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A modified (G′/G)-expansion method is proposed to construct exact solutions of nonlinear evo-
lution equations. To illustrate the validity and advantages of the method, the (3+1)-dimensional po-
tential Yu-Toda-Sasa-Fukuyama (YTSF) equation is considered and more general travelling wave
solutions are obtained. Some of the obtained solutions, namely hyperbolic function solutions, trigono-
metric function solutions, and rational solutions contain an explicit linear function of the variables in
the considered equation. It is shown that the proposed method provides a more powerful mathemati-
cal tool for solving nonlinear evolution equations in mathematical physics.
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1. Introduction

Nonlinear evolution equations (NLEEs) are often
presented to describe the motion of isolated waves, lo-
calized in a small part of space, in many fields such
as hydrodynamic, plasma physics, and nonlinear op-
tic. Seeking exact solutions of NLEEs plays an im-
portant role in the study of these nonlinear physical
phenomena. In the past several decades, many effec-
tive methods for obtaining exact solutions of NLEEs
have been presented, such as the inverse scattering
method [1], Hirota’s bilinear method [2], Bäcklund
transformation [3], Painlevé expansion [4], sine-cosine
method [5], homogeneous balance method [6], tanh-
function method [7 – 9], Jacobi elliptic function ex-
pansion method [10 – 12], F-expansion method [13 –
15], auxiliary equation method [16 – 18], rational func-
tion expansion method [19 – 21], and exp-function
method [22 – 24].

With the development of computer science, recently,
directly searching for exact solutions of NLEEs has
attracted much attention. This is due to the availabil-
ity of symbolic computation systems like Mathemat-
ica or Maple which enable us to perform the com-
plex and tedious computation on computers. Wang et
al. [25] introduced a new direct method called the
(G′/G)-expansion method to look for travelling wave
solutions of NLEEs. The (G′/G)-expansion method is
based on the assumptions that the travelling wave solu-
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tions can be expressed by a polynomial in (G′/G), and
that G = G(ξ ) satisfies a second-order linear ordinary
differential equation (LODE):

G′′+λ G′+ µG = 0, (1)

where G′ = dG(ξ )
dξ , G′′ = d2G(ξ )

dξ 2 , ξ = x −Vt, V is a
constant. The degree of the polynomial can be deter-
mined by considering the homogeneous balance be-
tween the highest-order derivative and the nonlinear
terms appearing in the given NLEE. The coefficients
of the polynomial can be obtained by solving a set of
algebraic equations resulted from the process of using
the method. It was shown that the method present a
wider applicability for handling many kinds of NLEEs
[26 – 32].

The present paper is motivated by the desire to pro-
pose a modified (G′/G)-expansion method for con-
structing more general exact solutions of NLEEs. In or-
der to illustrate the validity and advantages of the pro-
posed method, we would like to employ it to solve the
(3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama
(YTSF) equation [33].

The rest of this paper is organized as follows. In
Section 2, we describe the modified (G′/G)-expansion
method. In Section 3, we use the modified method to
solve the (3+1)-dimensional potential YTSF equation.
In Section 4, some conclusions are given.



34 S. Zhang et al. · Modified (G′/G)-Expansion Method for Nonlinear Evolution Equations

2. Basic Idea of the Modified (G′/G)-Expansion
Method

For a given nonlinear PDE, say in four variables x,
y, z, and t,

P(x,y,z, t,u,ux,uy,uz,ut , . . . ,) = 0, (2)

where u = u(x,y,z, t), we use the following transfor-
mation:

u = u(ξ ), ξ = ax+ by+ cz−ωt, (3)

where a, b, c, and ω are constants. Then (2) is reduced
into an ODE:

Q(x,y,z, t,u(r),u(r+1), . . .) = 0, (4)

where u(r) = dru
dξ r , u(r+1) = dr+1u

dξ r+1 , r � 0 and r is the
least order of derivatives in the equation. To keep the
solution process as simple as possible, the function Q
should not be a total ξ -derivative of another function.
Otherwise, taking integration with respect to ξ further
reduces the transformed equation [21].

We further introduce

u(r)(ξ ) = v(ξ ) =
m

∑
i=1

αi

(
G′

G

)i

+α0, αm �= 0, (5)

where G = G(ξ ) satisfies (1), while α0, αi (i =
1,2, · · · ,m) are constants to be determined later. Then
a direct computation gives

u(r+1)(ξ ) = v′(ξ ) =

−
m

∑
i=1

iαi

[(
G′

G

)i+1

+λ
(

G′

G

)i

+ µ
(

G′

G

)i−1
]
,

(6)

u(r+2)(ξ ) = v′′(ξ ) =
m

∑
i=1

iαi

[
(i+ 1)

(
G′

G

)i+2

+(2i+ 1)λ
(

G′

G

)i+1

+ i(λ 2 + 2µ)
(

G′

G

)i

+(2i− 1)λ µ
(

G′

G

)i−1

+(i− 1)µ2
(

G′

G

)i−2]
,

(7)

and so on, here the prime denotes the derivative with
respective to ξ .

To determine u explicitly, we take the following four
steps:

Step 1. Determine the integer m by substituting (5)
along with (1) into (4), and balancing the highest-order

nonlinear term(s) and the highest-order partial deriva-
tive.

Step 2. Substitute the value of m determined in
Step 1 along with (1) into (4) and collect all terms with
the same order of (G′/G) together, thus the left-hand
side of (4) is converted into a polynomial in (G′/G).
Then set each coefficient of this polynomial to zero to
derive a set of algebraic equations for a, b, c, ω , α0,
and αi.

Step 3. Solve the system of algebraic equations ob-
tained in Step 2 for a, b, c, ω , α0, and αi by use of
Mathematica.

Step 4. Use the results obtained in above steps to
derive a series of fundamental solutions v(ξ ) of (4) de-
pending on (G′/G). Since the solutions of (1) have been
well known for us, we can obtain exact solutions of (2)
by integrating each of the obtained fundamental solu-
tions v(ξ ) with respect to ξ , r times:

u = u(ξ ) =
∫ ξ∫ ξr · · ·

∫ ξ2
v(ξ1)dξ1 · · ·dξr−1dξr

+
r

∑
j=1

d jξ r− j,
(8)

where d j are arbitrary constants.

Remark 1. It can be easily found that when r = 0,
u(ξ ) = v(ξ ) then (5) becomes Wang et al.’s ansatz
solution (2.4) in [25]. Under this circumstance, the
method proposed in the present paper is the same as
that of [25]. However, when r � 1, solution (8) maybe
contain an explicit polynomial in ξ even if it is sim-
plified. Such a solution cannot be obtained by the
method [25], see the next section for more details.
Therefore, the proposed method can be seen as a mod-
ified version or a note of Wang et al.’s method [25].

3. Application to the (3+1)-Dimensional Potential
YTSF Equation

Let us consider in this section the (3+1)-dimensional
potential YTSF equation [33],

−uxt + uxxxz + 4uxuxz + 2uxxuz + 3uyy = 0, (9)

which can be derived from the (3+1)-dimensional
YTSF equation

(−4vt +Φ(v)vz)x + 3vyy = 0,

Φ(v) = ∂ 2
x + 4v+ 2vx∂−1

x ,
(10)
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by using the potential v = ux. It was Yu et al. [34]
who extended the (2+1)-dimensional Bogoyavlenskii-
Schiff equation [35],

vt +Φ(v)vz = 0, Φ(v) = ∂ 2
x +4v+2vx∂−1

x , (11)

to the (3+1)-dimensional nonlinear evolution equation
in the form of (9).

Using the transformation (3), we reduce (9) into an
ODE of the form

a3cu(4) + 6a2cu′u′′+(4aω + 3b2)u′′ = 0. (12)

Integrating (12) once with respect to ξ and setting the
integration constant to zero yields

a3cu(3) + 3a2c(u′)2 +(4aω + 3b2)u′ = 0. (13)

Further setting r = 1 and u′ = v, we have

a3cv′′+ 3a2cv2 +(4aω + 3b2)v = 0. (14)

According to Step 1, we get m+2 = 2m, hence m =
2. We then suppose that (14) has the formal solution

v = α2

(
G′

G

)2

+α1

(
G′

G

)
+α0, α2 �= 0. (15)

Substituting (15) along with (1) into (14) and col-
lecting all terms with the same order of (G′/G) to-
gether, the left-hand side of (14) is converted into a
polynomial in (G′/G). Setting each coefficient of the
polynomial to zero, we derive a set of algebraic equa-
tions for a, b, c, ω , α0, α1, and α2 as follows:(

G′

G

)0

: 3b2α0 + 4aωα0 + 3a2cα2
0

+ a3cα1λ µ + 2a3cα2µ2 = 0,(
G′

G

)1

: 3b2α1 + 4aωα1 + 6a2cα0α1 + a3cα1λ 2

+ 2a3cα1µ + 6a3cα2λ µ = 0,

(
G′

G

)2

: 3a2cα2
1 + 3b2α2 + 4aωα2 + 6a2cα0α2

+ 3a3cα1λ + 4a3cα2λ 2 + 8a3cα2µ = 0,(
G′

G

)3

: 2a3cα1 + 6a2cα1α2 + 10a3cα2λ = 0,

(
G′

G

)4

: 6a3cα2 + 3a2cα2
2 = 0.

Solving this set of algebraic equations by the use of
Mathematica, we have

α2 =−2a, α1 =−2aλ , α0 =−1
3

a(λ 2 + 2µ),

ω =
a3c(λ 2 − 4µ)− 3b2

4a

(16)

and

α2 =−2a, α1 =−2aλ , α0 =−2aµ ,

ω =−a3c(λ 2 − 4µ)+ 3b2

4a
.

(17)

We, therefore, obtain

v =−2a
(

G′

G

)2

− 2aλ
(

G′

G

)
− 1

3
a(λ 2 + 2µ),

ω =
a3c(λ 2 − 4µ)− 3b2

4a

(18)

and

v =−2a
(

G′

G

)2

− 2aλ
(

G′

G

)
− 2aµ ,

ω =−a3c(λ 2 − 4µ)+ 3b2

4a
.

(19)

Substituting the general solutions of (1) into (18)
and (19), respectively, and using (8), we obtain three
types of travelling wave solutions of (9). When
λ 2−4µ > 0, we obtain a hyperbolic function solution:

u =−1
2

a(λ 2 −4µ)
∫ ξ




C1sinh
(√

λ 2−4µ
2 ξ1

)
+C2 cosh

(√
λ 2−4µ

2 ξ1

)

C1 cosh
(√

λ 2−4µ
2 ξ1

)
+C2 sinh

(√
λ 2−4µ

2 ξ1

)



2

dξ1+
1
6

a(λ 2 −4µ)ξ +d1, (20)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t, C1, C2, and d1 are arbitrary constants, and
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u =−1
2

a(λ 2 −4µ)
∫ ξ




C1 sinh
(√

λ 2−4µ
2 ξ1

)
+C2 cosh

(√
λ 2−4µ

2 ξ1

)

C1 cosh
(√

λ 2−4µ
2 ξ1

)
+C2 sinh

(√
λ 2−4µ

2 ξ1

)



2

dξ1+
1
2

a(λ 2 −4µ)ξ +d1, (21)

where ξ = ax+by+cz+ a3c(λ 2−4µ)+3b2

4a t, C1, C2, and d1 are arbitrary constants. When λ 2−4µ < 0, we obtain
a trigonometric function solution:

u =−1
2

a(4µ −λ 2)

∫ ξ



−C1 sin

(√
4µ−λ 2

2 ξ1

)
+C2 cos

(√
4µ−λ 2

2 ξ1

)

C1 cos
(√

4µ−λ 2

2 ξ1

)
+C2 sin

(√
4µ−λ 2

2 ξ1

)



2

dξ1+
1
6

a(λ 2 −4µ)ξ +d1, (22)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t, C1, C2, and d1 are constants, and

u =−1
2

a(4µ −λ 2)

∫ ξ



−C1 sin

(√
4µ−λ 2

2 ξ1

)
+C2 cos

(√
4µ−λ 2

2 ξ1

)

C1 cos
(√

4µ−λ 2

2 ξ1

)
+C2 sin

(√
4µ−λ 2

2 ξ1

)



2

dξ1+
1
2

a(λ 2 −4µ)ξ +d1, (23)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t, C1, C2, and d1 are constants.

When λ 2 − 4µ = 0, we obtain a rational solution:

u =
2aC2

C1 +C2ξ
+ d1, (24)

where ξ = ax+by+ cz+ 3b2

4a t, C1, C2, and d1 are arbi-
trary constants.

If we use Wang et al.’s method [25] to solve the po-
tential YTSF equation (9), usually we will balance u(3)

and (u′)2 in (13) and obtain m+3 = 2(m+1), namely
m = 1. We then suppose that (13) has solution in the
following form:

u = α1

(
G′

G

)
+α0, α1 �= 0. (25)

Substituting (25) along with (1) into (13) and col-
lecting all terms with the same order of (G′/G) to-
gether, the left-hand side of (13) is converted into a
polynomial in (G′/G). Setting each coefficient of the
polynomial to zero, we derive a set of algebraic equa-
tions for a, b, c, ω , α0, and α1 as follows:(

G′

G

)0

: −3b2α1µ − 4aωα1µ − a3cα1λ 2µ

− 2a3cα1µ2 + 3a2cα2
1 µ2 = 0,

(
G′

G

)1

: −3b2α1λ − 4aωα1λ − a3cα1λ 3

− 8a3cα1λ µ + 6a2cα2
1 λ µ = 0,(

G′

G

)2

: −3b2α1 − 4aωα1− 7a3cα1λ 2 + 3a2cα2
1 λ 2

− 8a3cα1µ + 6a2cα2
1 µ = 0,(

G′

G

)3

: −12a3cα1λ + 6a2cα2
1 λ = 0,

(
G′

G

)4

: −6a3cα1 + 3a2cα2
1 = 0.

Solving the set of algebraic equations by the use of
Mathematica, we have

α1 = 2a, α0 = α0,

ω =−a3c(λ 2 − 4µ)+ 3b2

4a
.

(26)

We, therefore, obtain the following formal hyperbolic
function solution, trigonometric function solution, and
rational solution of (9):
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u = a
√

λ 2 − 4µ




C1 sinh
(√

λ 2−4µ
2 ξ

)
+C2 cosh

(√
λ 2−4µ

2 ξ
)

C1 cosh
(√

λ 2−4µ
2 ξ

)
+C2 sinh

(√
λ 2−4µ

2 ξ
)

− aλ +α0, λ 2 − 4µ > 0, (27)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t, C1, C2, and α0 are arbitrary constants;

u = a
√

4µ −λ 2



−C1 sin

(√
4µ−λ 2

2 ξ
)
+C2 cos

(√
4µ−λ 2

2 ξ
)

C1 cos
(√

4µ−λ 2

2 ξ
)
+C2 sin

(√
4µ−λ 2

2 ξ
)


− aλ +α0, λ 2 − 4µ < 0, (28)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t, C1, C2, and α0 are constants;

u =
2aC2

C1 +C2ξ
− aλ +α0, λ 2 − 4µ = 0, (29)

where ξ = ax+by+ cz+ 3b2

4a t, C1, C2, and α0 are arbi-
trary constants.

Obviously, Solution (29) is equivalent to Solu-
tion (24). In what follows, we would like to compare
Solutions (20) – (23) and Solutions (27) and (28).

When λ 2 − 4µ > 0, C1C2 > 0, (20) and (21) can be
respectively simplified as

u = a
√

λ 2 − 4µ

· tanh

[√
λ 2 − 4µ

2
ξ +

1
2

ln
(

C2

C1

)]

− 1
3

a(λ 2 − 4µ)ξ + d1,

(30)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t, and

u = a
√

λ 2 − 4µ

· tanh

[√
λ 2 − 4µ

2
ξ +

1
2

ln
(

C2

C1

)]
+ d1,

(31)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t.
Solution (27) can be simplified as

u = a
√

λ 2 − 4µ

· tanh

[√
λ 2 − 4µ

2
ξ +

1
2

ln
(
−C2

C1

)]
− aλ +α0,

(32)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t. It is easy to
see that (32) is equivalent to (31), however, (30) cannot
be obtained from (27).

When λ 2 − 4µ > 0, C1C2 < 0, (20) and (21) can be
respectively simplified as

u = a
√

λ 2 − 4µ coth

[√
λ 2 − 4µ

2
ξ

+
1
2

ln
(
−C2

C1

)]
− 1

3
a(λ 2 − 4µ)ξ + d1,

(33)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t, and

u = a
√

λ 2 − 4µ coth

[√
λ 2 − 4µ

2
ξ

+
1
2

ln
(
− C2

2C1

)]
+ d1,

(34)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t.
Solution (27) can be simplified as

u = a
√

λ 2 − 4µ coth

[√
λ 2 − 4µ

2
ξ

+
1
2

ln
(
−C2

C1

)]
− aλ +α0,

(35)

where ξ = ax+by+cz+ a3c(λ 2−4µ)+3b2

4a t. It is obvious
that (35) is equivalent to (34), however, (33) cannot be
obtained from (27).

When λ 2 − 4µ < 0, from (22) we have

u =−a
√

4µ −λ 2 tan

[√
4µ −λ 2

2
ξ

−arctan
(

C2

C1

)]
− 1

3
a(λ 2 − 4µ)ξ + d1

(36)



38 S. Zhang et al. · Modified (G′/G)-Expansion Method for Nonlinear Evolution Equations

or

u = a
√

4µ −λ 2 cot

[√
4µ −λ 2

2
ξ

+arctan
(

C1

C2

)]
− 1

3
a(λ 2 − 4µ)ξ + d1,

(37)

where ξ = ax+ by+ cz− a3c(λ 2−4µ)−3b2

4a t.
From (23) we have

u =−a
√

4µ −λ 2 tan

[√
4µ −λ 2

2
ξ

−arctan
(

C2

C1

)]
+ d1

(38)

or

u =−a
√

4µ −λ 2 cot

[√
4µ −λ 2

2
ξ

+ arctan
(

C1

C2

)]
+ d1,

(39)

where ξ = ax+ by+ cz+ a3c(λ 2−4µ)+3b2

4a t.
From (28) we have

u =−a
√

4µ −λ 2 tan

[√
4µ −λ 2

2
ξ

−arctan
(

C2

C1

)]
− aλ +α0

(40)

or

u = a
√

4µ −λ 2 cot

[√
4µ −λ 2

2
ξ

+arctan
(

C1

C2

)]
− aλ +α0,

(41)

where ξ = ax + by + cz + a3c(λ 2−4µ)+3b2

4a t. We can
easily see that (40) and (41) are equivalent to (38)
and (39), respectively. However, (36) and (37) cannot
be obtained from (28).

The above comparisons show that (20) – (24) con-
clude (27) – (29) as special cases. Among of them,

(21), (23), and (24) are equivalent to (27), (28),
and (29), respectively. However, as demonstrated
above, (20) and (22) with an explicit linear function
in ξ are different from (27) – (29) and cannot be ob-
tained by the (G′/G)-expansion method [25, 26, 28 –
31] and its improvements [27, 36] if we don’t trans-
form (13) into (14) but directly solving (13). In this
sense, we may conclude that the modified version pro-
posed in this paper is different from and superior to
Wang et al.’s method [25] if and only if the reduced
ODE (4) possesses the property r � 1. Zhang et al.’s
ansatz solution in [27] has its advantages over the one
in this paper and those in [25, 26, 28 – 31, 36] for solv-
ing NLEEs with variable coefficients. The generalized
(G′/G)-expansion method proposed more recently by
Yu [36] shows its advantages by introducing a more
general ansatz solution than that used in [25] so that
more general solutions can be obtained, which cannot
be obtained by the modified version in this paper and
those in [25 – 31].

Remark 2. All solutions obtained above have been
checked with Mathematica by putting them back into
the original Equation (9).

4. Conclusions

In summary, more general travelling wave solutions
of the (3+1)-dimensional potential YTSF equation
are obtained owing to the modified (G′/G)-expansion
method proposed in this paper. Some of the obtained
hyperbolic function solutions and trigonometric func-
tion solutions contain an explicit linear function of the
variables in the potential YTSF equation. It may be
important to explain some physical phenomena. The
paper shows the effectiveness and advantages of the
proposed method in handling the solution process of
NLEEs. Employing it to study other NLEEs is our task
in the future.
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