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This paper investigates the synchronization problem between two unidirectionally-coupled Rössler
hyperchaotic systems in the presence of noise perturbations. Sufficient conditions are obtained for
synchronization by using a particularly simple linear sliding mode surface that is based on the slid-
ing mode control concept. Only one controller function is needed to achieve synchronization in our
present approach which makes it much easier to implement in contrast to many other synchroniza-
tion schemes that require two or more controllers. Numerical simulation results are also included to
illustrate the superior features of this new scheme.
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1. Introduction

In 1990, Pecora and Carroll [1] introduced the idea
of synchronizing two identical chaotic systems that
evolve from different initial conditions. It soon tran-
spires after their pioneering work that chaos synchro-
nization has great potentials for applications in diverse
areas of science and engineering including commu-
nications security, information processing, and many
applications to chemical and biological systems (for
example, in regulating human heartbeats, and so on).
Many different methods have been proposed for syn-
chronizing chaotic systems since the days of Pecora
and Carroll such as the linear and nonlinear feedback
method [2], the time-delay feedback method [3], the
adaptive method [4], the impulsive method [5], and the
function projective synchronization method that can be
applied to both continuous and discrete-time chaotic
systems [6, 7]. Fractional-order chaotic systems can
also be synchronized using the Laplace transform the-
ory [8 – 10]. However, most of the existing synchro-
nization methods are only valid for chaotic systems
that are free from noise perturbations and contain only
low dimensional attractors that are characterized by
one positive Lyapunov exponent. Clearly, noise, in the
form of matched and mismatched disturbances, exist
in real-world chaotic systems. Furthermore, it is obvi-
ous that communication security would be greatly en-
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hanced by the use of higher-dimensional chaotic sys-
tems that possess multiple positive Lyapunov expo-
nents because of the complex dynamics that is gener-
ated. Indeed, the physical significance of hyperchaotic
systems cannot be over-emphasized because they can
be used as models for many scientific problems and
phenomena [11]. Likewise, the synchronization of hy-
perchaotic systems with noise perturbations is of ut-
most importance.

In recent years, the sliding mode control method
has become a popular nonlinear control strategy, even
though it is known that this method has its drawbacks.
For instance, the traditional sliding mode control law
is unable to predict the time that it takes to reach the
sliding surface that assures system robustness in the
approaching phase. Nevertheless, sliding mode control
has recently been applied extensively to chaos con-
trol and synchronization [12 – 16], with one particu-
larly successful instance of synchronization in [14]. In-
deed, in this paper, we introduce a simple linear sliding
mode control method that ensures the synchronization
of two unidirectionally-coupled Rössler hyperchaotic
systems in the presence of noise perturbations. Fur-
thermore, synchronization can be realized by only one
controller function which makes the scheme much eas-
ier to implement. As linear surfaces are rarely used
for Rössler systems, our proposed method represents
a contribution to developments in this direction.
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2. The Rössler Hyperchaotic Systems

The Rössler system, first introduced by Rössler [17],
is a simple and prototypical equation with chaotic be-
haviour for the Lorenz model of turbulence that con-
tains just one (second-order) nonlinearity in one vari-
able. Subsequently, Rössler [18] also proposed a four-
variable oscillator (which later came to be called the
Rössler hyperchaotic system by other researchers) that
contains only a single nonlinear term of quadratic type
but which produces chaos with two distinct directions
of hyperbolic instability on the attractor. The Rössler
hyperchaotic system is given by the set of nonlinear
differential equations

ẋ1 =−x2 − x3,

ẋ2 = x1 + ax2+ x4,

ẋ3 = b+ x1x3,

ẋ4 =−cx3 + dx4,

(1)

which has a hyperchaotic attractor for the positive sys-
tem parameters a = 0.25, b = 3, c = 0.5, and d = 0.05.
The controlled Rössler hyperchaotic system with noise
perturbation is given by

ẏ1 =−y2 − y3 + d1,

ẏ2 = y1 + ay2+ y4 + d2,

ẏ3 = b+ y1y3 + d3 + v,

ẏ4 =−cy3 + dy4 + d4,

(2)

where d1, d2, and d4 are mismatched disturbances
and d3 is a matched disturbance (see [19], P578). As-
suming that these disturbances are all bounded in C1

(i. e., that ‖di‖1 ≤ δ < 1 (i = 1,2,3,4) for some con-
stant δ , where ‖ · ‖1 is a usual norm in C1 given by
‖u(t)‖1 = supt∈R{|u(t)|+ |u′(t)|}), the aim of this pa-
per is to design a controller v such that the controlled
Rössler hyperchaotic system with disturbance (2) is
synchronous with the master system (1).

3. Synchronizing the Rössler Hyperchaotic
Systems with Noise Perturbation

In this section, we shall design the sliding mode con-
troller that is needed to synchronize the Rössler hyper-
chaotic systems with disturbance. First, we define the
error signal as e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3,
and e4 = y4−x4. Then, by subtracting (1) from (2), we

have the error state dynamics equations

ė1 =−e2 − e3 + d1,

ė2 = e1 + ae2 + e4 + d2,

ė3 = x1e3 + x3e1 + e1e3 + d3 + v,

ė4 =−ce3 + de4 + d4,

(3)

Now, we choose a suitable sliding mode surface S = 0
of the form

S = e3 + p(e2 + e4) (4)

for some real constant p whose value has yet to be as-
signed. We have the following result.

Theorem 1. If the controller v is selected as

v =−x1e3 − x3e1 − e1e3 − pe1 − ape2

+ cpe3 − p(1+ d)e4− k sgn(S),
(5)

where p is a constant and k > (2|p|+1)δ +1, then the
states of the error system (3) will approach the sliding
mode surface S = 0 in finite time.

Proof: Choose V = S2 as the Lyapunov function of
the system (3). Then the first derivative of V along the
solutions of system (3) is

V̇ = 2S(ė3 + pė2 + pė4)

= 2S[x1e3 + x3e1 + e1e3 + pe1 + ape2

− cpe3 + p(1+ d)e4+ d3 + p(d2 + d4)+ v].

In real applications, the disturbances d1, d2, d3, and d4
are unknown. So by (5), when k > (2|p|+1)δ +1, we
have

V̇ = 2S[d3 + p(d2 + d4)− k sgn(S)]

≤ 2|S|[(2|p|+ 1)δ − k]≤−2|S|=−2V
1
2

which implies that V
1
2 (t) ≤ V

1
2 (0)− t, t ∈ [0, ts] and

V (t) = 0 when t ≥ ts =V
1
2 (0). The proof is thus com-

plete.
Next we give the synchronization analysis, noting

that it suffices to analyze the error system on the sliding
mode surface (because of Theorem 1). On the sliding
mode surface S = 0, the error system reads:

ė1 = (p− 1)e2 + pe4 + d1,

ė2 = e1 + ae2 + e4 + d2,

ė3 =−pe1 − ape2+ cpe3 − p(1+ d)e4+ d3,

ė4 = cpe2 +(cp+ d)e4+ d4.

(6)
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In other words, we have
e1

e2
e4


= eAt




e1(0)

e2(0)
e4(0)


+

∫ t

0
e−As


d1

d2
d4


ds


 ,

where A =


0 p−1 p

1 a 1
0 cp cp+d


 has the characteristic poly-

nomial

f (λ ) = λ 3 − (cp+ d+ a)λ 2

+(acp+ ad− cp+ 1− p)λ +(d p− cp− d).

By the Routh-Hurwitz theorem, the real parts of all its
characteristic roots are negative if and only if

∆1 =−(cp+ d+ a)> 0,

∆2 =−(cp+ d+ a)(acp+ ad− cp+ 1− p)

− (d p− cp− d)> 0,

∆3 = (d p− cp− d)> 0.

(7)

Clearly, a constant p exists that satisfies the above
conditions for any given parameters a, b, c, and d such
that system (1) is hyperchaotic. Therefore, there exists
positive constants α and β such that |eAtx| ≤ αe−β t |x|
for every x ∈R

3 and t ≥ 0. Hence, we have

|ei| ≤ αe−β t max
i=1,2,4

|ei(0)|+ αδ
β

i = 1,2,4, (8)

and thus

lim
t→∞

|ei(t)| ≤ α
β

δ i = 1,2,4. (9)

Furthermore, since

|e3|= |− p(e2 + e4)|
≤ 2|p|

(
αe−β t max

i=1,2,4
|ei(0)|+ αδ

β

)

on the sliding mode surface S = e3 + p(e2 + e4) = 0,
we have

lim
t→∞

|e3(t)| ≤ 2|p|α
β

δ . (10)

Let q = α
β max(1,2|p|). The following theorem and

corollary are immediate consequences of (8) and (9).

Theorem 2. If the controller is selected as

v =−x1e3 − x3e1 − e1e3 − pe1 − ape2

+ cpe3 − p(1+ d)e4− k sgn(S),

where p is a constant satisfying the inequalities (7) and
k > (2|p|+1)δ +1, then there exists a constant q such
that the controlled Rössler hyperchaotic system with
noise perturbation (2) is synchronous with the Rössler
hyperchaotic system (1) with ultimate error bound qδ ,
i. e. limt→∞|yi − xi| ≤ qδ (i = 1,2,3,4).

Corollary 1. Under the conditions of Theorem 2,
the controlled Rössler hyperchaotic system with noise
perturbation (2) is synchronous with the Rössler hyper-
chaotic system (1).

4. Improving the Performance of the Sliding Mode
Control
The sliding mode controller of Section 3 contains

the discontinuous nonlinear function sgn(S) that could
raise both theoretical and practical issues. Theoreti-
cally, the existence and uniqueness of solutions as well
as their validity for Lyapunov analysis must all be
examined in a framework that requires no local Lip-
schitz conditions on the right-hand-side functions of
the state equation. Practical issues include chattering
caused by imperfections in switching devices and de-
lays, chattering results in low control accuracy, exces-
sive heat losses (in electrical power circuits), and the
wear and tear of moving mechanical parts. Chattering
may also induce unwanted high-frequency dynamics
that degrades the performance of the system and may
even lead to instability.

One way of eliminating chattering is to replace the
discontinuous sliding mode controller by a continuous
approximation, which also avoids all the theoretical
difficulties associated with discontinuous controllers.
We therefore approximate the signum nonlinearity by
a ‘saturation’ nonlinearity with great slope. In other
words, the sliding mode controller v is taken to be

v =−x1e3 − x3e1 − e1e3 − pe1 − ape2

+ cpe3 − p(1+ d)e4− k sat
(

S
ε

)
,

(11)

where sat(·) is the saturation function defined by

sat(y) =

{
y if |y| ≤ 1,

sgn(y) if |y|> 1,

and ε is a positive constant. The saturation nonlin-
earity sat

( S
ε
)

then approaches the signum nonlinearity
sign(S) in the limit as ε → 0. Now, we examine the
approaching control by using the Lyapunov function
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Fig. 1. Errors obtained by sliding mode control
between the master and slave systems without
disturbances.

V = S2. Obviously, the derivative of V along the solu-
tion of system (3) satisfies the equality

V̇ = 2S
[

d3 + p(d2 + d4)− k sat
(

S
ε

)]
(12)

so that if k > (2|p|+1)δ +1 in the region |S|> ε , then
we have

V̇ ≤ 2|S|[|d3|+ |p|(|d2|+ |d4|)− k]

≤−2|S|=−2V
1
2 .

(13)

It follows that whenever |S(0)|> ε , |S| will be strictly
decreasing until it reaches the set {|S| ≤ ε} in finite
time and remain inside thereafter. In the bounded layer
{|S| ≤ ε}, however, we have

V̇ ≤ 2(2|p|+ 1)δ |S|− 2k
ε

S2

= 2(2|p|+ 1)δV
1
2 − 2k

ε
V,

which implies that

V 1/2 ≤V 1/2(0)e−εt/k +
ε
k
(2|p|+ 1)δ (14)

so that the error system in the boundary layer reads

ė1 =−e2 − e3 + d1,

ė2 = e1 + ae2 + e4 + d2,

ė3 =−pe1 − ape2+ cpe3 − p(1+ d)e4+ d3 − k
ε

S,

ė4 =−ce3 + de4 + d4.

The following theorem can be proved in the same way
as Theorem 2 by using the inequality (14).

Theorem 3. If the controller is selected as (11),
where p is a constant satisfying the inequalities (7) and
k > (2|p|+1)δ +1, then there exists a constant q such
that the controlled Rössler hyperchaotic system with
noise perturbation (2) is synchronous with the Rössler
hyperchaotic system (1) with ultimate error bound qδ ,
i. e. limt→∞|yi − xi| ≤ qδ (i = 1,2,3,4).

It is obvious from this theorem that the controlled
Rössler hyperchaotic system without noise perturba-
tion is synchronous with the Rössler hyperchaotic sys-
tem (1). It is worth mentioning here that the con-
troller in Theorem 3 can be implemented because
it is continuous and there are no chattering pheno-
mena.

5. Numerical Simulations

In order to verify the validity of the proposed
method, we will present some numerical simulations
in this section. The parameters of the Rössler hyper-
chaotic system are selected to be a = 0.25, b = 3,
c = 0.5, and d = 0.05 in all the simulations. The
initial states of the master and slave systems are
(−20,−1,0,15)T and (−19,1,1,16)T, respectively,
and the constant in the sliding mode is selected to be
p = −5. The constants in the sliding mode controller
are selected to be k = 12 and ε = 0.01. The results of
the numerical simulations are shown in Figures 1 – 5.
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Fig. 2. Errors obtained by sliding mode control
between the master and slave systems with dis-
turbances d1 = 0, d2 = 0, d3 = 0.5sin(2t), and
d4 = 0.

Fig. 3. Errors obtained by sliding mode control
between the master and slave systems with distur-
bances d1 = 0, d2 = 0.025sin t, d3 = 0.5sin(2t),
and d4 = 0.

The numerical simulation results are clearly consistent
with the theoretical analysis.

6. Conclusion

A simple linear sliding mode control scheme was
presented in this paper to investigate the synchroniza-
tion problem between two unidirectionally-coupled
Rössler hyperchaotic systems with noise perturbations.
The two hyperchaotic systems were synchronized by
using a single and specifically designed controller.

Some numerical simulation results were included to
demonstrate the effectiveness and feasibility of the de-
veloped approach.
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Fig. 4. Errors obtained by sliding mode control
between the master and slave systems with distur-
bances d1 = 0.025sin(t), d2 = 0, d3 = 0.5sin(2t),
and d4 = 0.0125sin(t).

Fig. 5. Errors obtained by sliding mode control
between the master and slave systems with dis-
turbances d1 = 0.025sin(t); d2 = 0.025sin(t);
d3 = 0.5sin(t), and d4 = 0.0125sin(2t).
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[12] M.-J. Jang, C.-L. Chen, and C.-K. Chen, Chaos, Soli-
tons, and Fractals 14, 1465 (2002).

[13] Y. Tao and H. Hui, Phys. Rev. E 65, 210 (2002).
[14] Q. Zhang, S. Chen, and Y. Hu, Physica A 371, 317

(2006).
[15] J. J. Yan, Y. S. Yang, T. Y. Chiang, and C. Y Chen,

Chaos, Solitons, and Fractals 34, 947 (2007).

[16] T. A. Medhdi, S. Hoda, S. Hassan, and A. Aria, Non-
linear Analysis: Hybrid Systems, 2, 993 (2008).
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