Bioreduction of Some Common Carbonylic Compounds Mediated by Yeasts

Javier Silvaa, Julio Alarcónb, Sergio A. Aguilaa, and Joel B. Alderetea,* \vspace{0.5cm}
a Departamento de Organica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile. Fax: +56-41-245974. E-mail: jalderet@udec.cl b Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio-Bio, A. Bello S/N, Chillán, Chile * Author for correspondence and reprint requests

Z. Naturforsch. \textbf{65c}, 1 – 9 (2010); received August 7/September 29, 2009

Bioreduction of several prochiral carbonylic compounds such as acetophenone (1), ethyl acetoacetate (2) and ethyl phenylpropionate (3) to the corresponding optically active sec-alcohols 1\textsubscript{a}–3\textsubscript{a} was performed using wild-type strains of \textit{Pichia pastoris} UBB 1500, \textit{Rhodotorula} sp., and \textit{Saccharomyces cerevisiae}. The reductions showed moderate to excellent conversion and high enantiomeric excess, in an extremely mild and environmentally benign manner in aqueous medium, using glucose as cofactor regeneration system. The obtained alcohols follow Prelog’s rule, but in the reduction of 1 with \textit{P. pastoris} UBB 1500 the anti-Prelog enantiopreference was observed.

\textbf{Key words:} Yeast, Enantioselective Reduction

\section*{Introduction}

The asymmetric synthesis is an area extensively explored by organic chemists. It is based on the production of synthetic derivatives with a specific stereochemistry. The synthesis of enantiomerically pure compounds has become an useful tool in the pharmaceutical and biologically active materials industries. Obtainment of chiral compounds is often quite difficult due to the number of steps required to reach the desired molecule, and often the use of expensive chiral reagents and environmentally dangerous heavy metals is necessary. For these reasons, the use of unconventional tools to solve this challenge should be evaluated (Adio, 2009; Crossley, 1992). Biocatalysis, alongside chemocatalysis, has now become a key component in the toolbox of chemical processes (Astudillo \textit{et al}., 2009; Hlavsova \textit{et al}., 2008; Pollard and Woodley, 2007). In comparison to most common methodologies, biocatalysis has the advantage of its chiral nature and mild reaction conditions. Biocatalysis is performed using whole cells or isolated enzymes, whereas both applications have distinct different characteristic. Whole cells provide the enzyme with the perfect environment, and the main advantage is the \textit{in vivo} recycling cofactors converting the whole cells into a readily cheap catalyst.

Optically active alcohols can be prepared by a number of routes including the reduction of carbonylic compounds. Reduction of prochiral carbonyl precursors to chiral sec-alcohols is special enzymatic reaction where cells have been also used (Goldberg \textit{et al}., 2007). Chiral alcohols are very useful materials especially in the chemical and pharmaceutical industries, where enantiopurity of drugs or building blocks synthesis is highly relevant (Chartrain \textit{et al}., 2001; Ishige \textit{et al}., 2005).

In general, bioreduction of prochiral carbonylic compounds with yeast generates the (S)-alcohol as predominant enantiomer. Thus, for example the production of (R)-1-phenylethanol, an important optically active compound which is widely used as fragrance in the cosmetic industry and also as ophthalmic preservative (Costa \textit{et al}., 2008), can not directly be obtained by yeast reduction of acetophenone.

This study reports the enantioselective bioreduction of acetophenone (1), ethyl acetoacetate (2) and ethyl phenylpropionate (3) mediated by \textit{Pichia pastoris} UBB 1500, \textit{Rhodotorula} sp., and \textit{Saccharomyces cerevisiae}. The sec-alcohols obtained are useful intermediates in the asymmetric synthesis of biologically active compounds (Che nevert \textit{et al}., 1992; Zhu \textit{et al}., 2006), especially the reduction of 1 by \textit{P. pastoris} UBB 1500 afforded the anti-Prelog (R)-alcohol.
Results and Discussion

Reduction of acetophenone (1)

Acetophenone (1) is the most frequently used aromatic ketone in bio- or metal-mediated reduction studies. The enantioselective reduction of 1 using resting cells of *P. pastoris* UBB 1500 provided the respective (*R*)-(+)-1-phenylethanol (1a) with a high conversion rate (98%) and good enantiomeric excess (ee, 83%). The result showed the presence of different reductases in the cell (Fig. 1A). The (*R*)-enantipreference according to the anti-Prelog rule is quite unusual. The studies on yeasts have shown that they transfer the pro-*R*-hydride to the re-face of the carbonyl group to give (*S*)-alcohols, a process described by Prelog's rule (Faber, 1997). To our knowledge, this is the first report on obtaining of (*R*)-1-phenylethanol by yeast reduction of 1 at higher conversion and enantiomeric excess, without the use of additive substances (Patel *et al*., 2004; Zymanczyk-Duda *et al*., 2005).

Rhodotorula sp. (UBB 2009, Laboratorio de Microbiologia, Universidad del Bio-Bio, Chillán, Chile) was the most enantioselective strain for bioreduction of 1, which resulted in (*S*)-(*-)-1a with a high conversion rate (99%) and excellent enantiomeric excess (> 99%) (Fig. 1B). This result shows high stereoselectivity of the *Rhodotorula* species. Thus, *Rhodotorula* sp. could be a good alternative towards acetophenone derivatives reduction. Bioreduction by *Rhodotorula* sp. obeyed Prelog's rule, showing the same enantiomeric preference already observed with baker's yeast (*S. cerevisiae*) (de Carvalho *et al*., 1991).

Biocatalytic reactions carried out with *S. cerevisiae* yielded (*S*)-(*-)1a with low conversion (10%) and good enantiomeric excess (94%) (Fig. 1C). After 20 h the bioconversion reached just a transformation of 10%, and there was no significant change until the end of the reaction (48 h) (Table I). Under the established analytical methods any other compounds were detected in the reaction medium (Table II). In the case of baker's yeast (*S. cerevisiae*) it has been reported that reductions of acetophenone derivatives produce (*S*)-alcohols in low to moderate yield and higher enantiomeric excess (Csuk and Glanzer, 1991). These results indicate that evaluation of the same *S. cerevisiae* species does not always show the same outcome, since the process depends on parameters like nature of nutrients, substrate concentration, temperature, cell age, pH or additives present in the medium (Fantin *et al*., 1994; Nakamura *et al*., 1984).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Product</th>
<th>Micro-organism</th>
<th>Reaction time [h]</th>
<th>Conformation</th>
<th>Conversion (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P. pastoris</td>
<td>48</td>
<td>R</td>
<td>98</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodotorula</td>
<td></td>
<td>S</td>
<td>99</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cerevisiae</td>
<td></td>
<td>S</td>
<td>10</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. pastoris</td>
<td>3</td>
<td>S</td>
<td>100</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodotorula</td>
<td></td>
<td>S</td>
<td>38</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cerevisiae</td>
<td></td>
<td>S</td>
<td>100</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. pastoris</td>
<td>12</td>
<td>S</td>
<td>19</td>
<td>>99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhodotorula</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. cerevisiae</td>
<td></td>
<td>S</td>
<td>68</td>
<td>>99</td>
</tr>
</tbody>
</table>

The bioreductions were carried out with 200 mM glucose, at 30 °C and 120 rpm.
Fig. 1. Time course of conversion (200 mM glucose, at 30 °C and 120 rpm) and enantioselectivity (ee, enantiomeric excess) of acetophenone (1) reduction by resting cells of (A) *P. pastoris* UBB 1500, (B) *Rhodotorula* sp., and (C) *S. cerevisiae*.
Reduction of ethyl acetoacetate (2)

The β-keto esters is one of the most studied classes of compounds in enantioselective reactions (Mori, 1989; Nakamura et al., 1995; North, 1996; Salvi and Chattopadhyay, 2004; Spiliotis et al., 1990; Turcu et al., 2007; Ushio et al., 1991). Its products, β-hydroxy esters, are extremely useful as building blocks for the synthesis of a large number of bioactive compounds, intermediates and chiral auxiliaries (Ishihara et al., 2003; Salvi and Chattopadhyay, 2006).

The reduction of ethyl acetoacetate (2) mediated by *P. pastoris* UBB 1500 produces ethyl (S)-(−)-3-hydroxybutanoate (2a) with a high conversion rate (100%) and excellent enantiomeric excess (>99%) (Fig. 2A). The high conversion and enantipreference suggest that enzymes inside cells can easily differentiate between the small and large groups flanking the carbonyl function.

When 2 was reduced with *Rhodotorula* sp., only 38% of conversion to (S)-2a was reached (>99% ee) (Fig. 2B). This poor conversion should be the result of the action of other enzymes that can decarboxylate the substrate. The starting compound 2 is a substrate not only for keto reduction but also for esterases with far-reaching consequences. Hydrolysis of ester 2 results in ethanol and the corresponding 3-oxobutyric acid while the hydrolysis of (S)-2a produces 3-hydroxybutyric acid. These hydrolysis products can probably be metabolized further by the yeast cells into biomass or into products like acetic acid (via acetyl-CoA), acetone and carbon dioxide via chemical decarboxylation or acetoacetate decarboxylase (Chin-Joe et al., 2000).

In the presence of *S. cerevisiae* compound 2 was biotransformed to (S)-2a. The S-enantiomer was obtained with a total conversion within 4 h with excellent enantiomeric excess (>99%) (Fig. 2C). It proves that ethyl acetoacetate was a very good substrate for *S. cerevisiae*. Thus, *P. pastoris* and *S. cerevisiae* demonstrated to be excellent bioreduction systems for the enantiomeric synthesis of (S)-2a (Table I).

Reduction of ethyl phenylpropionate (3)

Ethyl phenylpropionate (3) is a very bad substrate or a non-substrate in most of bioreductions mediated by microorganisms (Havel and Weuster-Botz, 2006; Kroutil et al., 2004). 3 possesses an ester-demanding group on the carbonyl moiety, that blocks the interaction with the active site of reductases. Our experiments showed that the concentration of 3 in the medium was instantaneously diminished (by around 70%) (Fig. 3). This behaviour could be explained as a fast absorption or adsorption of the ester by the yeasts due to its low solubility in water (Hussein et al., 2007).

Bioresduction carried out with *P. pastoris* UBB 1500 produced ethyl (S)-(−)-3-hydroxy-3-phenylpropionate (3a) with a low conversions (19%), but excellent enantiomeric excess (>99%) that remained constant during the entire course of the reaction (12 h) (Fig. 3A). Other polar compounds were observed during HPLC analysis, but they were not identified. It is possible that these compounds were products of other enzyme activity (lipases, esterases) (Ribeiro et al., 2001).

When the reaction was performed with *Rhodotorula* sp., 3a was immediately observed together with acetophenone (1). The latter is a product of hydrolysis and subsequent decarboxylation of 3. It is likely that the microorganisms, as well as keto reduction, also hydrolyzed the ester function of the substrate in a parallel reaction, the former being comparatively faster. The hydrolytic reaction supplied the corresponding β-keto acid, which on spontaneous decarboxylation produced 1 (Salvi et al., 1990).
Fig. 2. Time course of conversion (200 mM glucose, at 30 °C and 120 rpm) and enantioselectivity (ee) of ethyl acetoacetate (2) reduction by resting cells of (A) *P. pastoris* UBB 1500, (B) *Rhodotorula* sp., and (C) *S. cerevisiae*.
Fig. 3. Time course of conversion (200 mM glucose, at 30 °C and 120 rpm) and enantioselectivity (ee) of ethyl phenylpropionate (3) carried out by resting cells of (A) P. pastoris UBB 1500, (B) Rhodotorula sp., and (C) S. cerevisiae.
and Chattopadhyay, 2006), followed by its microbial reduction yielding 1a. After 4 h, substrate 3 was totally consumed and 3a reached its highest content (20%, > 99% ee); 8 h later 3a decreased until 0%. At the same time, 1 reached a content of 20% (8 h), and was later transformed into 1a (18%, > 99% ee) (Fig. 3B). It is noteworthy that the enzyme’s hydrolytic activity present in the cell can hydrolyze either 3 or 3a into high polar compounds (Csuk and Glaenzer, 1991).

S. cerevisiae reduced 3 to 3a with the highest conversion rate (68%) and excellent enantiomeric excess (> 99%) (Fig. 3C). This result showed that this microorganism is an appropriate system to reduce 3 (Table I).

Experimental

General

The carbonylic compounds 1–3 were obtained from Merck, enantiomerically pure standard ((S)-(+)-1a, (S)-(−)-2a, and (S)-(−)-3a were purchased from Sigma-Aldrich. The cell concentration was adjusted with a Shimadzu UV-Vis 1603 spectrophotometer. Conversion of the biocatalytic reduction was monitored by RP-HPLC performed on a Merck-Hitachi L-4200 UV-Vis detector equipped with a reversed-phase C$_{18}$ Merck-LiChrospher$^\text{®}$ column (4 mm x 250 mm, 5 μm), at 25–30° C with isocratic elution using a mobile phase comprised of water/acetonitrile. The enantiomeric excess (%) of the alcohols 1a–3a was determined by GC-FID on a Shimadzu GC14A system equipped with a Supelco β-DEX$^\text{TM}$-225 column (0.25 mm x 30 m, 0.25 μm), using N$_2$ as carrier gas. The specific rotations were measured with an ATAGO POLAX-2 L semiautomatic polarimeter.

The 1H NMR spectra were recorded on a Bruker AC250 NMR spectrophotometer; the compounds were dissolved in CDCl$_3$, and chemical shifts were reported in ppm. IR spectra were recorded on a Nicolet Nexus FT-1R spectrometer.

Microorganisms and source

The *P. pastoris* UBB 1500 strain was obtained from Laboratorio de Síntesis y Biotransformación de Productos Naturales, Universidad del Bio-Bio, Chillán, Chile. *Rhodotorula* sp., a pink microorganism isolated from the air, was identified by standard taxonomic methods based on physiological, morphological and nutritional properties (Barnett et al., 2000). Briefly, the testing regime includes, in addition to morphological investigations, the following tests: urea hydrolysis, D-glucose fermentation, growth at 30, 35 and 37 °C, growth in the presence of cycloheximide (0.01 and 0.1%), growth in vitamin-free medium, and growth in media containing 50% glucose, and assimilation of carbohydrates (D-galactose, D-xylene, maltose, sucrose, trehalose, cellobiose, salicin, melibiose, raffinose, L-rhamnose, L-arabinose, lactose, melezitose, starch, erythritol, D-mannitol, 2-keto-D-gluconate, and citrate) and nitrogen (nitrate, nitrite, L-lysine and cadaverine). An assimilation test was performed by the pour-plate auxanographic method. The result was interpreted by the computer program ProleFood (Velázquez et al., 2001). Additionally, the identification was confirmed by comparing the observed characteristics with the yeast identification key (Deak, 2007). All these studies of the yeast strain indicated that it belongs to the genus *Rhodotorula*. At the moment, the strain is a part of the collection of Laboratorio de Microbiología, Universidad del Bio-Bio, Chillán, Chile, with the accession number UBB 2009. *S. cerevisiae* was acquired from the local market, purified, and morphologically identified.

Growth conditions

Cells were grown, shaken aerobically at 120 rpm and 30 °C for 60 h in 1-l Erlenmeyer flasks with 200 ml of MGYP medium (10 g/l malt extract, 20 g/l glucose, 10 g/l yeast extract, 3 g/l peptone). The MGYP medium was inoculated with a 48-h pre-culture.

Bioreductions

The bioreduction was performed with resting cells. Prior to the conversions, the cells were washed twice with water. After centrifugation at 4500 rpm for 10 min at 10 °C, the supernatant was removed. The cell pellet was resuspended in 200 mM glucose solution in order to obtain 50 g dry cell weight per liter [g$_{DCW}$/l]. The bioreduction was performed using open Erlenmeyer flasks (125 ml, x3) equipped with a cotton plug, on shaking flasks with 15 ml of cellular suspension at 30 °C, 120 rpm. The reaction was started by adding 1–3 at a concentration of 20 mM.
Instrumental analyses

The reactions were routinely monitored by periodic sampling of aliquots (1.0 ml), which were centrifuged at 4500 rpm, 5 min, and filtered (0.2-μm disposable filter). 20 μl of the aqueous phase were analyzed by HPLC. At the same time, for enantiomeric excess determinations, 500 μl of the aqueous phase were mixed and extracted with 500 μl of ethyl acetate, the organic phase was separated and dried, and an aliquot (1 μl) was injected into a gas chromatograph, (Table II). In the last step, the cells were centrifuged the supernatant was collected and extracted with ethyl acetate (x3). The extracted solvent was dried and concentrated under vacuum. The crude reaction mixture was purified by silica gel chromatography and the products were confirmed by GC-MS, FT-IR, and 1H NMR spectroscopy. The absolute configurations of all the optically active alcohols, 1a–3a, were determined by comparing the retention time on a chiral chromatographic column with that of the authentic standard, and the sign of their specific rotations with that of the reported specific rotations.

The alcohol 3a required acetylation prior to GC analysis for resolution of the optical isomers, which was carried out with excess Ac2O, catalyzed by pyridine, overnight at room temperature. The racemate standards were obtained via NaBH4 reduction of the carbonylic compounds 1–3.

S-(-)-1-Phenylethanol (1a): Colourless oil. [α]D22 +39.3° (c 2.3, CHCl3) (>99% ee). – IR: ν = 3433.1, 2974.0, 1730.5 cm–1. – 1H NMR (CDCl3): δ = 1.21 (d, 3H, CH3, J = 6.3 Hz), 1.26 (t, 3H, CH3, J = 7.1 Hz), 2.39 [dd, 1H, CH2, J(d) = 7.5 Hz, J(d) = 17.5 Hz], 2.48 [dd, 1H, CH2, J(d) = 2.5 Hz, J(d) = 17.5 Hz], 3.02 (d, 1H, OH, J = 3.2 Hz), 4.16 (q, 2H, CH2, J = 7.1 Hz), 4.05 – 4.25 (m, 1H, CH). – GC/EI-MS: m/z = 117, 87, 71, 60, 43 (131 [M+H]+) for C8H10O3.

Ethyl S-(+)-3-hydroxybutanoate (2a): Colourless oil. [α]D22 +47.5° (c 2, CHCl3) (>99% ee). – IR: ν = 3434.6, 3032.3, 2961.0, 1726.1 cm–1. – 1H NMR (CDCl3): δ = 1.26 (t, 3H, CH3, J = 7.1 Hz), 2.69 [dd, 1H, CH2, J(d) = 4.6 Hz, J(d) = 16.3 Hz], 2.77 [dd, 1H, CH2, J(d) = 8.2 Hz, J(d) = 16.3 Hz], 3.32 (s, 1H, OH), 4.18 (q, 2H, CH2, J = 7.1 Hz), 5.13 [dd, 1H, CH, J(d) = 4.6 Hz, J(d) = 8.2 Hz], 7.28 – 7.37 (m, 5H, Ph). – GC/EI-MS: m/z = 176, 131, 107, 77, 51 (193 [M+H]+) for C11H14O3.

