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The separation transformation method is extended to the (1+N)-dimensional triple Sine-Gordon
equation and a special type of implicitly exact solution for this equation is obtained. The exact so-
lution contains an arbitrary function which may lead to abundant localized structures of the high-
dimensional nonlinear wave equations. The separation transformation method in this paper can also
be applied to other kinds of high-dimensional nonlinear wave equations.
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1. Introduction

It is well known that the Sine-Gordon-type equa-
tions [1 – 10], including one-dimensional single Sine-
Gordon (SG) equation uxx − utt = asin(u), double
Sine-Gordon equation

uxx − utt = asin(u)+ bsin(2u), (1)

and triple Sine-Gordon equation

uxx − utt = asin(u)+ bsin(2u)+ csin(3u) (2)

are widely applied in physics and engineering. These
equations are special cases of nonlinear wave equa-
tions. Especially, the single Sine-Gordon equation is
Lax integrable and has nontrivial prolongation struc-
tures [1 – 3, 11].

The (1+1)-dimensional Sine-Gordon equation
[1 – 3] was originally considered in the nineteenth
century in the course of studying surfaces of constant
negative curvature. This equation attracted a lot of
attention in the 1970s due to the presence of soliton
solutions [12 – 14]. The double SG equation arises
in many physical systems like the spin dynamics in
the B phase of superfluid 3He [4], some features of
the propagation of resonant ultrashort optical pulses
through degenerate media [5], quasi-one-dimensional
charge density wave condensate theories of the
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organic linear conductors like TTF-TCNQ [6], and
nonlinear excitations in a compressible chain of XY
dipoles under conditions of piezoelectric coupling
macromolecules [7]. In the case of resonant fivefold
degenerate media, propagation and creation of ultra-
short optical pulses, the anisotropic magnetic liquids
3HeA and 3HeB at temperatures below the transition
to the A phase at 2.6 mK, and the propagation of
spin waves, one usually uses the single SG and the
double SG model. However, in some other cases,
one has to use the higher triple SG equation [8 – 10]
which describes the propagation of strictly resonant
sharp line optical pulses through unexcited absorbing
media with Q(3) symmetry and the extrapolation
to Q(J). In these cases the selection rules for the
optical transitions are �J = 0, �MJ = 0, where J
is an angular momentum quantum number. In the
experiments carried out by Bullough and Caudrey [10]
J is the hyperfine structure quantum number F = 2,
and the transition is 2F + 1 = 5-fold degenerate.

The (1 + N)-dimensional Sine-Gordon-type equa-
tion [15, 16] appears in many physically relevant
systems and its properties have been studied from
both mathematical and physical viewpoints. Recently,
Wang et al. [17] and Yan [18] introduced an effective
separation transformation to study the various (1+N)-
dimensional nonlinear systems and some wonderful re-
sults are obtained. In this paper, we will apply this
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separation transformation approach to the (1 + N)-
dimensional triple SG equation in the form

utt −
N

∑
j=1

uxjx j =
1
3

asin
(u

3

)
+

2
3

bsin
(

2u
3

)
+csin(u).

(3)

The rest of this paper is organized as follows. In Sec-
tion 2, some special type of implicitly exact solutions
for (3) are obtained by means of the separation trans-
formation approach. Conclusions are presented in Sec-
tion 3.

2. Separation Transformation and New Exact
Solutions for Equation (3)

In this part, we extend the separation transforma-
tion method to the (1+N)-dimensional triple SG equa-
tion (3). The following proposition reduces (3) to a
nonlinear ordinary differential equation (ODE) and a
system of partial differential equations (PDEs) with a
nonlinear PDE and a linear PDE.

Proposition. Function u(x1,x2, · · · ,xN ;t) = U [w
(x1,x2, · · · ,xN ; t)] is the solution of (3) if the function
U [w(x1,x2, · · · ,xN ;t)] solves the following system of
nonlinear ODE:

kU ′′(w) = k
∂ 2U
∂w2

=
1
3

asin
(

U
3

)
+

2
3

bsin
(

2U
3

)
+ csin(U),

(4)

and the function w = w(x1,x2, · · · ,xN ;t) satisfies

N

∑
j=1

(
∂w
∂xi

)2

−
(

∂w
∂ t

)2

= k,
N

∑
j=1

∂ 2w
∂x2

i
− ∂ 2w

∂ t2 = 0, (5)

where k is a nonzero constant.
The proof of this proposition is similar to that of

References [17, 18].
From this proposition we find that (3) is now

separated into two groups of differential equations,
namely (4) and (5). Once we have the exact so-
lutions of (4) and (5), the exact solutions of (3)
are obtained immediately from the transformation
u(x1,x2, · · · ,xN ;t) =U [w(x1,x2, · · · ,xN ;t)].

We first solve the system of partial differential equa-
tions (5).

Case 1. When N = 1, (5) becomes
(

∂w
∂x1

)2

−
(

∂w
∂ t

)2

= k,
∂ 2w
∂x2

1
− ∂ 2w

∂ t2 = 0

with

w(x1, t) = c1(x1 + t)+
k

4c1
(x1 − t)+ c2, (6)

where c1 and c2 are integral constants.

Case 2. When N ≥ 2, (5) has the following solution

w(x1,x2, · · · ,xN ; t) = h
( N

∑
j=1

λ jx j + εt + c3

)

+
k√

∑N
j=1 l2

j − δ 2

( N

∑
j=1

l jx j + δ t
)
,

(7)

εδ =
N

∑
j=1

λ jl j, ε2 =
N

∑
j=1

λ 2
j , (8)

where h = h(x1, · · · ,xN ; t) is an arbitrary function, λ j,
x j, ( j = 1, · · · ,N), ε , δ , c3 are all constants.

In what follows, we solve the ODE (4) by using spe-
cial transformations [19 – 25] and direct integral tech-
nique. Multiplying both sides of ODE (4) with U ′, we
have

U ′U ′′=
U ′

k

[
1
3

asin
(

U
3

)
+

2
3

bsin
(

2U
3

)
+ csin(U)

]
.

(9)

Then integrating (9) and letting the integral constant be
C1 we arrive at

(U ′)2 =
2
k

[
− ccos(U)− acos

(
U
3

)

−bcos
(

2U
3

)]
+C1.

(10)

In order to reduce (10) to a solvable equation, we in-
troduce a basic transformation of field U as

U = 3arccos(v+A) (11)

with v being a function of w and A being a constant.
The substitution of (11) into (10) yields

(v′)2 =
8
9k

v5 +

(
40A
9k

+
4
9k

)
v4

+

(
16A
9k

− 4
3k

+
80A2

9k

)
v3
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+

(
− 2

3k
− 4A

k
+

8A2

3k
+

80A3

9k
− 1

9
C1

)
v2

+

(
4
9k

− 4A2

k
− 4A

3k
+

16A3

9k
+

40A4

9k
− 2

9
C1A

)
v

+
2
9k

− 4A3

3k
+

4A
9k

− 2A2

3k
+

8A5

9k

+
4A4

9K
− 1

9
C1A2,

which can be further rewritten as

(v′)2 = α0+α1v+α2v2+α3v3+α4v4+α5v5 (12)

with

α0 =
2
9k

− 4A3

3k
+

4A
9k

− 2A2

3k
+

8A5

9k
+

4A4

9K
− 1

9
C1A2,

α1 =
4
9k

− 4A2

k
− 4A

3k
+

16A3

9k
+

40A4

9k
− 2

9
C1A,

α2 =− 2
3k

− 4A
k

+
8A2

3k
+

80A3

9k
− 1

9
C1,

α3 =
16A
9k

− 4
3k

+
80A2

9k
,

α4 =
40A
9k

+
4
9k

, α5 =
8
9k

.

According to the previous results on the φ5 model [26]
with some special parameters we can express the solu-
tions of the five degree ODE (13) as

v(w) = β0 +β1 f (w)+β2 f 2(w). (13)

Substituting (13) into (12), we want to transform (12)
into

∂ f
∂w

= d0 + d1 f + d2 f 2 + d3 f 3 + d4 f 4, (14)

so the parameters must be satisfied

α1 =
4

β 3
2

[
5d2

4β 4
0 − 8d4β 3

0 d2β2 + 6β0d0d4β 2
2

+ d2
0β 4

2 − 4β0d0d2β 3
2
]
,

α2 =
−4
β 3

2

[
10d4β 3

0 − 12d4β 2
0 d2β2 + 6β0d0d4β 2

2

+ 3β0d2
2β 2

2 − 2d0d2β 3
2
]
,

α3 =
4(10d2

4β 2
0 − 8d4β0d2β2 + 2d0d4β 2

2 + d2
2β 2

2 )

β 2
2

,

α4 =
4d4(−2d2β2 + 5d4β0)

β 3
2

,

a =−9k(4d2
2 + 4d0d2β2 − 15d2

0β 2
2 )

32β2
,

b =
9k(d0β2 + 2d2)(2d2 + 5d0β2)

16β2
,

c =
9k(d0β2 + 2d2)

2

32β2
,

C1 =
9(4d2

2 + 12d0d2β2 + 13d2
0β 2

2 )

8β2
,

β1 = 0, α5 =
4d2

4

β 3
2
, d1 = d3 = 0,

d4 =−1
4

β 2
2 d0 − 1

2
d2β2, A =−β0 − 1,

with β0, β2, d0, d2, k being arbitrary constants. From
these relations, we find f = f (w) satisfies

∂ f
∂w

= d0+d2 f 2 +

(
−1

4
β2

2d0 − 1
2

d2β2

)
f 4, (15)

and v = v(w) satisfies

v = β0 +β2 f 2. (16)

Solving (15) by direct integral we have its implicit ex-
act solution as

w−

√
2(d0β2 + 2d2)arctan

(
(d0β2+2d2) f

√
2

2
√

d0(d0β2+2d2)

)

2(d0β2 + d2)
√

d0(d0β2 + 2d2)

−
√

β2
√

d2arctanh
(√

2
2 f

√
β2

)
2d0β2 + 2d2

+C1 = 0.

(17)

Combining (16) with (11), the implicit exact solution
for the (1+N)-dimensional triple SG equation (3) is
obtained as

u(x1,x2, · · · ,xN ; t) = 3arccos(β2 f 2 − 1), (18)

where f = f (w) satisfies (17) and w = w(x1,x2,
· · · ,xN ; t) are determined by (6) – (8).

In what follows, we choose special parameters d0,
d2, β2 to analyze the physical properties of our implicit
exact solution.
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(i) If the constants d0, d2, β2 in (17) are taken as
d0 = 1, d2 = 2, β2 = 4, then the coefficients a, b, c of
the (1+N)-dimensional triple SG equation (3) are

a =
27
2

k, b = 27k, c =
9
2

k, (19)

and its implicit exact solution reads

u(x1,x2, · · · ,xN ;t) = 3arccos(4 f 2 − 1) (20)

with f = f (w) satisfying

w− 1
3

arctan(2 f )−
√

2
6

arctanh(
√

2 f )+90= 0. (21)

(ii) If the constant d0, d2, β2 in (17) are taken as
d0 = 1, d2 = 7, β2 = 4, then the coefficients a, b, c of
the (1+N)-dimensional triple SG equation (3) are

a =−153
32

k, b =
1377
16

k, c =
729
32

k, (22)

and its implicit exact solution is just (20) with f =
f (w) satisfying

w− 3
11

arctan(3 f )−
√

2
11

arctanh(
√

2 f )+
1665

8
= 0.

(23)

(iii) If the constant d0, d2, β2 in (17) are taken as
d0 =−1, d2 = 1, β2 = 4, then the coefficients a, b, c of
the (1+N)-dimensional triple SG equation (3) are

a =
567
32

k, b =
81
16

k, c =
9

32
k, (24)

and its implicit exact solution is just (20) with f =
f (w) satisfying

w+
1
3

arctan( f )+

√
2

3
arctanh(

√
2 f )+

369
8

= 0. (25)

(iv) If the constant d0, d2, β2 in (17) are taken as
d0 =−1, d2 =−7, β2 = 4, then the coefficients a, b, c
of the (1+N)-dimensional triple SG equation (3) are

a =−153
32

k, b =
1377
16

k, c =
729
32

k, (26)

and its implicit exact solution is just (20) with f =
f (w) satisfying

w+
3
11

arctan(3 f )+

√
2

11
arctanh(

√
2 f )+

1665
8

= 0.

(27)

When N = 1, (3) becomes the (1+1)-dimensional
triple SG equation

utt −uxx =
1
3

asin
(u

3

)
+

2
3

bsin
(

2u
3

)
+csin(u) (28)

by replacing x1 with x. In this case, we have w = c1(x+
t) + k

4c1
(x− t)+ c2. Therefore, for the coefficients a,

b, c in (19), (22), (24), (26) the exact solutions of the
(1+1)-dimensional triple SG equation (28) is (20) with
f described by (21), (23), (25), (27), respectively.

When N = 2, we arrive at the (1+2)-dimensional
triple SG equation

utt −uxx−uyy =
1
3

asin
(u

3

)
+

2
3

bsin
(

2u
3

)
+csin(u)

(29)

by replacing x1, x2 with x, y, respectively. In this case,
we have

w = h(λ1x+λ2y+ εt + c3)

+
k√

l2
1 + l2

2 − δ 2
(l1x+ l2y+ δ t), (30)

where h(·) is an arbitrary function, and εδ = λ1l1 +
λ2l2, ε2 = λ 2

1 + λ 2
2 . Therefore, for the coefficients a,

b, c in (19), (22), (24), (26) the exact solutions of the
(1+2)-dimensional triple SG equation (29) is (20) with
w described by (30) and f described by (21), (23), (25),
(27), respectively.

When N = 3, we arrive at the (1+3)-dimensional
triple SG equation

utt − uxx − uyy − uzz =

1
3

asin
(u

3

)
+

2
3

bsin
(

2u
3

)
+ csin(u)

(31)

by replacing x1, x2, x3 with x, y, z, respectively. In this
case, we have

w = h(λ1x+λ2y+λ3z+ εt + c3)

+
k√

l2
1 + l2

2 + l2
3 − δ 2

(l1x+ l2y+ l3z+ δ t), (32)

where h(·) is an arbitrary function, and εδ = λ1l1 +
λ2l2 + λ3l3, ε2 = λ 2

1 + λ 2
2 + λ 2

3 . Therefore, for the
coefficients a, b, c in (20), (23), (25), (27) the ex-
act solutions of the (1+3)-dimensional triple SG equa-
tion (32) is (21) with w described by (33) and f de-
scribed by (22), (24), (26), (28), respectively.
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Remark. We have extended the separation trans-
formation approach to the (1+N)-dimensional triple
Sine-Gordon equation and derived the implicitly ex-
act solutions of this equation. It has been shown
that when N > 1, there is an arbitrary function h =

h
(

∑N
j=1 λ jx j + εt + c3

)
in the implicitly exact solution

of the (1+N)-dimensional triple Sine-Gordon equa-
tion, which maybe lead to abundant localized struc-
tures [27, 28]. We conclude that although most high-
dimensional nonlinear equations are non-integrable,
they may have rich localized nonlinear structures.

3. Conclusion

In conclusion, a special type of implicitly exact
solution with an arbitrary function for the (1 + N)-
dimensional triple Sine-Gordon equation is proposed

by extending the separation transformation method.
The special exact solution may be useful to explain
certain localized nonlinear phenomena in some scien-
tific fields. Especially, the result in this paper can be
applied to describe the propagation of strictly resonant
sharp line optical pulses in the near future.
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