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Arising in the context of random matrix theory, the coupled Kadomtsev-Petviashvili (KP) systems
have been a subject of active studies. In this paper, a coupled KP system with three potentials is
investigated with symbolic computation, and the Darboux transformations of its reduced equations
are obtained. Moreover, the multi-soliton-like solutions of the coupled KP system are derived. Those
solutions could be of some value for the studies in the context of random matrix theory.
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1. Introduction

Due to the limitation of the dimension, the pure
one-dimensional systems can not account for some ob-
served features [1]. In realistic situations, the higher
dimensional systems may provide more useful mod-
els [1, 2]. As a typical example in (2+1)-dimensional
systems, the Kadomtsev-Petviashvili (KP) system has
been derived from many physical applications in
plasma physics, fluid dynamics, water waves, astro-
physics, cosmology, optics, and Bose-Einstein conden-
sation [1, 3]. Compared with the KP equation, the cou-
pled one possesses soliton solutions with more para-
metric freedom [4]. Therefore, its solutions can be
expected to model more complex situations in real-
ity than the KP equation [5, 6]. Recent research has
claimed that the coupled KP system has an inner con-
nection with matrix integrals over the orthogonal and
symplectic ensembles, so the solutions might be ap-
plied to the context of random matrix theory [5, 7]. The
coupled KP system has been proposed as the soliton
system through coupling the KP system to the Davey-
Stewartson one [6, 8 – 10]. Since then, the coupled KP
system has been reconstructed several times from dif-
ferent points of view [7, 11].

In this paper, with symbolic computation [12 – 14],
we will investigate a coupled KP system with three po-
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tentials in the following form [15]:

qt =
1
4

(
qxxx − 6qqx+ 3

∫
qyydx+ 6(pr)x

)
,

pt =
1
2

(
− pxxx + 3qpx+ 3p

∫
qydx− 3pxy

)
,

rt =
1
2

(
− rxxx + 3qrx − 3r

∫
qydx+ 3rxy

)
,

(1)

where the subscripts represent the partial derivatives.
Through certain reductions [11], System (1) can be re-
duced to the coupled Korteweg-de Vries and standard
KP equations [4, 5].

In recent years, the coupled KP systems have re-
ceived certain interest [5, 6, 9, 11, 15 – 17]. The Lax
pair and algebraic-geometrical solutions in terms of
the Riemann theta functions of System (1) have
been given [15]. An elementary Bäcklund-Darboux
transformation has been constructed by the spin-
representation formulation [16]. Some typical and
spider-web solutions of System (1) have been pre-
sented [5, 6].

Author of [15] has decomposed System (1) into the
first two members of the (1+1)-dimensional Ablowitz-
Kaup-Newell-Segur hierarchy,

uy =−uxx + 2u2v, vy = vxx − 2uv2, (2)
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ut = uxxx − 6uvux, vt = vxxx − 6uvvx, (3)

and obtained the following proposition:
If (u,v) is a compatible solution of (2) and (3), then

the function (p,q,r) determined by

q = 4uv, p =−2u2, r =−2v2, (4)

is a solution of System (1). It should be noted that this
restricted class of solutions is for System (1), and the
KP-II equation as well, under the restriction of q2 =
4pr, i. e. (4), the first equation in (1) is just the KP-II
equation.

Authors of [5, 6, 11] have constructed the multi-
soliton solutions of System (1) in terms of the func-
tional forms and Pfaffians. Based on the proposition
of [15], this paper will derive the multi-soliton solu-
tions of System (1) by use of the Darboux transforma-
tion (DT). Those results might be useful in the context
of random matrix theory.

The outline of this paper will be as follows. In Sec-
tion 2, we will present three kinds of DTs for (2)
and (3). In Section 3, based on the obtained three DTs
and (4), the one-, two-, and three-soliton-like solutions
of System (1) will be presented. Section 4 will be our
conclusions.

2. Darboux Transformations for (2) and (3)
with Symbolic Computation

The DT which can be applied to a class of non-
linear evolution equations is a computerizable proce-
dure [18 – 19], and the DT can give rise to a procedure
to recursively generate a series of analytic solutions in-
cluding the multi-soliton solutions from an initial solu-
tion [20, 21].

In this section, we will present three kinds of DTs
for (2) and (3). The Lax representation of (2) and (3)
has the following form [15]:

ΨΨΨ x =UΨΨΨ , ΨΨΨ y =VΨΨΨ , ΨΨΨ t =WΨΨΨ (5)

with

U =

(− 1
2 λ u
v 1

2 λ

)
, (6)

V =

(− 1
2 λ 2 + uv uλ − ux

vλ + vx
1
2 λ 2 − uv

)
, (7)

W = (8)(
− 1

2 λ 3 + uvλ − vux+ uvx uλ 2−uxλ−2u2v+ uxx

vλ 2 + vxλ − 2uv2 + vxx
1
2 λ 3 − uvλ + vux− uvx

)
,

where ΨΨΨ = (ψ1(x,y, t),ψ2(x,y, t))T, T denotes the
transpose of the vector, and λ is the isospectral pa-
rameter. From the compatibility conditions Uy −Vx +
[U,V ] = 0 and Ut −Wx+[U,W ] = 0, (2) and (3) can be
derived.

We can take the DT as the form,

Ψ̂ΨΨ = DΨΨΨ , (9)

which satisfies

Ψ̂ΨΨ x = ÛΨ̂ΨΨ , Ψ̂ΨΨ y = V̂Ψ̂ΨΨ , Ψ̂ΨΨ t = ŴΨ̂ΨΨ , (10)

and

Dx +DU −ÛD = 0, (11)

Dy +DV − V̂D = 0, (12)
Dt +DW −ŴD = 0, (13)

where

Û =

(− 1
2 λ û
v̂ 1

2 λ

)
, (14)

V̂ =

(− 1
2 λ 2 + ûv̂ ûλ − ûx
v̂λ + v̂x

1
2 λ 2 − ûv̂

)
, (15)

Ŵ = (16)(− 1
2 λ 3 + ûv̂λ − v̂ûx + ûv̂x ûλ 2 − ûxλ − 2û2v̂+ ûxx

v̂λ 2 + v̂xλ − 2ûv̂2 + v̂xx
1
2 λ 3 − ûv̂λ + v̂ûx − ûv̂x

)
.

With the aid of symbolic computation, the DTs for (2)
and (3) can be obtained in the following.

The first DT

D1 =


λ + uψ2(λ1)−λ1ψ1(λ1)

ψ1(λ1)
−u

−ψ2(λ1)
ψ1(λ1)

1


 (17)

with

û=
u[uψ2(λ1)−λ1ψ1(λ1)]

ψ1(λ1)
−ux, v̂=

ψ2(λ1)

ψ1(λ1)
, (18)

where (ψ1(λ1),ψ2(λ1))
T is a solution of Lax represen-

tation (5) – (8) with λ = λ1.
The second DT

D2 =


1 −ψ1(λ2)

ψ2(λ2)

v λ + −vψ1(λ2)−λ2ψ2(λ2)
ψ2(λ2)


 (19)

with

û =−ψ1(λ2)

ψ2(λ2)
,

v̂ = vx +
v[−vψ1(λ2)−λ2ψ2(λ2)]

ψ2(λ2)
,

(20)



F.-H. Qi et al. · Multi-Soliton-Like Solutions of a Coupled KP System 15

where (ψ1(λ2),ψ2(λ2))
T is a solution of Lax representation (5) – (8) with λ = λ2.

The third DT

D3 =




λ − λ4ψ1(λ3)ψ2(λ4)−λ3ψ1(λ4)ψ2(λ3)
ψ1(λ3)ψ2(λ4)−ψ1(λ4)ψ2(λ3)

−λ4ψ1(λ3)ψ1(λ4)−λ3ψ1(λ3)ψ1(λ4)

ψ1(λ3)ψ2(λ4)−ψ1(λ4)ψ2(λ3)

−λ3ψ2(λ3)ψ2(λ4)−λ4ψ2(λ3)ψ2(λ4)

ψ1(λ3)ψ2(λ4)−ψ1(λ4)ψ2(λ3)
λ − λ3ψ1(λ4)ψ2(λ3)−λ4ψ1(λ3)ψ2(λ4)

ψ1(λ4)ψ2(λ3)−ψ1(λ3)ψ2(λ4)


 (21)

with

û = u− λ4ψ1(λ3)ψ1(λ4)−λ3ψ1(λ3)ψ1(λ4)

ψ1(λ3)ψ2(λ4)−ψ1(λ4)ψ2(λ3)
, (22)

v̂ = v+
λ3ψ2(λ3)ψ2(λ4)−λ4ψ2(λ3)ψ2(λ4)

ψ1(λ3)ψ2(λ4)−ψ1(λ4)ψ2(λ3)
, (23)

where (ψ1(λ3),ψ2(λ3))
T and (ψ1(λ4),ψ2(λ4))

T are
two solutions of Lax representation (5) – (8) with λ =
λ3 and λ = λ4, respectively.

Assume that (u,v) is a compatible solution of (2)
and (3), then (û, v̂) defined in the above three DTs are
three types of solutions of (2) and (3). Therefore, we
know that

q = 4ûv̂, p =−2û2, r =−2v̂2 (24)

corresponds to a solution of System (1).

3. Multi-Soliton-Like Solutions

In this section, our concern is to construct the multi-
soliton-like solutions for System (1) with the above
three DTs and (24). Taking u = −1, v = 0 as the seed
solutions of (2) and (3), we obtain the basic solution of
Lax representation (5) – (8),

ψ1(λ j) =C1e−
λ3

j
2 t− λ2

j
2 y− λ j

2 x

−λ−1
j C2e

λ3
j

2 t+
λ2

j
2 y+

λ j
2 x,

(25)

ψ2(λ j) =C2e
λ3

j
2 t+

λ2
j

2 y+
λ j
2 x, ( j = 1,2,3,4), (26)

where C1, C2 are arbitrary constants.

3.1. One-Soliton-Like Solutions of System (1)

From the first DT, we can get a solution of (2)

and (3),

u1 =

[
e

λ3
1
2 t+

λ2
1
2 y+ λ1

2 xC2 +

(
C1e−

λ3
1
2 t− λ2

1
2 y− λ1

2 x

−λ−1
1 C2e

λ3
1
2 t+

λ2
1
2 y+ λ1

2 x
)

λ1

][
C1e−

1
2 λ 3

1 t− λ2
1
2 y− λ1

2 x

−λ−1
1 C2e

λ3
1
2 t+

λ2
1
2 y+ λ1

2 x
]−1

,

(27)

v1 =
C2e

λ3
1
2 t+

λ2
1
2 y+ λ1

2 x

C1e
−λ3

1
2 t− λ2

1
2 y− λ1

2 x −λ−1
1 C2e

λ3
1
2 t+

λ2
1
2 y+ λ1

2 x
. (28)

With Transformation (24), a solution of System (1) can
be derived as

q1 =
4C1C2λ 3

1 eλ1x+λ 2
1 y+λ 3

1 t

(C2eλ1x+λ 2
1 y+λ 3

1 t −C1λ1)2
, (29)

p1 =− 2C2
1λ 4

1

(C2eλ1x+λ 2
1 y+λ 3

1 t −C1λ1)2
, (30)

r1 =− 2C2
2e2(λ1x+λ 2

1 y+λ 3
1 t)λ 2

1

(C2eλ1x+λ 2
1 y+λ 3

1 t −C1λ1)2
. (31)

3.2. Two-Soliton-Like Solutions of System (1)

Similarly, with the third DT, the two-soliton-like so-
lution of System (1) can be presented,

q2 = 4C2C3δ1λ3(λ3−λ4)λ4[C2C4δ2λ 2
4 −C1λ3(C3δ3λ3

+ C4λ 2
4 −C4λ3λ4)][C1C3δ3λ3λ4 +C2δ2(C3δ3λ3

− C3δ3λ4 −C4λ3λ4)]
−2, (32)

p2 =−2[C2C4δ2λ 2
4 −C1λ3(C3δ3λ3 +C4λ 2

4

− λ3C4λ4)]
2[C1C3δ3λ3λ4 +C2δ2(C3δ3λ3

− C3δ3λ4 −C4λ3λ4)]
−2,

(33)

r2 =−2C2
2C2

3δ 2
1 λ 2

3 (λ3 −λ4)
2λ 2

4 [C1C3δ3λ3λ4

+ C2δ2(C3δ3λ3 −C3δ3λ4 −C4λ3λ4)]
−2,

(34)
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(a) (b) (c)

Fig. 1 (colour online). Plots for the three potentials p1, q1, and r1 of the one-soliton-like solution of System (1) transverse at
t = 1. The parameters adopted here are: c1 = 1, c2 = 1, λ1 =−1.

(a) (b) (c)

Fig. 2 (colour online). Plots for the potentials q2 of the two-soliton-like solution of System (1) via Solution (32) transverse at
(a) t =−2; (b) t = 0; (c) t = 2. The parameters adopted here are: c1 = 1, c2 = 1, c3 = 1, c4 =−1, λ3 = 2, λ4 = 1.

(a) (b) (c)

Fig. 3 (colour online). Plots for the potentials p2 of the two-soliton-like solution of System (1) via Solution (33). The param-
eters adopted here are: c1 = 1, c2 = 1, c3 = 1, c4 =−1, λ3 = 2, λ4 = 1 and depicted at (a) t =−21; (b) t = 0; (c) t = 21.

where λ3 �= λ4, and

δ1 = ex(λ3+λ4)+y(λ 2
3 +λ 2

4 )+t(λ 3
3 +λ 3

4 ),

δ2 = exλ3+yλ 2
3 +tλ 3

3 ,

δ3 = exλ4+yλ 2
4 +tλ 3

4 .

(35)

3.3. Three-Soliton-Like Solutions of System (1)

Taking λ5 �= λ4 �= λ3, with the first basic DT and
Transformation (24), we can get the three-soliton-like
solution of System (1),

q3 = 4C2
√

δ4λ5(C2 f2δ4λ f1
5 +C1λ5 +C2δ4)

·
(

C2 f2δ4λ f2
5 +C1√

δ4

) f2[
C1λ5 −C2δ4

]−1
,

(36)

p3 =− 2
δ4

(C2 f2δ4λ f1
5 +C1λ5 +C2δ4)

2

·
(

C2δ4 f2λ f2
5 +C1√

δ4

)2 f2
,

(37)

r3 =− 2C2
2δ 2

4 λ 2
5

(C2δ4 −C1λ5)2 , (38)

where δ4 = exλ5+yλ 2
5 +tλ 3

5 , and

f1 =
(C2δ2 −C1λ3)(λ3 −λ4)(C4λ4 −C3δ3)

C2δ2(C4λ3λ4 +C3δ3λ4−C3δ3λ3)−C1C3δ3λ3λ4
,

f2 =
C2C4δ2λ 2

4 −C1λ3(C3δ3λ3 +C4λ 2
4 −C4λ4λ3)

C1C3δ3λ3λ4 +C2δ2(C3δ3λ3−C3δ3λ4−C4λ3λ4)
.

More multi-soliton-like solutions can be obtained by
the similar iterative procedure. In the following, Fig-
ures 1 – 4 will be drawn via the expressions presented
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(a) (b) (c)

Fig. 4 (colour online). Plots for the potentials r2 of the two-soliton-like solution of System (1) via Solution (34). The param-
eters adopted here are: c1 = 1, c2 = 1, c3 = 1, c4 =−1, λ3 = 2, λ4 = 1 and depicted at (a) t =−21; (b) t = 0; (c) t = 21.

above to depict some dynamics of the obtained solu-
tions.

Figure 1 shows a one-soliton-like solution of Sys-
tem (1), where q1 has the upside-down bell shape, p1
and r1 are the kink-shape solitary waves. Figure 2 dis-
plays the resonant structure exhibited by the potential
q2, which describes that the single soliton fissions into
two smaller solitons. Solution (32) is determined by
six parameters, which means that the interaction states
can be organized for different choice of parameters,
i. e., one can completely control the phases of the two
solitons. Figure 3 illustrates the elastic collision of the
two solitons because the soliton amplitudes, veloci-
ties, and shapes do not change after their interaction.
In Figure 4, the two interacting solitons always keeps
a v-shape propagation. In particular, we point out that
the soliton resonant phenomenon as shown in Figure 2
has been observed in the shallow water wave experi-
ments [22], in the ion-acoustic waves experiment [23],
and in the plasma experiment [24]. Relevant issues can
be seen in [26].

4. Conclusions

Recent interest has been found in the algebraic
background of a coupled KP system [6]. Some re-
search [5, 6] has claimed that a coupled KP system

has an inner connection with matrix integrals over
the orthogonal and symplectic ensembles [25], so
that the solutions might be applied to the context of
random matrix theory [5]. In this paper, with the aid of
symbolic computation, we have investigated a coupled
KP system with three potentials, i. e., System (1). We
have presented three kinds of DTs for the reduced
equations of System (1). By using the obtained three
DTs and (4), the one-, two-, and three-soliton-like
solutions of System (1) have been derived. Those
results could be of some value for the studies in the
context of random matrix theory [5].

Acknowledgements

We express our sincere thanks to the members of our
discussion group for their valuable suggestions. This
work has been supported by the National Natural Sci-
ence Foundation of China under Grant No. 60772023,
by the Open Fund No. BUAA-SKLSDE-09KF-04 and
Supported Project No. SKLSDE-2010ZX-07 of the
State Key Laboratory of Software Development En-
vironment, Beijing University of Aeronautics and As-
tronautics, by the National Basic Research Program of
China (973 Program) under Grant No. 2005CB321901,
and by the Specialized Research Fund for the Doctoral
Program of Higher Education (No. 200800130006),
Chinese Ministry of Education.

[1] J. K. Xue, J. Phys. A 37, 11223 (2004); W. P. Hong,
Phys. Lett. A 361, 520 (2007); B. Tian and Y. T. Gao,
Phys. Lett. A 340, 243 (2005); 340, 449 (2005); Eur.
Phys. J. D 33, 59 (2005).

[2] Y. Y. Wang and J. F. Zhang, Phys. Lett. A 352, 155
(2006); Y. T. Gao and B. Tian, Phys. Lett. A 349, 314
(2006).

[3] D. David, D. Levi, and P. Winternitz, Stud. Appl. Math.
76, 133 (1987); 80, 1 (1989); P. M. Santini, Lett. Nuov.

Cim. 30, 236 (1981); W. S. Duan, Chaos, Solitons, and
Fractions 14, 1315 (2002); M. M. Lin and W. S. Duan,
Chaos, Solitons, and Fractions 23, 929 (2005); L. L.
Li, B. Tian, C. Y. Zhang, and T. Xu, Phys. Scr. 76,
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