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Taylor-Couette flow in an annulus due to a time-dependent torque suddenly applied to one of the
cylinders is studied by means of finite Hankel transforms. The exact solutions, presented under series
form in terms of usual Bessel functions, satisfy both the governing equations and all imposed initial
and boundary conditions. They can easily be reduced to give similar solutions for Maxwell, second-
grade, and Newtonian fluids performing the same motion. Finally, some characteristics of the motion,
as well as the influence of the material parameters on the behaviour of the fluid, are emphasized by
graphical illustrations.
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1. Introduction

The study of the motion of a fluid in the neighbour-
hood of a rotating or sliding body is of great interest
for industry. The flow between rotating cylinders or
through a rotating cylinder has many applications in
the food industry, and is one of the most important and
interesting problems of motion near rotating bodies. It
has been intensively studied since G. I. Taylor (1923)
reported the results of his famous investigations [1].
For Newtonian fluids, the velocity distribution for a
fluid contained in an annular region between two cylin-
ders, with a common axis, is given in [2]. The first ex-
act solutions for motions of non-Newtonian fluids in
cylindrical domains seem to be those of Ting [3] for
second-grade fluids, Srivastava [4] for Maxwell fluids
and Waters and King [5] for Oldroyd-B fluids. In the
meantime many papers regarding such motions have
been published but we mention here only a few of those
regarding Oldroyd-B or more general fluids [6 – 15].

It is worth pointing out that almost all the above
mentioned works deal with motion problems in which
the velocity field is given on the boundary. To the best
of our knowledge, the first exact solutions for motions
of non-Newtonian fluids, due to a constant shear stress
on the boundary, are those of Waters and King [16]
over an infinite plate, and Bandelli and Rajagopal [17]
between two co-axial circular cylinders. Similar solu-
tions for the flow due to an infinite plate that applies
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a constant/time-dependent shear to a non-Newtonian
fluid, have been also obtained by Bandelli et al. [18],
Erdogan [19] and Fetecau and Kannan [20]. Although
the computer techniques make the complete integra-
tion of the momentum equation feasible, the accuracy
of the results can be established by comparison with
an exact solution. Consequently, as in the case of the
motion problems in which the velocity is given on the
boundary, it is necessary to develop a large class of ex-
act and approximate solutions for problems in which
the boundary (or a part of the boundary) applies a shear
stress to the fluid.

Our purpose here is to establish exact solutions for
the velocity field and the shear stress corresponding
to the motion of an Oldroyd-B fluid between two co-
axial circular cylinders, one of them being fixed and the
other one applying a time-dependent rotational shear
stress to the fluid. More precisely, we extend the results
of Bandelli and Rajagopal [17, Sect. 5] to rate type flu-
ids, namely to Oldroyd-B fluids. The Oldroyd-B fluids
store energy as linearized elastic solids and their dis-
sipation is due to two dissipative mechanisms which
arise from a mixture of two viscous fluids. They have
been extensively used in many applications although
an Oldroyd-B fluid cannot describe either shear thin-
ning or shear thickening. However, they can describe
stress-relaxation, creep, and the normal stress differ-
ences that develop during simple shear flows. This
model is viewed as one of the most successful mod-
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els for describing the response of a subclass of poly-
meric liquids. Furthermore, the general solutions to be
obtained here for Oldroyd-B fluids can easily be re-
duced to give similar solutions for Maxwell, second-
grade, and Newtonian fluids. Finally, the influence of
the material constants on the fluid motion, as well as
a comparison between the four models, is shown by
graphical illustrations.

2. Governing Equations

The Cauchy stress T for an incompressible Oldroyd-
B fluid is related to the fluid motion by the following
constitutive equations:

T =−pI+S,
S+λ (Ṡ−LS−SLT) = µ [A+λr(Ȧ−LA−ALT)],

(1)

where −pI denotes the indeterminate spherical stress
due to the constraint of incompressibility, S is the
extra-stress tensor, L is the velocity gradient, A =
L+LT is the first Rivlin-Ericksen tensor, µ is the dy-
namic viscosity of the fluid, λ and λr are relaxation and
retardation times, the superposed dot indicates the ma-
terial time derivative and the superscript T denotes the
transpose operation. The model characterized by (1)
contains as special cases the upper convected Maxwell
model for λ = 0 and the Newtonian fluid model for
λ = λr = 0. In some special flows, like those to be con-
sidered here, the governing equations corresponding to
the Oldroyd-B fluids resemble those of second-grade
fluids. Consequently, it is to be expected that the gen-
eral solutions for Oldroyd-B fluids contain as special
cases both the solutions corresponding to Maxwell and
Newtonian fluids and those for second-grade fluids.

For the problem under consideration we assume a
velocity field v and an extra-stress tensor S of the form

v = v(r, t) = w(r, t)eθ , S = S(r, t), (2)

where eθ is the unit vector in the θ -direction of the
cylindrical coordinates system r, θ , and z. For such
flows the constraint of incompressibility is automati-
cally satisfied. If the fluid is at rest up to the moment
t = 0, then

v(r,0) = 0, S(r,0) = 0, (3)

and (1)2 and (2) imply Srr = Srz = Szz = Szθ = 0 and
we obtain the meaningful equation [6, 7](

1+λ
∂
∂ t

)
τ(r, t) = µ

(
1+λr

∂
∂ t

)(
∂
∂ r

− 1
r

)
w(r, t), (4)

where τ = Srθ is the non-trivial shear stress.

Neglecting body forces and in the absence of a pres-
sure gradient in the axial direction, the balance of the
linear momentum leads to the relevant equation [6]

ρ
∂w(r, t)

∂ t
=

(
∂
∂ r

+
2
r

)
τ(r, t), (5)

where ρ is the constant density of the fluid. Eliminating
τ(r, t) between (4) and (5), we obtain the governing
equation for velocity

λ
∂ 2w(r, t)

∂ t2 +
∂w(r, t)

∂ t
=(

ν +α
∂
∂ t

)(
∂ 2

∂ r2 +
1
r

∂
∂ r

− 1
r2

)
w(r, t),

(6)

where ν = µ/ρ is the kinematic viscosity of the fluid
and α = νλr.

The coupled partial differential equations (4)
and (6), with suitable initial and boundary conditions,
can be solved in principle by several methods, their ef-
ficiency depending on the domain definition. The inte-
gral transform technique represents a systematic, effi-
cient, and powerful tool. The Laplace transform can be
used to eliminate the time variable while the finite Han-
kel transform can be employed to eliminate the spatial
variable. However, in order to avoid the lengthy and
burdensome calculations of residues and contour inte-
grals, we shall use the finite Hankel transform.

3. Taylor-Coutte Flow Due to a Time-Dependent
Couple

Consider an incompressible Oldroyd-B fluid at rest
in an annular region between two infinitely long co-
axial circular cylinders. At time t = 0+ let the inner
cylinder of radius R1 be set in rotation about its axis by
a time-dependent torque per unit length 2πR1τ(R1, t),
where

τ(R1, t) = f (1− e−
t
λ ); f = constant, (7)

and let the outer cylinder of radius R2 be kept station-
ary. Owing to the shear the fluid between cylinders is
gradually moved. Its velocity is of the form (2)1, the
governing equations are given by (4) and (6) while the
appropriate initial and boundary conditions are [4, 8 –
11, 17, 20]

w(r,0) =
∂w(r,0)

∂ t
= 0, τ(r,0) = 0; r ∈ (R1,R2], (8)
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1+λ
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(9)

Of course, τ(R1, t) given by (7) is just the solution of
the differential equation (9)1.

3.1. Calculation of the Velocity Field

Multiplying (6) by rB(rrn), where

B(rrn) = J1(rrn)Y2(R1rn)− J2(R1rn)Y1(rrn),

rn is a positive root of the transcendental equation
B(R2r) = 0 and Jp(·), Yp(·) with p = 1,2 are standard
Bessel functions, and using the identity

∫ R2

R1

rB(rrn)

(
∂ 2

∂ r2 +
1
r

∂
∂ r

− 1
r2

)
w(r, t)dr

=
2

πrn

(
∂
∂ r

− 1
r

)
w(r, t)

∣∣
r=R1

− r2
nwnH(t),

(10)

as well as the boundary condition (9)2, we find that

λ ẅnH(t)+ (1+αr2
n)ẇnH(t)+νr2

nwnH(t) =
2 f

ρπrn
,

t > 0. (11)

In the above relations, the function wnH(·) defined by

wnH(t) =
∫ R2

R1

rw(r, t)B(rrn)dr, n= 1,2,3, . . . (12)

is the finite Hankel transform of w(r, .). In view
of (8)1,2, it must satisfy

wnH(0) = ẇnH(0) = 0. (13)

The solution of the ordinary differential equa-
tion (11), with the initial conditions (13), has the sim-
ple form

wnH(t) =
2 f

µπr3
n

[
1− q2neq1nt − q1neq2nt

q2n − q1n

]
, (14)

where

q1n,q2n =
−(1+αr2

n)±
√
(1+αr2

n)
2 − 4νλ r2

n

2λ
.

Now, applying the inverse Hankel transform formula
[21]

w(r, t) =
π2

2

∞

∑
n=1

r2
nJ2

1(R2rn)B(rrn)

J2
2 (R1rn)− J2

1(R2rn)
wnH(t) (15)

to (14) and using the identity

∫ R2

R1

(r2 −R2
2)B(rrn)dr =

4
πr3

n

(
R2

R1

)2

, (16)

we find for the velocity field w(r, t) the simple expres-
sion

w(r, t) =
f

2µ

(
R1

R2

)2(
r− R2

2
r

)

−π f
µ

∞

∑
n=1

J2
1 (R2rn)B(rrn)

rn[J2
2(R1rn)− J2

1(R2rn)]

q2neq1nt − q1neq2nt

q2n − q1n
.

(17)

3.2. Calculation of the Shear Stress

Solving (4) with respect to τ(r, t) and bearing in
mind the initial condition (8)3, we find that

τ(r, t) =
µ
λ

e−
t
λ

∫ t

0
e

τ
λ

(
1+λr

∂
∂τ

)(
∂
∂ r

− 1
r

)
w(r,τ)dτ.

(18)

Substituting (17) into (18) and using the identities

q1nq3n =−νr2
n

1+λrq1n

λ
, q2nq4n =−νr2

n
1+λrq2n

λ
,

q3nq4n = νr2
n

λ −λr

λ 2 ,

where q3n = q1n+1/λ and q4n = q2n+1/λ , we get af-
ter lengthy but straightforward computations the sim-
ple form of the shear stress

τ(r, t) = f
(

1− e−
t
λ

)(
R1

r

)2

+
π f
λ

∞

∑
n=1

J2
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J2
2 (R1rn)− J2

1(R2rn)

eq2nt − eq1nt

q2n − q1n
,

(19)

where

B̃(rrn) = J2(rrn)Y2(R1rn)− J2(R1rn)Y2(rrn).
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4. Limiting Cases

4.1. Maxwell Fluid

Taking the limit as λr → 0 in (17) and (19), the so-
lutions

wM(r, t) =
f

2µ

(
R1

R2

)2(
r− R2

2
r

)

−π f
µ

∞

∑
n=1

J2
1(R2rn)B(rrn)

rn[J2
2 (R1rn)− J2

1(R2rn)]

q6neq5nt − q5neq6nt

q6n − q5n
,

(20)

τM(r, t) = f
(

1− e−
t
λ

)(
R1

r

)2

+
π f
λ

∞

∑
n=1

J2
1(R2rn)B̃(rrn)

J2
2(R1rn)− J2

1(R2rn)

eq6nt − eq5nt

q6n − q5n

(21)

corresponding to a Maxwell fluid performing the same
motion are obtained. In the above relations

q5n,q6n =
−1±√

1− 4νλ r2
n

2λ
.

4.2. Second-Grade Fluid

When λ → 0 in (17) and (19), we obtain the solu-
tions

wSG(r, t) =
f

2µ

(
R1

R2

)2(
r− R2

2
r

)

−π f
µ

∞

∑
n=1

J2
1 (R2rn)B(rrn)

rn[J2
2(R1rn)− J2

1(R2rn)]
exp

( −νr2
nt

1+αr2
n

)
,

(22)

τSG(r, t) = f
(

R1

r

)2

+π f
∞

∑
n=1

J2
1(R2rn)B̃(rrn)

J2
2(R1rn)− J2

1(R2rn)

1
1+αr2

n
exp

( −νr2
nt

1+αr2
n

)(23)

corresponding to a second-grade fluid, where B(rrn)

and B̃(rrn) have been defined previously.

4.3. Newtonian Fluid

Finally when λ → 0 in (20) and (21) or λr → 0 and
then α → 0 into (22) and (23), the solutions

wN(r, t) =
f

2µ

(
R1

R2

)2(
r− R2

2
r

)

− π f
µ

∞

∑
n=1

J2
1(R2rn)B(rrn)

rn[J2
2 (R1rn)− J2

1(R2rn)]
e−νr2

nt ,

(24)

(a)

(b)

Fig. 1. Profiles of the velocity w(r, t) given by (17) and shear
stress τ(r, t) given by (19), for ν = 0.003, µ = 2.916, R1 =
0.4, R2 = 0.6, f = −5, λ = 2, λr = 1, and different values
of t.

τN(r, t)= f
(

R1

r

)2

+π f
∞

∑
n=1

J2
1 (R2rn)B̃(rrn)

J2
2 (R1rn)− J2

1(R2rn)
e−νr2

nt

(25)

for a Newtonian fluid are recovered.
Of course when λ → 0 in (7), we find that

τ(R1, t) = f . (26)

Consequently, the solutions (22) and (23), as well
as (24) and (25), correspond to a constant couple on
the boundary. For large values of t these solutions, as
well as the solutions corresponding to Maxwell and
Oldroyd-B fluids, tend to the steady solutions

ws(r)=
f

2µ

(
R1

R2

)2(
r− R2

2
r

)
, τs(r)= f

(
R1

r

)2

, (27)
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(a)

(b)

Fig. 2. Profiles of the velocity w(r, t) given by (17) and shear
stress τ(r, t) given by (19), for ν = 0.003, µ = 2.916, R1 =
0.4, R2 = 0.6, f =−5, λr = 0.5, t = 5 s and different values
of λ .

which are the same for all types of fluids. This is not a
surprise, since for large values of t the boundary con-
dition (7) tends to that given by (26). In conclusion, af-
ter some time, the behaviour of a non-Newtonian fluid
can be approximated by that of a Newtonian fluid. De-
pending on the constant f , the radii R1 and R2 of the
cylinders and the material constants, this time will be
ascertained graphically.

5. Numerical Results and Conclusions

Our aim was to provide exact solutions for the ve-
locity field w(r, t) and the shear stress τ(r, t) corre-
sponding to the flow of an Oldroyd-B fluid between
two infinite co-axial cylinders, the inner one being sub-
ject to a time-dependent torque. The solutions that have

(a)

(b)

Fig. 3. Profiles of the velocity w(r, t) given by (17) and shear
stress τ(r, t) given by (19), for ν = 0.003, µ = 2.916, R1 =
0.4, R2 = 0.6, f =−5, λ = 10, t = 10 s and different values
of λr.

Fig. 4. Profiles of the velocity w(r, t) for Oldroyd-B,
Maxwell, second-grade, and Newtonian fluids, for ν =
0.003, µ = 2.916, R1 = 0.4, R2 = 0.6, f =−5, λ = 4, λr = 1,
and t = 5 s.
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(a)

(c)

(b)

(d)

Fig. 5. Required time to reach the steady-state for Newtonian, second-grade, Maxwell, and Oldroyd-B fluids, for ν = 0.003,
µ = 2.916, R1 = 0.4, R2 = 0.6, f =−5, λ = 3, and λr = 1.

been obtained, presented under series form in terms of
Bessel functions J1(·), J2(·), Y1(·), and Y2(·), satisfy
both the governing equations and all imposed initial
and boundary conditions. They can easily be simplified
to give similar solutions for Maxwell, second-grade,
and Newtonian fluids. The solutions for second-grade
and Newtonian fluids correspond to a constant torque f
on the boundary. For large values of t, all solutions
tend to the steady solutions ws(r) and τs(r), which
are the same for all kinds of fluids, although the mo-
tion of the rate type fluids (Maxwell and Oldroyd-B)
is due to a time dependent shear stress on the bound-
ary. It is worth pointing out that, for large times, this
time-dependent shear stress tends to the same constant
value f .

In order to exhibit some relevant physical aspects of
the obtained results, the diagrams of the velocity w(r, t)
and of the shear stress τ(r, t) are depicted against r for

different values of t and of the material constants. From
Figures 1a and 1b the influence of the rigid boundary
on the fluid motion is clearly evident. The velocity of
the fluid, as well as the shear stress in absolute value,
is an increasing function of t and a decreasing one with
respect to r. Figures 2 and 3 show the influence of the
relaxation and retardation times λ and λr on the fluid
motion. Their effect on the velocity field w(r, t) and
the shear stress τ(r, t) is qualitatively the same, except-
ing a small neighbourhood near the outer cylinder. On
this neighbourhood the velocity of the fluid modifies
its monotony with respect to λr.

Finally, for comparison, the diagrams of w(r, t) cor-
responding to the four models (Oldroyd-B, Maxwell,
second-grade, and Newtonian) are presented in Fig-
ure 4 for the same values of the common material con-
stants and the time t. In all cases the velocity of the
fluid is a decreasing function with respect to r and the
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Newtonian fluid is the swiftest while the Oldroyd-B
fluid is the smallest in the region near the moving cylin-
der. In practice, it is necessary to know the approxi-
mate time after which the fluid is moving according to
the steady-state solutions. This time, as it results from
Figures 5, is the smallest for the Newtonian fluids and
the biggest for Maxwell fluids. The units of the para-
meters into Figures 1 – 5 are SI units, and the roots rn
have been approximated by (2n− 1)π/[2(R2−R1)].
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