Synthesis and Structural Characterization of a New Two-dimensional Organic-Inorganic Hybrid Molybdoarsenate: [Cu(en)$_2$][(CuO$_6$)Mo$_6$O$_{18}$(As$_3$O$_3$)$_2$]

Qiang Wu$, Qixia Hanb, Lijun Chenc, Pengtao Mab, and Jingyang Niub

a Medical School, Henan University, Kaifeng 475001, P. R. China
b Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
c Basic Experimental Teaching Center, Henan University, Kaifeng 475004, P. R. China

Reprint requests to Prof. Jingyang Niu. Fax: +86-378-2853650. E-mail: jyniu@henu.edu.cn

Z. Naturforsch. 2010, 65b, 163 – 167; received November 28, 2009

A new organic-inorganic hybrid molybdoarsenate constructed from a unit with two (As$_3$O$_3$) rings capping Anderson-type moieties, [Cu(en)$_2$][(CuO$_6$)Mo$_6$O$_{18}$(As$_3$O$_3$)$_2$] (en = ethylenediamine), has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. The compound crystallizes monoclinically, space group $P2_1/c$, with unit cell dimensions $a = 9.1541(7)$, $b = 19.6348(14)$, $c = 14.5205(8)$ Å, $\beta = 129.082(3)^\circ$, $V = 364.20(4)$ Å3, $Z = 2$, $T = 296(2)$ K. Complex 1 represents the first example of a 2D network of a POM polymer where [(CuO$_6$)Mo$_6$O$_{18}$(As$_3$O$_3$)$_2$]$^{2-}$ building blocks are connected by complex fragments {Cu(en)$_2$}$^{2+}$.

Key words: Polyoxometalate, Hydrothermal Synthesis, Crystal Structure, Anderson-type Unit

Introduction

Polyoxometalates (POMs) are a large family of metal-oxygen clusters with surprising compositional variability, electronic versatility and topological diversity [1]. These features endow them with applications in catalysis, medicine, material science, and photochemistry [2, 3]. One of the challenges in the synthesis of POM chemistry is to find multifunctional polyoxoanion building blocks and to connect them to one-, two-, or even three-dimensional extended solid frameworks.

It is well-known that Anderson-type polyoxoanions have abundant terminal oxygen atoms and can be used as multifunctional building blocks. Since the first Anderson-type anion [TeMo$_6$O$_{24}$$^{6-}$] was reported in 1937 [4], these polyoxoanions have been extensively explored to construct 1D, 2D and even 3D compounds [5 – 12]. For example, in 2002, Das and coworkers reported the first 1D POM [La(H$_2$O)$_7$Al(OH)$_6$Mo$_6$O$_{18}$]·4H$_2$O [5], and a 1D spiral-shaped inorganic-organic hybrid chain-like structure [Cu(2,2′-bipy)(H$_2$O)$_2$Al(OH)$_6$Mo$_6$O$_{18}$]·5H$_2$O. In 2004, Krebs and coworkers published a series of 1D lanthanide derivatives K$_6$(TeMo$_6$O$_{24}$)·16H$_2$O ($Ln = Eu^{III}$, GdIII) and K$_3$[Ln(H$_2$O)$_5$(TeMo$_6$O$_{24}$)]·6H$_2$O ($Ln = Tb^{III}$, DyIII, HoIII, ErIII) [8]. Later, Wang and coworkers published a series of 2D and 3D extended POM frameworks [(H$_2$O)$_5$Na$_2$(C$_6$NO$_2$H$_4$)(C$_6$NO$_2$H$_5$)$_3$-Ag$_2$][Ag$_2$Mo$_6$O$_{24}$(H$_2$O)$_4$] \cdot 6.25H$_2$O [10] and [(H$_2$O)$_4$Ag$_2$][(OH)$_5$Mo$_6$O$_{18}$]·3H$_2$O [11], and networks [(H$_2$O)$_4$Na$_2$(C$_6$NO$_2$H$_5$)$_3$-Ag$_2$][IMo$_6$O$_{24}$·6H$_2$O [10] and [(C$_6$H$_5$NO$_2$)$_2$Ln(H$_2$O)$_4$][IMo$_6$O$_{24}$·NO$_3$·4H$_2$O ($Ln = Ce^{III}$, LaIII) [11]. Then, in 2007, Liu and coworkers reported two compounds with 1D chains constructed by alternating Anderson-type polyoxoanions and oxalate-bridged binuclear copper complexes, [Cu$_2$(bpy)$_2$(μ-ox)][M(OH)$_7$Mo$_6$O$_{18}$]$^-$ ($M = Al^{III}$, CrIII) [12]. These compounds constitute an important subclass of inorganic chemistry with significance in the disciplines of magnetism and catalysis. However, compared to the abundance of these compounds based on typical Anderson-type POMs, examples based on two cyclic As$_3$O$_3$ groups capping Anderson-type POMs have rarely been reported. Typical examples with discrete cluster structures include [Co(H$_2$O)$_6$]$_2$[As$_5$CoMo$_6$O$_{30}$] [13], [Ni(en)$_3$$_2$$(MoIVO$_6$)Mo$_6$O$_{7}$O$_{18}$(As$_{3}$IIIO_3)$_2$·H$_2$O [14], CoIII[en$_3$]H$_2$O$_2$(CoIIO$_6$)MoVIO$_{18}$(As$_{3}$IIIO_3)$_2$·H$_2$O [15].
Recently, Wang and coworkers reported \((4,4′\text{-bipy})\)\(_2(Zn(4,4′\text{-bipy})\)\(_2(H_2O)\)_2\([\{ZnO_6\}(As^{III}_3O_3)_2\]Mo\(_6\)O\(_{18}\]·7H\(_2\)O\) and \([Zn(H_4.4′\text{-bipy})_2H_2O]\)[(ZnO\(_6\)\)-(As\(^{III}_3\)O\(_3\))\(_2\])Mo\(_6\)O\(_{18}\]·8H\(_2\)O \[17\], and Zhou and coworkers reported \([Cu(\text{imi})\]\(_2\)]\(_2\)[(CuO\(_6\))(As\(^{III}_3\)O\(_3\))\(_2\)]\(_2\)Mo\(_6\)O\(_{18}\]·Cu(\text{imi})\(_2\)]\(_2\) \[18\]. However, all these 3D supramolecular frameworks are constructed via hydrogen bonding interactions. Therefore, in order to extend solid framework materials constructed by units \([\{Mo\(_6\)O\(_8\]O\(_{18}\)(As\(^{III}_3\)O\(_3\))\(_2\]\(_2\]− (M = transition metal), we synthesized a new organic-inorganic hybrid molybdooarsenate \([Cu(\text{en})\]\(_2\)]\(_2\)[(CuO\(_6\)]Mo\(_6\)O\(_{18}\)(As\(^{III}_3\)O\(_3\))\(_2\])\(_2\]\(_2\]·(en = ethylenediamine) under mild hydrothermal conditions. It is the most remarkable feature of \(\textbf{1}\), that each \([\{CuO\(_6\)]Mo\(_6\)O\(_{18}\)(As\(^{III}_3\)O\(_3\))\(_2\]\(_2\]− unit acts as a 4-connected node linking four \(\{Cu(\text{en})\]\(_2\]\) groups in a centrosymmetric manner generating a two-dimensional network with \((4,4)\) topology. To the best of our knowledge, it is the first example of a 2D POM network where \([\{CuO\(_6\)]Mo\(_6\)O\(_{18}\)(As\(^{III}_3\)O\(_3\))\(_2\]\(_2\]− building blocks are connected by coordination to complex fragments \(\{Cu(\text{en})\]\(_2\]\)\(^2\).
radiation ($\lambda = 0.71073 \text{ Å}$). The structure was solved by Direct Methods using the SHELX-97 program package [19]. The remaining atoms were found from successive Fourier syntheses. Hydrogen atoms attached to carbon and nitrogen atoms were geometrically placed. Refinement was done with full-matrix least-squares on F^2 [19].

CCDC 743507 contains the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data-request/cif.

Results and Discussion

X-Ray crystal structure

Single-crystal X-ray diffraction analysis has revealed that the structural unit of I consists of an Anderson-type $[\text{CuO}_6\text{Mo}_6\text{O}_{18}(\text{As}_3\text{O}_3)_2]^{4-}$ unit capped by two As_3O_3 rings and two hexa-coordinate $[\text{Cu(en)}_2]^2^+\text{cations (Figs. 1a and 2a). Selected bond lengths and angles are collected in Table 2. Bond Valence Sum (BVS) calculations of I show that the oxidation states of all Mo, Cu and As atoms are $+6$, $+2$ and $+3$, respectively [20]. As shown in Fig. 1b, the $[\text{CuO}_6\text{Mo}_6\text{O}_{18}(\text{As}_3\text{O}_3)_2]^{4-}$ unit displays D_{3d} point symmetry and is derived from the well-known Anderson anion $[\text{CuO}_6\text{Mo}_6\text{O}_{18}]^{10-}$, in which a central $\{\text{CuO}_6\}$ octahedron is hexagonally surrounded shar-
Table 3. Hydrogen bond lengths (Å) and bond angles (deg)\(^a\).

<table>
<thead>
<tr>
<th>D–H \cdots A</th>
<th>d(H \cdots A)</th>
<th>d(D \cdots A)</th>
<th>(\angle) (DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)–H(1D) \cdots O(6)(^{44})</td>
<td>2.29</td>
<td>3.189(7)</td>
<td>172.6</td>
</tr>
<tr>
<td>N(1)–H(1D) \cdots O(8)(^{44})</td>
<td>2.57</td>
<td>3.009(6)</td>
<td>110.8</td>
</tr>
<tr>
<td>N(2)–H(2C) \cdots O(3)(^{52})</td>
<td>2.16</td>
<td>2.970(6)</td>
<td>149.3</td>
</tr>
<tr>
<td>N(2)–H(2C) \cdots O(15)(^{52})</td>
<td>2.61</td>
<td>3.287(6)</td>
<td>132.2</td>
</tr>
<tr>
<td>N(2)–H(2D) \cdots O(8)(^{51})</td>
<td>2.15</td>
<td>3.018(6)</td>
<td>161.7</td>
</tr>
<tr>
<td>N(3)–H(3C) \cdots O(8)(^{51})</td>
<td>2.46</td>
<td>3.181(7)</td>
<td>137.0</td>
</tr>
<tr>
<td>N(3)–H(3D) \cdots O(1)(^{53})</td>
<td>2.48</td>
<td>3.095(6)</td>
<td>125.8</td>
</tr>
<tr>
<td>N(4)–H(4C) \cdots O(4)(^{44})</td>
<td>2.18</td>
<td>3.055(7)</td>
<td>162.2</td>
</tr>
<tr>
<td>N(4)–H(4D) \cdots O(13)(^{46})</td>
<td>2.58</td>
<td>3.302(7)</td>
<td>137.3</td>
</tr>
</tbody>
</table>

\(^a\) Symmetry transformations: \(^{41}\) \(-x,-y-1,-z+1;^{42} x+1,-y-1/2,z+1/2;^{43} x-1,-y-1/2,z-1/2;^{44} x,y+1/2,-z+1/2;^{45} x,-y-1/2,z+1/2;^{46} x,-y-1/2,z-1/2.\)

Fig. 3. TGA curve of compound I in flowing air atmosphere at 10°C min\(^{-1}\).

the oxidation state +1 of the outer Cu atoms prevents further bonding to another \([\text{CuO}_6\text{As}_3\text{O}_3\text{Mo}_6\text{O}_{18}]^{4-}\) unit, the oxidation state +2 of the Cu(2) atoms in I allows for further bonding to \([\text{CuO}_6\text{As}_3\text{O}_3\text{Mo}_6\text{O}_{18}]^{+}\) units to construct a 2D extended framework. The resulting gridlike coordination framework has (4,4) topology (Fig. 2c). Each layer shows square cavities with dimensions 8.6 \times 16.8 Å\(^2\) based on \(d_{\text{Cu-Cu}}\). Therefore, the successful synthesis of I gives guidance for the development of new coordination networks and topologies in POM chemistry. In addition, taking into account the strong hydrogen bonding interactions, a 3D supramolecular structure is generated through the N and the O atoms of the polyanions with \(N\cdots O\) distances of 2.970(6)–3.302(7) Å for I. The hydrogen bond lengths and bond angles are listed in Table 3. These hydrogen bonds make the crystal structure of compound I more stable.

IR spectra

In comparison with the Keggin and Dawson types, IR spectroscopic studies of Anderson polyanions are rare, and the characteristic peaks have not been strictly assigned. In the low-wavenumber regions of the IR spectrum of I, the peaks at 932, 906 and 885 cm\(^{-1}\) are attributed to the Mo=O vibrations, those at 823, 787 and 669 cm\(^{-1}\) to the Mo–O\(_{(\mu 2)}\) stretching modes, and those at 616 cm\(^{-1}\) to Cu–O\(_3\) stretching modes. Bands at 559, 533 and 461 cm\(^{-1}\) are assigned to the Mo–O\(_{(\mu 4)}\) stretching vibration. The peaks in the range...
from 1035 to 1593 cm\(^{-1}\) are attributed to the ethylene-
diamine ligand.

Thermo-gravimetric analysis

The thermal decomposition of compound 1 is char-
acterized by the loss of the organic groups and of
\(\text{As}_2\text{O}_3\) from 240 to 380 °C (Fig. 3). A 12.0 % weight
loss is attributed to the loss of 4 en units (calcu-
lated 12.42 %). This is followed by a weight loss of
cu. 30.04 % for the release of 3\(\text{As}_2\text{O}_3\) (calcu-
lated 30.65 %).

Acknowledgement

This work was supported by the National Natural Science
Foundation of China (20771034) and the Natural Science
Foundation of Henan Province (2009A150003).
