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We make use of the classical correspondence between Kekulé structures and lattice paths to obtain
explicit formulas for the Pauling bond order of edges in benzenoid parallelograms. These formulas
are further used to establish the average π-electron content of hexagonal rings in such benzenoids.
We then compare this quantity with the atom-based π-electron content of rings, and study the local
and the asymptotic behaviour of their difference.
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1. Introduction

In this paper we are concerned with the average π-
electron content in the rings of a particular class of
benzenoid hydrocarbons. There are several ways to
define and compute this quantity. Here we follow a
method proposed and developed in a series of recent
papers [1 – 8], where it was applied to various cata-
and pericondensed benzenoid and coronoid species.
The method makes use of the Pauling bond order and,
hence, boils down to counting Kekulé structures in the
considered benzenoids. We take further this line of re-
search first by revisiting the folklore correspondence
between Kekulé structures and lattice paths and deriv-
ing simple explicit formulas for the Pauling bond or-
der of edges in benzenoid parallelograms, and then by
presenting explicit formulas for the average π-electron
content of rings in such benzenoids. These formulas
then allow us to study the deviation of so computed π-
electron content from the uniform distribution, where
an atom shared by k rings contributes 1/k electrons to
each ring. It is shown that for large enough parallelo-
grams this deviation is most prominent in a rather nar-
row band along the longer diagonal, and that there is
a small net migration of electrons from the periphery
toward the interior.

2. Preliminaries

2.1. Benzenoid Parallelograms

Let us consider a configuration of m × n congru-
ent regular hexagons arranged in m rows, each row of
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Fig. 1. Benzenoid paral-
lelogram B4,5.

n hexagons, shifted for half a hexagon to the right from
the row immediately below. An example is shown in
Figure 1. The arrangement is such that two hexagons
either share a whole edge or are completely disjoint.
To each such configuration we assign a graph by tak-
ing the vertices of hexagons as vertices of the graph,
and the edges of hexagons as its edges. The result-
ing planar and bipartite graph is called a benzenoid
parallelogram and denoted by Bm,n. It has mn hexa-
gonal rings as its faces, 2(mn+m + n) vertices, and
3mn+ 2m+ 2n− 1 edges. For m = n we obtain a ben-
zenoid rhombus Bm.

Let Bm,n be embedded in the plane as in Figure 1. To
each of its mn hexagons we assign two integer labels
indicating its position within the graph. The first label
indicates the row, the second one the column. The la-
bels increase from lower to higher rows and from left to
the right for the columns. We also label the edges. First,
we observe that they are partitioned into three classes.
We denote the classes by v (vertical), d (descending),
and a (ascending). To each vertical edge we assign two
labels: The first one denotes the row, the second one
the number of hexagons in that row left from the con-
sidered edge. By specifying 1 ≤ i ≤ m and 0 ≤ j ≤ n
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Fig. 2. A perfect matching in B3,4 and the
corresponding lattice path.

the position of edge vi, j is fully determined. The mean-
ing of labels i, j assigned to other two types of edges
is similar: di, j denotes the descending edge in the j-th
column with i hexagons below it, while ai, j stands for
the ascending edge such that there are i hexagons be-
low it and j hexagons left of it. The label ranges are
0 ≤ i ≤ m and 1 ≤ j ≤ n for descending edges and
0 ≤ i ≤ m and 0 ≤ j ≤ n for the ascending ones.

Let F be a face of a planar graph G. The set of all
edges of G incident with F is called its boundary and
denoted by ∂F . For any hexagonal face Hi, j of Bm,n its
boundary can be described in a compact way using our
labelling scheme:

∂Hi, j = {vi, j−1,vi, j,di−1, j,di, j,ai−1, j,ai, j−1}.

2.2. Importance, Redundancy, and Pauling Bond
Order

A matching in a graph G is a set M of edges of G
such that no two edges from M share a vertex. A
matching M is called perfect if every vertex of G is
incident with some edge from M. The number of per-
fect matchings in G we denote by K(G).

Let e be an edge of G. Its importance ι(e) is de-
fined as the number of perfect matchings in G that con-
tain e. The concept of importance of an edge is closely
related to its Pauling bond order: The Pauling bond
order p(e) of an edge e is obtained by dividing its im-
portance by the total number of perfect matchings in G,
p(e) = ι(e)/K(G). Another related concept is redun-
dancy of an edge. It is defined as the number of per-
fect matchings in G that do not contain e, and is de-
noted by ρ(e). Obviously, ι(e)+ρ(e) = K(G), for any
edge e of G.

The number of perfect matchings in Bm,n is given
by K(Bm,n) =

(m+n
m

)
. This classical result [9] has been

rediscovered many times; the formula is a direct con-
sequence of a bijective correspondence between per-
fect matchings in Bm,n and directed lattice paths with
steps (1,0) and (0,1) from (0,0) to (n,m) in Z

2. We re-
fer the reader to [10] where the proof has been worked

out in full detail. The correspondence is illustrated in
Figure 2. The literature on the enumeration of per-
fect matchings in benzenoid graphs is vast. We refer
the reader to the monograph [11] for a comprehensive
survey.

2.3. π-Electron Distribution

Benzenoid graphs were introduced as mathemati-
cal models of compounds known as polycyclic aro-
matic hydrocarbons or benzenoids. Carbon atoms of
such compounds are represented by vertices, and the
chemical bonds between them by edges of the corre-
sponding graphs. Each carbon atom is adjacent either
to three carbon atoms, or to two carbons and one hy-
drogen. This leaves one π-electron per carbon atom
for forming carbon-carbon double bonds. The pattern
of double bonds is called a Kekulé structure. Since
in benzenoids no carbon atom can participate in more
than one double bond, a Kekulé structure is mathemat-
ically represented by a perfect matching.

The number of π-electrons that participate in
Kekulé structures is equal to the number of atoms in
the compound. The pattern of their distribution among
the bonds is quantified by the Pauling bond order [6].
Hence, one can look at this quantity as a measure of the
π-electron content of a given bond. The Pauling bond
order also enables us to measure the π-electron content
of hexagonal rings of benzenoid compounds.

Let G be a planar graph with a perfect matching
and H one of its bounded faces. Let U denote the un-
bounded face of G. An edge e ∈ ∂H can be shared ei-
ther with U or with another bounded face of G. Let M
be a perfect matching of G. Each edge from ∂H partici-
pating in M carries two electrons. If e is not shared with
another bounded face of G, both its electrons are as-
signed to H; if the edge is shared between two bounded
faces, each of them gets one of its electrons. Un-
der such scheme, the total number of electrons given
to H by M is obtained by counting edges from ∂H
in M, counting the edges shared by the unbounded side
twice. The total π-electron content of H, π(H), is ob-
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Fig. 3. Importance of a vertical edge.

tained by summing such contributions over all perfect
matchings of G. The average π-electron content of
a bounded face H, π(H), is then obtained by dividing
its total π-electron content by the number of perfect
matchings in G. Hence, π(H) = π(H)

K(G)
.

By double counting of edges one can obtain a simple
expression for the total π-electron content of a face in
terms of importances of edges from ∂H.

Theorem A:

π(H) = ∑
e∈∂H

ι(e)+ ∑
e∈∂H∩∂U

ι(e). �

By dividing the above expression by K(G) we ob-
tain a formula for π(H) equivalent to formula (1) of
reference [6]. However, we find the formula from The-
orem A more convenient for the computations that fol-
low.

There are also other ways of defining the π-electron
content of a face of G. The simplest one is to assume
that an atom (i. e., a vertex) shared by k rings gives 1/k
of its π-electron to each ring. This formula depends
only on the local modes of annelation, hence, it is very
coarse. For example, it gives two electrons to all in-
ternal rings. Nevertheless, it was considered in [12] as
a useful baseline for comparisons with other, more re-
fined, distributions. Since it is atom-based, we denote
the π-electron content of a ring H based on this distri-
bution by πa(H). Following the reference cited above,
the π-electron excess of a bounded face H of G is
defined as the difference between π(H) and πa(H).
We denote this quantity by επ(H). Hence, επ(H) =
π(H)− πa(H). In the next section we compute π(H)
and επ(H) for all hexagons of a benzenoid parallelo-
gram Bm,n.

3. Main Results

Let us consider a benzenoid parallelogram Bm,n. We
assume m > 1; the case m = 1 was considered in [6].
This section generalizes the results of the special case

m = n considered in [8]. We start by establishing ex-
plicit formulas for importances of edges in Bm,n. Those
importances depend on the edge type (v, d, or a) and
position in Bm,n. The case of vertical edges is the sim-
plest and we treat it first.

Lemma 1:

ι(vi, j) =

(
i+ j− 1

i− 1

)(
m+ n− (i+ j)

m− i

)
.

Proof: The nature of the above-mentioned corre-
spondence between perfect matchings and lattice paths
is such that the vertical edges in a perfect match-
ing are mapped to vertical steps in the corresponding
lattice path. Hence, the number of perfect matchings
of Bm,n containing a given vertical edge vi, j is equal
to the number of lattice paths containing the verti-
cal edge corresponding to vi, j. This, in turn, is equal
to the product of the numbers of lattice paths in two
smaller rectangles. Depending on the position of vi, j
within Bm,n, one of the rectangles can be degenerated.
The claim now follows from the well-known formula
for the number of lattice paths in such rectangles. The
correspondence and the resulting rectangles are shown
in Figure 3. �

Importances of descending edges can be related to
the importances of vertical edges using a transforma-
tion mapping Bm,n to Bn,m.

Lemma 2:

ι(di, j) =

(
i+ j− 1

j− 1

)(
m+ n− (i+ j)

n− j

)
.

Proof: By rotating Bm,n clockwise for π/3 and re-
flecting the result across a horizontal line in a way
shown in Figure 4 we obtain a benzenoid parallelo-
gram Bn,m. Descending edges of Bm,n are mapped to
the vertical edges of Bn,m so that di, j becomes v j,i. The
claim now follows from Lemma 1. �

Although no similar trick can be employed to map
the ascending edges of Bm,n to vertical edges of some
other benzenoid parallelogram, their importances can
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Fig. 4. Mapping descending edges to the vertical ones.

still be expressed in terms of importances of vertical
edges.

Lemma 3:

ι(ai, j) =

(
m+ n

m

)
− ι(vi, j)− ι(v j,i).

Proof: The edges vi, j, di, j, and ai, j meet at the ver-
tex in the upper right corner of Hi, j. Since the impor-
tances of all edges incident to any vertex must add up
to the total number of perfect matchings in the graph,
the claim follows from Lemmas 1 and 2. �

Now we can determine the total π-electron content
of an internal hexagon of Bm,n.

Lemma 4: Let Hi, j be an internal hexagon of Bm,n.
Then

π(H) = 2
(

m+ n
m

)
+ ι(vi, j)− ι(vi−1, j)

+ ι(vi, j−1)− ι(vi+1, j−1). �

The result follows immediately from the above lem-
mas and Theorem A. By dividing the above expression
by

(m+n
m

)
we obtain an explicit formula for the average

π-electron content of an internal hexagon.

Theorem 5: Let Hi, j be an internal hexagon of Bm,n.
Then

π(H) = 2+[ι(vi, j)− ι(vi−1, j)+ ι(vi, j−1)

− ι(vi+1, j−1)]
/(

m+ n
m

)
. �

By noticing that 2 is exactly equal to πa(Hi, j), we
immediately obtain an expression for the π-electron
excess of an internal hexagon.

Fig. 5 (colour online). π-electron excess of internal
hexagons.

Corollary 6: Let Hi, j be an internal hexagon
of Bm,n. Then

επ(Hi, j) = [ι(vi, j)− ι(vi−1, j)+ ι(vi, j−1)

− ι(vi+1, j−1)]
/(

m+ n
m

)
. �

Closer examination of the above expression for
large m and n reveals some interesting numerical pat-
terns. In Figure 5 we show the plot of επ(Hi, j) for inter-
nal hexagons of B31,31. We see that there is a prominent
ridge along the longer diagonal of the parallelogram,
accompanied by two ditches running parallel to it on
each side and gradually flattening out toward zero near
the other two corners of the parallelogram. Those ob-
servations can be verified by direct computations. The
choice m = n is not essential – it was introduced to
eliminate one parameter and simplify the computation.
Even so simplified it remains tedious and does not of-
fer any new insights, so we omit the details.

Figure 5 is in agreement with the fact that in ben-
zenoid rhombi Clar formulas show that the π-electron
sextets are along their longer diagonal. We refer the
reader to [13] for more information on Clar π-sextets.

Let us now look at the border hexagons. It suffices
to consider H1,1, H1,n, and H1, j, j = 2, . . . ,n− 1.

Lemma 7:

π(H1,1) = 4+ 2
mn

(m+ n)(m+ n−1)

π(H1,n) = 3+
m+ n−mn+ 2(m+n

m

) . �

Both results follow straightforwardly from previous
lemmas and Theorem A. For m = n the first formula
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reproduces the result of reference [8] for the corner
hexagons of benzenoid rhombi. We notice that the non-
constant term of the right-hand side of the formula for
π(H1,n) is negative for m+ n > 5.

Lemma 8: Let 2 ≤ j ≤ n− 1. Then

π(H1, j) =

3+
m+ 2n+ 1

m− 1

(
m+ n− j− 1

m− 2

)/(
m+ n

m

)
. �

The result follows by simplifying the expression
resulting from application of Theorem A. The non-
constant term on the right-hand side is equal to
επ(H1, j). Let us denote its numerator by p( j), hence

p( j) = m+2n+1
m−1

(
m+n− j−1

m−2

)
. This is a polynomial in j

of degree m− 1. It has exactly m− 1 real zeros; the
smallest one is m+2n−1

m−1 , the next largest is n+ 2. Be-
tween them must be exactly one zero of p′( j), where
p( j) has a local minimum. Hence, there must be
an index j0 between 2 and n − 1 such that p( j0) ≤
p( j0 + 1). It follows by a straightforward calculation
that j0 must satisfy j0 ≥ (m−2)(m+2n+1)+(m+1)(n+1)

m2−1 . By
setting m = n we obtain j0 =

⌈ 4m+1
m−1

⌉
. For large m

it tends toward 4, hence, the minimum π-electron
excess is achieved on H1,4 for all m big enough.
This is fully consistent with the position of the sub-
diagonal ditch for internal hexagons. Indeed, a sim-
ilar analysis shows that επ(H2, j) is minimized for

j0 =

⌈
7m+1+

√
25m2−34m−23

2(m+1)

⌉
, and this tends to 6 for

large m. The positions of both minima are consistent
with the results reported in Table 2 of reference [8] for
n = m = 8.

On the whole, our analysis shows that for large
m ≈ n both internal hexagons and border hexagons
that are not in the corners of Bm,n receive roughly
the same share of π-electrons as allotted to them by
the atom-based distribution πa. The situation is dif-
ferent with corner hexagons. It is easy to see that
πa(H1,1) = 13/3 and πa(H1,n) = 11/3. Taken together,
the four corner hexagons receive 16 electrons under the
atom-based distribution. On the other hand, from our
formulas it follows that they collectively receive only
15 electrons. The hexagons H1,1 and Hn,n receive, in
the limit, 4.5 electrons each, while the other two cor-
ner hexagons receive 3 electrons each. Hence, there is

a net migration of 4/3 electrons from the hexagons at
the ends of the shorter diagonal of Bm,n. One-third of
one electron is shared between the other two corner
hexagons, and the remaining one electron is distributed
among non-corner hexagons. The exact nature of this
distribution depends on the ratio of m and n.

Let us set n = km. It suffices to consider k ≥ 1. It
is easy to see that the average electron contents of the
corner hexagons are not affected and remain 4.5 and 3,
respectively, in the limit for large m and n. Let us look
at the non-corner hexagons of the longer side of Bm,n.
By summing π(H1, j) over 2 ≤ j ≤ n− 1 we get

n−1

∑
j=2

π(H1, j) = 3(n− 2)+
(m2 + n)(m+ 2n+ 1)
(m− 1)(n+ 1)(m+ n)

− 2mn
(m+ n)(m+ n− 1)

− m+ 1
m− 1

+R(m,n).

Here R(m,n) denotes some terms quadratic and lin-
ear in m and n divided by

(m+n
m

)
that vanish for

large m and n. By setting m = n we obtain that
∑n−1

j=2 π(H1, j) −→ 3(m − 2), hence the non-corner
hexagons of the longer side do not profit from the elec-
tron migration from H1,n. However, for general k > 1,
simplifying the right-hand side of the above expression
yields the total π-electron excess of the longer side as

3k+1
k(k+1)2 − 1. This quantity is negative for all k > 1 and
tends to −1 as k −→ ∞. Hence, for long benzenoid
parallelograms there is also a net migration of elec-
trons from their longer sides. This is intuitively clear,
since, in accordance with our previous results, as the
parallelogram is stretched, more and more hexagons of
the bottom row fall deeper into the sub-diagonal ditch.
The electrons cannot go to the hexagons on the shorter
sides, since they too fall either in a ditch or in the flat
but still slightly negative area. Hence they must end in
the diagonal ridge, in particular near its end-hexagons.
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Tóth, Z. Naturforsch. 60a, 171 (2005).
[6] I. Gutman, T. Morikawa, and S. Narita, Z. Naturforsch.

59a, 295 (2005).
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