(2)< fa(1).

Let Sn,p be the tree formed from the path on n− p+1
vertices by attaching p− 1 pendant vertices to an end
vertex, where 2 ≤ p ≤ n− 1. Obviously, Sn,2 = Pn and
Sn,n−1 = Sn. For a tree T and its pendant vertex u, T −u
denotes the tree formed from T by deleting the vertex
u and its incident edge.

Lemma 1 Let T be a tree with n vertices and p pen-
dant vertices, where 2 ≤ p ≤ n− 2. If u is a pendant
vertex being adjacent to the vertex v, then

ABC(T )−ABC(T − u)≤√
p− 1

p
(p− 1)−

√
p− 2
p− 1

(p− 2)

with equality if and only if T = Sn,p and dv = p.

Proof: Let Γ (v) be the set of neighbours of v in T .
Since p ≤ n−2, Γ (v)\{u} contains at least one vertex
of degree at least two. Note that dv ≥ 2. Thus

ABC(T )−ABC(T − u) =

√
dv − 1

dv

+ ∑
w∈Γ (v)\{u}

(√
dw + dv− 2

dwdv
−
√

dw + dv − 3
dw(dv − 1)

)

=

√
dv − 1

dv
+ ∑

w∈Γ (v)\{u}
fdv(dw)

≤
√

dv − 1
dv

+ fdv(2)+ (dv− 2) fdv(1)

=

√
dv − 1

dv
+(dv − 2)

(√
dv − 1

dv
−
√

dv − 2
dv − 1

)

=

√
dv − 1

dv
(dv − 1)−

√
dv − 2
dv − 1

(dv − 2)

with equality if and only if of the dv neighbours of
v, one has degree two, and the others are all pen-
dant vertices. Since dv ≤ p, and the function g(x) =√

x−1
x (x− 1)−

√
x−2
x−1 (x− 2) is increasing for x ≥ 2,

we have

ABC(T )−ABC(T − u)

≤
√

p− 1
p

(p− 1)−
√

p− 2
p− 1

(p− 2)

with equality if and only if of the dv = p neighbours
of v, one has degree two, and the others are all pendant
vertices, i. e., T = Sn,p and dv = p. �

Proposition 4 Let T be a tree with n vertices and p
pendant vertices, where 2 ≤ p ≤ n− 2. Then

ABC(T )≤
√

p− 1
p

(p− 1)+

√
2

2
(n− p)

with equality if and only if T = Sn,p.

Proof: We argue by induction on n. It is trivial for n =
4. Suppose that n ≥ 5 and it holds for all trees with n−
1 vertices. Let T be a tree with n vertices and p pendant
vertices. Let u be a pendant vertex being adjacent to the
vertex v in T . First suppose that dv = 2. Such u and v
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always exist if p = 2, 3. Then dw ≥ 2 for the unique
neighbour w of v different from u, and thus

ABC(T )−ABC(T −u)=

√
2

2
+

√
2

2
−
√

dw − 1
dw

≤
√

2
2

with equality if and only if dw = 2. In this case, T − u
possesses p pendant vertices. If p = n− 2, then T − u
is a star, and thus T = Sn,n−2. If p ≤ n− 3, then by the
induction hypothesis, we have

ABC(T )≤ ABC(T − u)+

√
2

2

≤
√

p− 1
p

(p− 1)+

√
2

2
(n− 1− p)+

√
2

2

=

√
p− 1

p
(p− 1)+

√
2

2
(n− p)

with equalities if and only if T −u= Sn−1,p and dw = 2,
i.e., T = Sn,p.

Now we suppose that dv ≥ 3 and p > 3. Then T − u
possesses p−1 pendant vertices. By Lemma 1 and the
induction hypothesis, we have

ABC(T )≤
ABC(T − u)+

√
p−1

p (p− 1)−
√

p−2
p−1 (p− 2)

≤
√

p−2
p−1 (p− 2)+

√
2

2 (n− p)

+
√

p−1
p (p− 1)−

√
p−2
p−1 (p− 2)

=
√

p−1
p (p− 1)+

√
2

2 (n− p)

with equality in the second inequality if and only if T −
u = Sn−1,p−1 and the degree of v in T − u is p− 1, for
which equality holds also in the first inequality. These
are just satisfied for T = Sn,p. �

Note that h(p) =
√

p−1
p (p− 1)+

√
2

2 (n− p) is in-
creasing for 2 ≤ p ≤ n−2. By Proposition 4, Sn,n−d+1
is the unique tree among trees with n vertices and di-
ameter d with 3 ≤ d ≤ n− 1.

Let Dn,a be the tree formed by adding an edge be-
tween the centers of the stars Sa and Sn−a, where
2 ≤ a ≤ � n

2�. Then Sn,n−2 = Dn,2.

Corollary 6 Among the trees with n ≥ 4 vertices,
Sn is the unique tree with the maximum ABC index,

which is equal to
√
(n− 1)(n− 2) , Sn,n−2 = Dn,2 is

the unique tree with the second maximum ABC in-

dex, which is equal to
√

n−3
n−2 (n− 3)+

√
2, S5,2 = P5

and Dn,3 for n ≥ 6 are the unique trees with the third
maximum ABC index, where ABC(S5,2) = 2

√
2 and

ABC(Dn,3) =
√

n−4
n−3 (n−4)+

√
n−2

3(n−3) +
2
√

6
3 , Dn,4 for

8 ≤ n ≤ 25 and Sn,n−3 for n = 6,7 and n ≥ 26 are
the unique trees with the fourth maximum ABC index,

where ABC(Dn,4) =
√

n−5
n−4 (n − 5) + 1

2

√
n−2
n−4 + 3

√
3

2

and ABC(Sn,n−3) =
√

n−4
n−3 (n− 4)+ 3

√
2

2 .

Proof: Recall that h(p) =
√

p−1
p (p− 1)+

√
2

2 (n− p)
is increasing for 2 ≤ p ≤ n− 2.

Let T be a tree with n vertices. Let p be the number
of pendant vertices of T . If T �= Sn, then 2 ≤ p ≤ n−2,
and thus by Proposition 4, ABC(T ) ≤ h(n− 2) with
equality if and only if T = Sn,n−2. Obviously, n−3

n−2 <
n−2
n−1 and then

h(n− 2) =

√
n− 3
n− 2

(n− 3)+
√

2

<

√
n− 2
n− 1

(n− 1) = ABC(Sn) .

Thus Sn is the unique tree with the maximum ABC in-
dex and Sn,n−2 is the unique tree with the second max-
imum ABC index among trees with n ≥ 4 vertices.

There are only three trees with five vertices: S5, S5,3,
and P5. Thus P5 is the unique tree with the third maxi-
mum ABC index among trees with five vertices.

Suppose that n ≥ 6, and T �= Sn,Sn,n−2. If p = n−2,
then T is of the form Dn,a for 3 ≤ a ≤ � n

2�. For

F(x) = (2x+1)
√

x−1
2x
√

x =
√

1− 1
x +

1
2x

√
1− 1

x with x > 1,

we have F ′(x) = 1
2x2

((
1+ 1

2x

)√ x
x−1 −

√
x−1

x

)
> 0.

Thus, for H(x) =
√

x−1
x (x− 1)+

√
n−x−1

n−x (n− x− 1)
with 1 < x ≤ � n

2�, H ′(x) = F(x)−F(n− x) ≤ 0. Note

that
√

n−2
x(n−x) is decreasing for 1 < x ≤ � n

2�. Then

ABC(Dn,a) =

√
a−1

a
(a− 1)+

√
n−a−1

n−a
(n− a− 1)

+

√
n− 2

a(n− a)
= H(a)+

√
n− 2

a(n− a)
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is decreasing for 3 ≤ a ≤ � n
2�. Thus ABC(T ) ≤

ABC(Dn,3) with equality if and only if T = Dn,3. If
p ≤ n− 3, then by Proposition 4, ABC(T ) ≤ h(n− 3)
with equality if and only if T = Sn,n−3. Note that

ABC(Dn,3)− h(n− 3)=

√
n− 4
n− 3

(n− 4)

+

√
n− 2

3(n− 3)
+

2
√

6
3

−
(√

n− 4
n− 3

(n− 4)+
3
√

2
2

)

=

√
n− 2

3(n− 3)
+

2
√

6
3

− 3
√

2
2

>

√
1
3
+

2
√

6
3

− 3
√

2
2

> 0 .

Thus Dn,3 is the unique tree with the third maximum
ABC index among trees with n ≥ 6 vertices.

Finally, we determine the tree(s) with the fourth
maximum ABC index. The cases n = 6,7 are easy to
check. Suppose that n ≥ 8. By arguments above, the
fourth maximum ABC index of trees with n vertices is
precisely achieved by Dn,4 and/or Sn,n−3. Note that

ABC(Dn,4)− h(n− 3) =
√

n−5
n−4 (n− 5)

+
1
2

√
n− 2
n− 4

+
3
√

3
2

−
(√

n− 4
n− 3

(n− 4)+
3
√

2
2

)

=

√
n− 5
n− 4

(n− 5)

+
1
2

√
n− 2
n− 4

−
√

n− 4
n− 3

(n− 4)+
3
2

(√
3−

√
2
)
,

which is positive for 8 ≤ n ≤ 25 and negative for n ≥
26. Thus Dn,4 for 8≤ n≤ 25 and Sn,n−3 for n= 6,7 and
n ≥ 26 are the unique trees with the fourth maximum
ABC index among trees with n ≥ 6 vertices. �

The fact that Sn is the unique tree with the maximum
ABC index among trees with n vertices also follows
from Corollary 2.
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