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We investigate the flow of a micropolar fluid between radial stretching sheets. The magnetohydro-
dynamic (MHD) nonlinear problem is treated using the homotopy analysis method (HAM) and the
velocity profiles are predicted for the pertinent parameters. The values of skin friction and couple
shear stress coefficients are obtained for various values of Reynolds number, Hartman number, and
micropolar fluid parameter.
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1. Introduction

It is now accepted that most of the fluids in indus-
try and engineering are non-Newtonian in nature. Par-
ticularly, such fluids are prominent in plastic manu-
facture, lubrications, applications of paints, in extru-
sion of crude oil from petroleum products, perfor-
mance of glues and inks, processing of food, move-
ment of biological fluids etc. The classical Navier-
Stokes equations do not describe the flow properties of
such fluids. Mostly, these fluids have nonlinear consti-
tutive equations. The corresponding equations of non-
Newtonian fluids are very complicated in comparison
to the Navier-Stokes equations. In fact, the additional
rheological parameters appearing in the constitutive
equations add interesting complexities in the govern-
ing equations. In general, the governing equations of
non-Newtonian fluids are of higher order [1 – 3] and
subtle in comparison to the Navier-Stokes equations.
The rheological parameters in the constitutive equa-
tions present interesting challenges to the numerical
simulists and mathematicians. In view of such dif-
ficulties and the practical and fundamental associa-
tion of non-Newtonian fluids to industrial problems,
several researchers [4 – 15] studied the flow of non-
Newtonian fluids in various geometrical configura-
tions.

It is now known that unlike viscous fluids, the
non-Newtonian fluids cannot be explained by a sin-
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gle constitutive equation. Therefore many models of
non-Newtonian fluids are proposed in the literature.
Amongst these models there is a theory of micropolar
fluids proposed by Eringen [16]. This theory shows mi-
crorotation effects as well as microinertia and has great
potential to discuss the flow of colloidal fluids, liquids
crystal, polymeric suspension, and animal blood. The
theory of micropolar fluids is quite popular amongst
the researchers, and extensive work is available in the
literature by using the constitutive equations of mi-
cropolar fluids. Various applications in this direction
have been presented [17 – 25]. Recently, the stretch-
ing flows have received considerable attention of the
researchers. This is due to their demands in aerody-
namic extrusion of plastic sheets, cooling of an infi-
nite plate in a cooling bath, liquid film in condensa-
tion process, continuous filament extrusion from a dye,
the fluid dynamic of a long thread travelling between a
feed roll and wind-up roll etc. Many investigations re-
garding stretching flows of micropolar fluid have been
discussed. For instance, Takhar et al. [25] computed
a finite element solution for the flow of a micropolar
fluid between two porous disks. Khedr et al. [26] stud-
ied the MHD flow of a micropolar fluid past a stretched
permeable surface with heat generation or absorption.
Ishak et al. [27] analyzed mixed convection stagna-
tion point flow of a micropolar fluid towards a stretch-
ing sheet. Mohammadein and Gorla [28] discussed the
heat transfer characteristics in the flow of a micropolar



54 T. Hayat et al. · Flow of MHD Micropolar Fluid in Radially Stretching Sheets

Fig. 1 (colour online). Physical
model and coordinate system.

fluid over a stretching sheet with viscous dissipation
and internal heat generation.

Literature survey reveals that no study regarding
the flow of a micropolar fluid between two stretching
sheets is available. In the present work we consider the
two-dimensional flow of a micropolar fluid between
two sheets. The flow is engendered due to linear radial
stretching of the sheets. Analytic solution is derived by
using the homotopy analysis method [29 – 44]. Critical
assessment is made to the various pertinent flow pa-
rameters appearing in the mathematical modelling of
the problem.

2. Formulation of the Problem

Let us consider the steady two-dimensional flow of
an incompressible micropolar fluid between the radi-
ally stretching sheets at z=±L. We denote the velocity
and microrotation components (u,v,w) and (N1,N2,N3)
in the cylindrical coordinates system, respectively. A
constant magnetic field B0 is applied perpendicular to
the plane of the sheets. The induced magnetic field
is neglected under the assumption of small magnetic
Reynolds number. No electric field is present. The
physical model and the coordinate system are shown in
Figure 1. The microstructure associated with spin iner-
tia is taken into account. The relevant equations are:

·V = 0, (1)

ρ
dV
dt

=− p+(µ +k) 2V+k ×ΩΩΩ +J×B, (2)

ρ j
dΩΩΩ
dt

= (α +β + γ) ( ·ΩΩΩ)

− γ × ( ×ΩΩΩ)+ k ×V− 2kΩΩΩ ,
(3)

J = σ [V×B]. (4)

In above equations d/dt is the material derivative, V is
the velocity field, J is the current density vector, σ is
the electrical conductivity of the fluid, j is the microin-
ertia per unit mass, ΩΩΩ is the microrotation vector, ρ is
the fluid density, µ and k are the viscosity coefficients,
and α , β , γ are the gyroviscosity coefficients. Further-
more, µ , k, α , β , and γ satisfy the following condi-
tions [16]:

2µ +k ≥ 0, k ≥ 0, 3α +β + γ ≥ 0, γ ≥ |β | .

The velocity and microrotation fields for the present
problem are

V = [u(r,z),0,w(r,z)] , ΩΩΩ = [0,N2(r,z),0] , (5)

where u and w are the velocity components along the
radial (r) and axial (z) directions, respectively, and
N2 is the azimuthal component of the microrotation
vector.

The resulting equations are given by

∂u
∂ r

+
u
r
+

∂w
∂ z

= 0, (6)
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u
∂u
∂ r

+w
∂u
∂ z

=− 1
ρ

∂ p
∂ r

+
1
ρ
(µ + k)

[
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
∂ 2u
∂ z2 − u

r2

]

− k
ρ

∂N2

∂ z
− σB2

0
ρ

u,

(7)

u
∂w
∂ r

+w
∂w
∂ z

=− 1
ρ

∂ p
∂ z

+
1
ρ
(µ + k)

[
∂ 2w
∂ r2 +

1
r

∂w
∂ r

+
∂ 2w
∂ z2

]

− k
ρ

[
∂N2

∂ r
+

N2

r

]
,

(8)

u
∂N2

∂ r
+w

∂N2

∂ z
=

γ
ρ j

[
∂ 2N2

∂ r2 +
1
r

∂N2

∂ r
+

∂ 2N2

∂ z2 − N2

r2

]

− k
ρ j

[
2N2 +

∂w
∂ r

− ∂u
∂ z

]
,

(9)

in which j = ν/a is a reference length.
The subjected boundary conditions are

u = ar, w = 0, N2 = 0 at z = L, a > 0,
∂u
∂ z

= 0, w = 0, N2 = 0 at z = 0.
(10)

The arising flow equations and boundary conditions
are reduced to their dimensionless form by introducing
the following variables:

u = ar f ′(η), w =−2aL f (η),

N2 =
ar
L

g(η), η =
z
L
,

(11)

where upon our problems become

(1+K) f ′′′′ −ReM f ′′+ 2Re f f ′′′ −Kg′′ = 0,

f (0) = 0, f (1) = 0, f ′(1) = 1, f ′′(0) = 0,
(12)

(
1+

K
2

)
g′′−ReK[2g− f ′′]+Re [2 f g′− f ′g] = 0,

g(1) = 0, g(0) = 0,
(13)

where (6) is automatically satisfied. Here γ = (µ +
k/2) j [24] and

K =
k
µ
, Re =

aL2

ν
, M =

σB2
0

ρa
,

respectively, are called the micropolar parameter, the
Reynolds number, and the Hartman number.

The skin friction coefficient Cf and couple shear
stress Cg at z = L are defined by [25]

Cf =
τw

ρ(ar)2 − (µ + k)
ρ(ar)2

∂u
∂ z

∣∣∣∣
z=L

=
(1+K)

Re r
f ′′(1),

Cg =−
L γ ∂N2

∂ z

∣∣∣
z=L

ρ(ar)2 =
(1+K/2)

Re r
g′(1),

(14)

where Re r (= arL/ν) denotes the local Reynold num-
ber, respectively.

3. Solutions by the Homotopy Analysis Method

Here f (η) and g(η) are expressed by a set of base
functions{

η2n+1,n ≥ 0
}

(15)

in the form

f (η) =
∞

∑
n=0

anη2n+1, (16)

g(η) =
∞

∑
n=0

bnη2n+1, (17)

where an and bn are the coefficients. The initial guesses
and linear operators Li (i = 1,2) are defined by the fol-
lowing expressions:

f0(η) =
1
2
(η3 −η), g0(η) = 0, (18)

L1( f (η)) =
d4 f
dη4 , L2(g(η)) =

d2g
dη2 , (19)

L1[C1 +C2η +C3η2 +C4η3] = 0, (20)
L2[C5 +C6η ] = 0 (21)

with Ci (i = 1 – 6) arbitrary constants. The subjected
problems at the zeroth-order are given by

(1−q)L1[Φ(η ;q)− f0(η)] = qh̄1N1[Φ(η ;q),Ψ (η ;q)],
(22)

Φ(0;q) = 0, Φ(1;q) = 0,

∂Φ(η ;q)
∂η

∣∣∣∣
η=1

= 1,
∂ 2Φ(η ;q)

∂η2

∣∣∣∣
η=0

= 0,
(23)

(1−q)L1[Ψ(η ;q)−g0(η)] = qh̄2N2[Ψ(η ;q),Φ(η ;q)],
(24)

Ψ(1;q) = 0, Ψ(0;q) = 0, (25)
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in which q ∈ [0,1] and h̄i 	= 0 (i = 1,2) are respectively
known as the embedding and convergence control pa-
rameters such that Φ(η ;0) = f0(η), Ψ (η ;0) = g0(η),
Φ(η ;1) = f (η) and Ψ(η ;1) = g(η). When q varies
from 0 to 1, Φ(η ;q) approaches from f0(η) to f (η)
and Ψ(η ;q) from g0(η) to g(η). Furthermore, the def-
initions of nonlinear operators Ni (i = 1,2) are

N1[Φ(η ;q),Ψ (η ;q)] =

(1+K)
∂ 4Φ(η ;q)

∂η4 −ReM
∂ 2Φ(η ;q)

∂η2

+ 2ReΦ(η ;q)
∂ 3Φ(η ;q)

∂η3 −K
∂ 2Ψ (η ;q)

∂η2 ,

(26)

N2[Ψ(η ;q),Φ(η ;q)] =
(

1+
K
2

)
∂ 2Ψ(η ;q)

∂η2

−K Re
[

2Ψ(η ;q)− ∂ 2Φ(η ;q)
∂η2

]

+ Re
[

2Φ(η ;q)
∂Ψ (η ;q)

∂η
−Ψ(η ;q)

∂Φ(η ;q)
∂η

]
.

(27)

By using Taylor series we have

Φ(η ;q) = f0(η)+
∞

∑
m=1

fm(η)qm, (28)

Ψ(η ;q) = g0(η)+
∞

∑
m=1

gm(η)qm, (29)

fm(η) =
1

m!
∂ mΦ(η ;q)

∂ηm

∣∣∣∣
q=0

, (30)

gm(η) =
1

m!
∂ mΨ (η ;q)

∂ηm

∣∣∣∣
q=0

. (31)

The deformation problems corresponding to the mth
order are

L1[ fm(η)− χm fm−1(η)] = h̄1R1m( fm−1(η)),

fm(0) = 0, fm(1) = 0, f ′m(1) = 0, f ′′m(0) = 0,
(32)

L2[gm(η)− χmgm−1(η)] = h̄2R2m(gm−1(η)),

gm(1) = 0, gm(0) = 0, χm =

{
0, m ≤ 1

1, m > 1
,

(33)

Table 1. Convergence of HAM solutions when Re=M = 2.0,
K = 0.5, and h̄1 = h̄2 =−0.7.
Order of approximations f ′′(1) g′(1)

1 3.72000000000 −0.700000000000
5 3.61057806477 −0.738449167223

10 3.61076391320 −0.738463512754
15 3.61076396332 −0.738463496869
20 3.61076396287 −0.738463496789
25 3.61076396287 −0.738463496789
30 3.61076396287 −0.738463496789
35 3.61076396287 −0.738463496789

R1m( fm(η),gm(η)) = (1+K) f ′′′′m−1

−ReM f ′′m−1 + 2Re
m−1

∑
n=0

f ′′′n fm−1−n −Kg′′m−1,

R2m(gm(η), fm(η)) =
(

1+
K
2

)
g′′′m−1

−ReK[2gm−1 − f
′′
m−1]

+ Re
m−1

∑
n=0

[2 fng′m−1−n − f ′ngm−1−n].

(34)

The general solutions at the mth order are

fm(η) = f ∗m(η)+Cm
1 +Cm

2 η +Cm
3 η3, (35)

gm(η) = g∗m(η)+Cm
4 +Cm

5 η , (36)

in which f ∗m(η) and g∗m(η) are the particular solutions
of (32) and (33) and the coefficients Cm

i (i = 1 – 5) are
determined by the boundary conditions given in (32)
and (33). The systems (32) and (33) are solved by em-
ploying the symbolic computation program Mathemat-
ica.

4. Convergence of Homotopy Solutions

It is a known fact that the convergence of solutions
given by (35) and (36) depend upon the auxiliary pa-
rameters h̄1 and h̄2. Hence, we display the h̄-curves in
Figures 2a and 3a. In order to show the validity of the
solutions residual errors both for f (η) and g(η) are
skeched in Figures 2b and 3b. From Figures 2 and 3
it is found that the convergence region for f (η) and
f ′(η) are −1.15 ≤ h̄1 ≤ −0.4 and that for g(η) is
−1.1 ≤ h̄2 ≤ −0.6. However, the whole analysis has
been performed for h̄1 = h̄2 =−0.7. Furthermore, Ta-
ble 1 shows that convergence is achieved at 20th-order
of approximations up to 12 decimal places.

5. Results and Discussion

In order to illustrate the dimensionless velocity
components and microrotation (dimensionless angular
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(a) (b)

Fig. 2. (a) h̄-curve of f (η); (b) Residual error of f (η).

(a) (b)

Fig. 3. (a) h̄-curve of g(η); (b) Residual error of g(η).

Fig. 4. Influence of M on f ′(η).

velocity) for the emerging parameters of interest, we
have plotted the Figures 4 – 12. In addition the numer-
ical computations for skin friction coefficient and cou-
ple stress coefficient have been carried out in Table 2.
It is seen from Figure 4 that the magnitude of the di-
mensionless radial component f ′(η) of the velocity

Fig. 5. Influence of Re on f ′(η).

decreases by increasing the Hartman number M. This
shows that the Lorentz force retards the fluid motion in
radial direction and consequently the boundary layer
thickness decreases. Hence, one can conclude that the
boundary layer can be controlled through the magnetic
field. It is observed from Figure 5 that the magnitude
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Fig. 6. Influence of K on f ′(η).

Fig. 7. Influence of M on f (η).

Fig. 8. Influence of Re on f (η).

of the dimensionless radial component f ′(η) of the ve-
locity decreases when the Reynolds number Re is in-
creased. Upon increasing the microrotation parameter
K, there is an enhancement in the magnitude of the di-
mensionless radial component f ′(η) of the velocity.
The boundary layer thickness also increases (Fig. 6).
Figure 7 depicts that the magnitude of the dimension-

Table 2. Numerical values of skin friction coefficient RerCf
and couple stress coefficient Re rCg.

M Re K Re rCf −Re rCg

0.0 1.0 0.5 4.66731025187 0.918676961138
1.0 5.05533817307 0.920980526582
2.0 5.41614594430 0.923079370986
3.0 5.75398731824 0.925002385109

1.0 1.0 0.5 4.77646547374 0.478773301056
2.0 5.05533817307 0.920980526582
3.0 5.33415542042 1.33415055037
4.0 5.61103357482 1.72430008392

1.0 1.0 0.0 3.31107413404 0.000000000000
0.2 3.90500594445 0.196869286252
0.4 4.48804832942 0.386227295205
0.6 5.06319086907 0.570159417698

Fig. 9. Influence of K on f (η).

Fig. 10. Influence of M on g(η).

less axial component f (η) of the velocity decreases
for various values of Hartman number M. The influ-
ence of the Reynolds number on the dimensionless ax-
ial component f (η) of the velocity has been shown
in Figure 8. It has been found from this figure that
there is a reduction in the magnitude of f (η) when
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Fig. 11. Influence of Re on g(η). Fig. 12. Influence of K on g(η).

Re is increased. However, the magnitude of f (η) in-
creases due to an increase in K (Fig. 9). The effects
of M, Re, and K on the dimensionless angular veloc-
ity g(η) are shown in Figures 10 – 12. Obviously, the
dimensionless angular velocity g(η) decreases by in-
creasing Hartman number M as shown in Figure 10.
It is also noticed that the dimensionless angular veloc-
ity g(η) increases because of an increase in Re and K
(Figs. 11 and 12). The skin friction coefficient Re rCf
and the couple stress coefficient Re rCg are computed
in Table 2. This demonstrates that Re rCf and Re rCg
are increasing functions of M, Re , and K.

6. Concluding Remarks

A study of two-dimensional flow of an incompress-
ible micropolar fluid between the radially stretching
sheets is performed. Convergent series solution is de-
rived through the homotopy analysis procedure. The
interesting observations are presented below.

1. The velocity components f (η) and f ′(η) are de-
creasing functions of Re.

2. The effect of Re on f (η) and g(η) are opposite.
3. There is a decrease in magnitudes of f (η),

f ′(η), and g(η) when M is increased.
4. The applied magnetic field provides a mecha-

nism to control the boundary layer.
5. The skin friction coefficient Re rCf and couple

stress coefficient Re rCg are increasing functions of Re,
M, and K.

6. Qualitative effects of M and K on the skin
friction and couple stress coefficients are similar to
that of Re.
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