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An improved homogeneous balance principle and an F-expansion technique are used to construct
exact chirped self-similar solutions to the generalized nonlinear Schrödinger equation with distributed
dispersion, nonlinearity, and gain coefficients. Such solutions exist under certain conditions and im-
pose constraints on the functions describing dispersion, nonlinearity, and distributed gain function.
The results show that the chirp function is related only to the dispersion coefficient, however, it affects
all of the system parameters, which influence the form of the wave amplitude. As few characteristic
examples and some simple chirped self-similar waves are presented.
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1. Introduction

The (1+1)-dimensional nonlinear Schrödinger equa-
tion is one of the most useful generic mathemati-
cal models that naturally arises in many fields of
physics [1, 2]. Actually, in (1+1) dimensions, it has
been proven when a physical system can be expressed
by a partial differential equation, then under some suit-
able approximations, one can always find a nonlin-
ear Schrödinger type equation [3, 4]. This is why the
(1+1)-dimensional soliton theory can be successfully
used in almost all physical branches.

Recently, studies of exact self-similar solutions to a
wide class of nonlinear physical systems have become
one of the most exciting and extremely active areas
of current investigation, which has been of great value
in understanding different nonlinear physical phenom-
ena [5]. Although self-similar solutions have been ex-
tensively studied in fields such as hydrodynamics and
quantum field theory, their application in optics has not
been widespread. Some important results have, how-
ever, been obtained, with previous theoretical studies
considering self-similar behaviour in radial pattern for-
mation [6], stimulated Raman scattering [7], the evo-
lution of self-written waveguides [8], the formation
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of Cantor set fractals in soliton systems [9], the non-
linear propagation of pulses with parabolic intensity
profiles in optical fibers with normal dispersion [10],
and nonlinear compression of chirped solitary waves
[11, 12]. In this paper we present the discovery of a
broad class of exact self-similar solutions to the non-
linear Schrödinger equation with gain or loss (the gen-
eralized NLSE) where all parameters are functions of
the distance variable. This class also encloses the set of
solitary wave solutions which describes, for example,
such physically important applications as the amplifi-
cation and compression of pulses in optical fiber am-
plifiers [13]. These linearly chirped solitary wave so-
lutions are applied in the anomalous dispersion regime
and may be contrasted with the asymptotic solutions
appropriate in the normal dispersion regime [14 – 18].
The importance of the results reported here is twofold:
first, the approach leads to a broad class of exact so-
lutions to the nonlinear differential equation in a sys-
tematic way. Some of these solutions have been ob-
tained serendipitously in the past, but we emphasize
the importance of the use of self-similarity techniques
which are broadly applicable for finding solutions to a
range of nonlinear partial differential equations, hav-
ing applications in a variety of other physical situa-
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tions. These equations are not integrable by the inverse
scattering method, and, therefore, from the traditional
academic viewpoint they do not have soliton solutions
[13]; however, they do have solitary wave solutions
which have often been called solitons. The second and
more specific significance of these results lies in their
potential application to the design of fiber optic am-
plifiers, optical pulse compressors, and solitary wave
based communications links.

2. Exact Self-Similar Solutions of the Generalized
Nonlinear Schrödinger Equation with
Distributed Coefficients

In this section, we give some exact solutions of the
generalized nonlinear Schrödinger equation (NLSE)
with distributed coefficients. As is well known, the
problem of solution management in the picosecond
regime can be described by the generalized NLSE with
distributed coefficients [16 – 20]

iψz − β (z)
2

ψττ + γ(z)|ψ |2ψ = i
g(z)

2
ψ , (1)

where ψ(z,τ) is the complex envelope of the electric
field in a co-moving frame, z is the propagation dis-
tance, τ is the retarded time, β (z) is the group-velocity
dispersion parameter, γ(z) is the nonlinearity parame-
ter, and g(z) is the distributed gain function. The sub-
scripts z and τ denote the spatial and temporal partial
derivatives. It is of note that this model equation has
self-similar solutions or quasi-soliton solutions that ex-
hibit a linear chirp. These self-similar pulses or soli-
tary waves are rather stable when propagating along
the distance, remaining localized and preserving their
sech-type (β (z)γ(z) < 0) or tanh-type (β (z)γ(z) > 0)
wave shapes, with only a scaling of wave amplitude
and temporal width [1, 21]. But here we are concerned
with more general types of self-similar solutions such
as elliptic double periodic wave solutions rather than
only these soliton-like solutions, which are special lim-
ited cases of double periodic wave solutions.

To this end, the complex function ψ can be defined
in terms of its amplitude and phase

ψ(z,τ) = A(z,τ)exp(iΦ(z,τ)), (2)

where A(z,τ) and Φ(z,τ) are real functions. Substi-
tuting ψ(z,τ) into (1), we find the following cou-
pled equations for the phase Φ(z,τ) and the amplitude

Table 1. Jacobi elliptic functions.

Solution c0 c2 c4 F M = 0 M = 1
1 1 −(1+M2) M2 sn sin tanh
2 1−M2 2M2 −1 −M2 cn cos sech
3 M2 −1 2−M2 −1 dn 1 sech
4 M2 −(1+M2) 1 ns cosec coth
5 −M2 2M2 −1 1−M2 nc sec cosh
6 −1 2−M2 M2 −1 nd 1 cosh
7 1 2−M2 1−M2 sc tan sinh
8 1−M2 2−M2 1 cs cot cosech
9 1 −(1+M2) M2 cd cos 1
10 M2 −1+M2 1 dc sec 1

A(z,τ):

Az −β AτΦτ − 1
2

β AΦττ − 1
2

gA = 0, (3)

AΦz +
1
2

β Aττ − 1
2

β AΦ2
τ − γA3 = 0. (4)

According to the balance principle and F-expansion
technique, the solution of (3) and (4) can be expressed
in the following form [2]:

A(z,τ) = f0(z)+ f1(z)F(θ )+ f2(z)F(θ )−1, (5)

Φ(z,τ) = a(z)τ2 + b(z)τ + e(z), (6)

θ = k(z)τ + l(z), (7)

where f0, f1, f2,k, l,a,b, and e are the parameters to be
determined. The parameter a(z) is related to the wave
front curvature; it is also a measure of the phase chirp
imposed on the solitary wave. The function F(θ ) is one
of the Jacobi elliptic functions (JEFs), which in general
satisfy the following general nonlinear ordinary differ-
ential equation:

(
dF
dθ

)2

= c0 + c2F2 + c4F4, (8)

where c0,c2, and c4 are real constants related to the el-
liptic modulus of the JEFs (see Table 1). Substituting
(5), (6), (7) into (3) and (4) and requiring that tqFn (q=
0,1,2; n = 0,1,2,3,4,5,6), and

√
c0 + c2F2 + c4F4 of

each term be separately equal to zero, we obtain a
system of algebraic or first-order ordinary differential
equations for fp,k, l,a,b, and e:

d fp

dz
−
(

β a+
1
2

g
)

fp = 0, (9)

f j

(
dk
dz

− 2β ka
)
= 0, (10)
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f j

(
dl
dz

−β kb
)
= 0, (11)

f j

(
da
dz

− 2β a2
)
= 0, (12)

f j

(
db
dz

− 2β ab
)
= 0, (13)

f0

(
de
dz

− γ f 2
0 − 6γ f1 f2 − 1

2
β b2

)
= 0, (14)

f j

(
de
dz

+
1
2

β k2c2−3γ f1 f2−3γ f 2
0 −

1
2

β b2
)
= 0, (15)

f1
(
γ f 2

1 −β f1k2c4
)
= 0, (16)

f2
(
γ f 2

2 −β f2k2c0
)
= 0, (17)

γ f0 f 2
j = 0, (18)

where p = 0,1,2 and j = 1,2. By solving self-
consistently, one can obtain a set of conditions on the
coefficients and parameters, necessary for (1) to have
exact periodic wave solutions.

We consider the most generic case, in which f1 and
f2 are assumed non-zero and β and g are arbitrary. The
following set of exact solutions is found:

f0 = 0, f1 = f10α
1
2 exp

(∫ z

0

1
2

gdz
)
, f2 = ε

√
c0

c4
f1;

(19)

k = k0α, l = l0 + k0b0α
∫ z

0
β dz; (20)

a = a0α, b = b0α; (21)

e = e0 − α
2
(
k2

0c2 − 6εk2
0
√

c0c4 − b2
0
)∫ z

0
β dz, (22)

where ε = 0,1 and α = (1−2a0
∫ z

0 β dz)−1 is the chirp
function. It is related to the wave front curvature and
present a measure of the phase chirp imposed on the
wave since the resultant chirp δω(τ) can be expressed
by δω(τ) = −α(2a0τ + b0). The subscript 0 denotes
the value of the given function at z = 0.

One should note the universal influence of the chirp
function α on the solutions. The chirp function is re-
lated only to the dispersion coefficient β (z); however,
it affects all of the parameters. In the case when there is
no chirp, a0 = 0, α = 1, and the parameters k and b are
all constant. In the presence of chirp, they all acquire
the prescribed z dependence. The chirp also influences
the form of the amplitude A through the dependence

of f1, f2, and θ on α . It should also be noted that γ is
not arbitrary but depends on α,β , and g. The neces-
sary and sufficient condition for existence of such self-
similar solutions is given by the following parameter
relationship:

γ =
k2

0c4αβ
f 2
10

exp
(
−
∫ z

0
gdz

)
. (23)

The constraint condition was firstly suggested by [20],
in which α was called the compression/broadening
factor. Hence, to obtain exact solutions in a lossy
medium (when g(z) is negative), the nonlinearity co-
efficient γ must grow exponentially. In our choice of
independent coefficients, we could have equally well
chosen γ and g; then β would have been dependent.

Incorporating the above solutions shown by (19) –
(22) back into (2), we obtain the general periodic trav-
elling wave solutions to the generalized NLSE:

ψ = f10α
1
2 exp

(∫ z

0

1
2

gdz
)[

F(θ )+ ε
√

c0

c4
F−1(θ )

]

· exp[i(at2 + bt+ e)], (24)

where θ = k0α(t + b0
∫ z

0 β dz) + l0 and F(θ ) is pre-
sented in Table 1. Obviously, by selecting different
F(θ ) functions, one can derive abundant exact self-
similar wave solutions such as periodic wave solutions,
double periodic wave solutions, and solitary wave so-
lutions.

3. Wave Self-Similar Propagation – Few Simple
Examples

In this part, as few characteristic examples of the
solution (24), we present some of the periodic waves
and propagating self-similarly soliton solutions, tak-
ing the dispersion coefficient β to be of the form
β = β0 coskbz and the gain (loss) coefficient g to be
a small constant. This choice leads to alternating re-
gions of positive and negative values of both β and γ ,
which is required for an eventual stability of localized
wave solutions. If the group velocity dispersion param-
eter β and the distributed gain function g is considered
to be β = cosz and g = 0, then, in Figure 1 we depict
two periodic wave solutions made up from the single
F functions 1 and 2 from Table 1, with chirp.

Figures 2 and 3 show the limited cases of Figure 1(a)
and (b) for g = 0 and g = 0.04 giving self-similar soli-
tary waves when the Jacobi module parameter M → 1,
respectively.
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(a)
(b)

Fig. 1. Periodic travelling wave solutions with chirp, as functions of the propagation distance. (a) show the intensity |ψ|2 of
solutions 2 and 1 from Table 1, respectively . Coefficients and parameters: β (z) = cosz, g = 0, M = 0.8, a0 = 0.001, f10 = 1,
k0 = 1, l0 = 0, β0 = 1, kb = 1, and b0 = 1.

(a)

(b)

Fig. 2. (a) Propagating solitary wave solutions with chirp, as functions of the propagation distance. Intensity |ψ|2 of solution
2 from Table 1. Coefficients and parameters: β (z) = cos z, g = 0, M = 1, a0 = 0.001, f10 = 1, k0 = 1, l0 = 0, β0 = 1, kb = 1,
and b0 = 1; (b) z = 0 (solid), z = 30 (dash).

(a)
(b)

Fig. 3. (a) Travelling solitary wave solutions with chirp, as functions of the propagation distance. Intensity |ψ|2 of solution 1
from Table 1. Coefficients and parameters: β (z) = cos z, g = 0.04, M = 1, a0 = 0.001, f10 = 1, k0 = 1, l0 = 0, β0 = 1, kb = 1,
and b0 = 1; (b) z = 0 (solid), z = 30 (dash).
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4. Summary and Conclusion

In summary, an improved homogeneous balance
principle and an F-expansion technique are ap-
plied to the (1+1)-dimensional generalized nonlinear
Schrödinger equation with distributed dispersion, non-
linearity, and gain. Abundant exact self-similar pe-
riodic wave solutions are obtained. In some limited
cases, different types of soliton solutions are found.
A simple and valid procedure is presented for con-
trol behaviour of solitons, in which one may select the
dispersion and the gain coefficient, or the chirp func-
tion and the gain coefficient, to control propagation be-
haviour of solitons. The present solution method pro-
vides a reliable technique that is more transparent and
less tedious than the Jacobi elliptic function ansatz,
or other expansion and variational methods. The tech-

nique is also applicable to other multidimensional non-
linear partial differential equation systems.
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