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The resistance distance between two vertices of a connected graph G is computed as the effective
resistance between them in the corresponding network constructed from G by replacing each edge
with a unit resistor. The Kirchhoff index of G is the sum of resistance distances between all pairs
of vertices. In this paper, following the method of Y. J. Yang and H. P. Zhang in the proof of the
Kirchhoff index of the linear hexagonal chain, we obtain the Kirchhoff index of cyclopolyacenes,
denoted by HRn, in terms of its Laplacian spectrum. We show that the Kirchhoff index of HRn is
approximately one third of its Wiener index.
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1. Introduction

The concept of resistance distance was introduced
a few years ago by Klein and Randić [1]. Let G be
a connected graph with vertices labeled as 1,2, . . . ,n.
They defined

R(G) = ∑
i< j

ri j,

where ri j is the effective resistance between vertices i
and j as computed with Ohm’s law when all the edges
of G are considered to be unit resistors. Later R(G) was
called the Kirchhoff index of G labeled by K f (G). The
famous Wiener index W (G) [2] was given by

W (G) = ∑
i< j

di j,

where di j is the length of a shortest path connecting
i and j. Klein and Randić proved that ri j ≤ di j and
K f (G) ≤ W (G) and the equality holds if and only if
G is a tree.

Like the Wiener index, the Kirchhoff index is a
graph structure-descriptor [3]. It is difficult to give
closed-form formulae for general graphs [1, 4 – 7]. But
the Kirchhoff index has been given for some classes
of graphs, such as cycles [8, 9], complete graphs [9],
geodetic graphs [7], distance-transitive graphs [7], cir-
culant graphs [10], linear hexagonal chains [11], and
so on [4, 7, 12, 13]. In this paper, we devote ourselves
to cyclopolyacenes. For a more general family of ‘cy-
clopolyphenacenes’, we refer the reader to [14].
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Let G be a connected graph with vertices labeled
by 1,2, . . . ,n. The Laplacian matrix of G, denoted by
L(G), is a square matrix of order n whose (i, j)-entry
li j is defined by

li j =




−1 if i �= j and the vertices i and j
are adjacent,

0 if i �= j and the vertices i and j
are not adjacent,

di if i = j and di is the degree of
the vertex i.

(1)

The characteristic polynomial of L(G) is defined as

PL(G)(x) = det(xIn −L(G)),

where In denotes the identity matrix of order n. This
polynomial is regarded as the Laplacian polynomial of
G. Let λ0 ≤ λ1 ≤ ·· · ≤ λn−1 be the eigenvalues of L(G)
which are called the Laplacian eigenvalues of G, then
λ0 = 0 and λk > 0 for each k > 0 [15]. The spectrum of
L(G) is S(G) = (λ0,λ1, . . . ,λn−1). Gutman and Mohar
[16], and Zhu et al. [17] obtained the Kirchhoff index
of a graph in terms of its Laplacian spectrum as fol-
lows:

Lemma 1.1. For any connected graph G of order
n ≥ 2,

K f (G) = n
n−1

∑
k=1

1
λk

. (2)
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Fig. 1. HRn and its vertex labeling.

Let HRn denote the cyclopolyacenes with n
hexagons, we refer the reader to Figure 1 for this graph.
In the paper of Zhang and Yang [11], they computed
the Kirchhoff index of the linear hexagonal chains. In
the present article, we compute the Kirchhoff index of
HRn (Theorem 3.8) and show that the Kirchhoff index
of HRn is approximately one third of its Wiener index
(Theorem 3.9).

2. Laplacian Polynomial Decomposition

Two graphs G1 and G2 are isomorphic if there exists
a one to one correspondence Φ from V (G1) to V (G2)
such that u1v1 ∈ E(G1) if and only if Φ(u1)Φ(v1) ∈
E(G2). If G1 = G2, then the isomorphism is called an
automorphism of G. In fact, an automorphism of G is a
permutation Φ of V (G) which preserves the adjacency
of G.

We label the vertices of HRn as in Figure 1 and
denote V1 = {1,2, . . . ,2n} and V2 = {1′,2′ . . . ,(2n)′}.
Then,

Φ = (1,1′)(2,2′) . . . (2n,(2n)′)

is an automorphism of HRn. The Laplacian matrix L of
HRn can be written as the following block matrix:

L =

[
LV1V1 LV1V2

LV2V1 LV2V2

]
,

where LViVj is the submatrix formed by rows corre-
sponding to vertices in Vi and columns corresponding
to vertices in Vj for i, j = 1,2. Let be

T =



(

1√
2

)
I2n

(
1√
2

)
I2n(

1√
2

)
I2n −

(
1√
2

)
I2n


 .

By the unitary transformation T LT , we obtain

T LT =

[
LA 0

0 LS

]
,

where

LA = LV1V1 +LV1V2 , LS = LV2V2 −LV1V2 .

As a result of linear algebra, we have

Lemma 2.1. Let L,LA, and LS be defined as above.
Then

PL(x) = PLA(x)PLS(x). (3)

For simplicity, we define two 2n× 2n matrices I0
and Ie with all elements 0 except 1 in the odd and
even diagonal positions, respectively. And likewise we
could let C be the 2n× 2n ‘cyclic’ matrix with all el-
ements 0 except 1s just above the diagonal as well as
a 1 in the lower left corner, and let C† (= C−1) be its
transpose. A direct calculation shows that I = I0 + Ie,
LV1V2 = LV2V1 =−I0, LV1V1 = 3I0 + 2Ie−C−C†, LA =
2I−C−C†, and LS = 4I0 + 2Ie−C−C†.

By Lemma 2.1, the Laplacian spectrum of HRn
consists of eigenvalues of LA and LS. Assume that
the eigenvalues of LA and LS are λi, 0 ≤ i ≤ 2n− 1
and µ j, 1 ≤ j ≤ 2n, respectively. Then, S(HRn) =
(λ0, λ1, . . . , λ2n−1, µ1, µ2, . . . , µ2n). Note that LA
is the Laplacian matrix of the cycle C2n of order 2n.

3. Kirchhoff Index of Cyclopolyacenes

Assume that det(xI − LS) = x2n +α1x2n−1 + · · ·+
α2n−2x2 +α2n−1x+α2n.

Theorem 3.1.

K f (HRn) = 2K f (C2n)− 4n
α2n−1

detLS
. (4)

Proof: By Lemma 1.1,

K f (HRn) = 4n

(
2n−1

∑
i=1

1
λi

+
2n

∑
j=1

1
µ j

)

= 2× 2n
2n−1

∑
i=1

1
λi

+ 4n
∑2n

j′=1 ∏2n
j=1, j �= j′µ j

∏2n
j=1 µ j

= 2K f (C2n)+ 4n
(−1)2n−1α2n−1

(−1)2nα2n

= 2K f (C2n)− 4n
α2n−1

detLS
. �

By [10], K f (C2n) =
4n3−n

6 . For i < 2n, let Si be the
ith-order principal submatrix formed by the first i rows
and columns of LS and ci = detSi.
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Lemma 3.2. For i < 2n, the integers ci satisfy the
recurrence

ci = 6ci−2 − ci−4, (5)

with initial conditions c0 = 1, c1 = 4, c2 = 7, and c3 =
24.

Proof: A direct calculation shows that c0 = 1,c1 =
4,c2 = 7, and c3 = 24. For 2 ≤ i < 2n, expanding detSi
with regard to its last row we obtain

ci =

{
4ci−1 − ci−2 if i is odd,

2ci−1 − ci−2 if i is even.

For 0 ≤ i < n, let ai = c2i and for 0 ≤ i < n, let bi =
c2i+1. Then a0 = 1,b0 = 4 and for i ≥ 1{

ai = 2bi−1 − ai−1,

bi = 4ai − bi−1.

Hence, ai = 6ai−1−ai−2 and bi = 6bi−1−bi−2. There-
fore, ci satisfies the recurrence

ci = 6ci−2 − ci−4

with the initial conditions c0 = 1,c1 = 4,c2 = 7, and
c3 = 24. �

Lemma 3.3. Let ci, 0 ≤ i < 2n be the sequence as
above. Then

ci =
1
4
[
(3+ 2

√
2− (−1)i)(

√
2+ 1)i

+ (3− 2
√

2− (−1)i)(1−
√

2)i]. (6)

Proof: The characteristic equations of ci is x4 =
6x2 −1 whose roots are x1 =

√
2+1, x2 =−(

√
2+1),

x3 =
√

2− 1, and x4 =−(
√

2− 1). Assume that

ci = (
√

2+ 1)iy1 +(−(
√

2+ 1))iy2 +(
√

2− 1)iy3

+ (−(
√

2− 1))iy4.

Considering of the initial conditions c0 = 1,c1 =
4,c2 = 7, and c3 = 24, we obtain the systems of equa-
tions

y1 + y2 + y3 + y4 = 1

(
√

2+ 1)y1 − (
√

2+ 1)y2 +(
√

2− 1)y3

−(
√

2− 1)y4 = 4

(
√

2+ 1)2y1 +(
√

2+ 1)2y2 +(
√

2− 1)2y3

+(
√

2− 1)2y4 = 7

(
√

2+ 1)3y1 − (
√

2+ 1)3y2 +(
√

2− 1)3y3

−(
√

2− 1)3y4 = 24.

(7)

A direct computation shows that y1 =
3+2

√
2

4 , y2 =− 1
4 ,

y3 =− 1
4 , and y4 =

3−2
√

2
4 and the result follows. �

Because det(LS) = 2(c2n−1−c2n−2−1). By Lemma
3.3, we have

det(LS) = (3+ 2
√

2)n +(3− 2
√

2)n − 2. (8)

Considering det(xI − LS) = −2 + (x − 2)A2n−1 −
2B2n−2, where A2n−1 is the determinant of a (2n−1)×
(2n− 1) matrix with all elements 0 except x− 4 and
x− 2 in the odd and even diagonal positions, respec-
tively, as well as 1 just above and under the diagonal,
and B2n−2 is the determinant of a (2n− 2)× (2n− 2)
matrix that results from the deletion of the last row and
column of A2n−1. In this way, B2n−2 = (x− 2)A2n−3 −
2B2n−4 and by the recurrence

B2n−2 =



(x− 2)(A2n−3−A2n−5+A2n−7 −·· ·

−A5 +A3 −A1)+ 1, if n is odd,

(x− 2)(A2n−3−A2n−5+A2n−7 −·· ·
+A5 −A3 +A1)− 1, if n is even.

If n ≥ 3 is odd, the constant of A2n−1 is

c2n−1 =

1
4
[
(4+2

√
2)(1+

√
2)2n−1+(4−2

√
2)(1−

√
2)2n−1]=

1
2
[
(4+ 3

√
2)(3+ 2

√
2)n−1+(4− 3

√
2)(3− 2

√
2)n−1]

and the constant of A2n−3−A2n−5+A2n−7−·· ·−A5+
A3 −A1 is

4+ 2
√

2
4

[− (
√

2+ 1)+ (
√

2+ 1)3 − (
√

2+ 1)5 + · · ·

+(
√

2+ 1)2n−3]+ 4− 2
√

2
4

[− (1−
√

2)+ (1−
√

2)3

−(1−
√

2)5 + · · ·+(1−
√

2)2n−3]=
1
4
[
(
√

2+1)(3+2
√

2)n−1+(1−
√

2)(3−2
√

2)n−1]− 1
2
.

To determine the coefficient of x in A2n−1, we assume
that

A2n−1 = x2n−1 +β1x2n−2 + · · ·+β2n−2x+β2n−1.

Obviously, β2n−2 is the coefficient of x in A2n−1.

Lemma 3.4. [11] β2n−2 = ∑2n−2
i=0 cic2n−2−i.

Assume that f (x) is the ordinary generating function
of ci, that is f (x) = ∑i≥0 cixi. Lemma 3.4 indicates that
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β2n−2 is the coefficient of x2n−2 in f (x) · f (x) = f 2(x).
We simplify f (x) as

f (x) = ∑
i≥0

cixi = 1+ 4x+ 7x2+ 24x3 +∑
i≥4

cixi =

1+ 4x+ 7x2+ 24x3 +∑
i≥4

(6ci−2 − ci−4)xi

= 1+ 4x+ 7x2+ 24x3 + 6x2( f (x)− 1− 4x)− x4 f (x).

Hence, f (x) = x2+4x+1
x4−6x2+1 .

Lemma 3.5.
β2n−2 =

(3− 2
√

2)n−1
[

1
8
(2n− 1)(9− 6

√
2)+

9
√

2− 10
16

]

+(3+ 2
√

2)n−1
[

1
8
(2n− 1)(9+ 6

√
2)− 9

√
2+ 10
16

]
.

Proof: The function f (x) = x2+4x+1
x4−6x2+1 can be decom-

posed as

f (x) =
x+ 1

2(x2 − 2x− 1)
− x+ 3

2(x2 + 2x− 1)
.

So f 2(x) = (x+1)2

4(x2−2x−1)2 + (x+3)2

4(x2+2x−1)2 − x2+4x+3
2(x4−6x2+1) .

Since the roots of x2 − 2x − 1 = 0 are 1 +
√

2 and
1−√

2, one can assume that

(x+ 1)2

4(x2 − 2x− 1)2 =
A

(x− 1−√
2)2

+
B

x− 1−√
2

+
C

(x− 1+
√

2)2
+

D
x− 1+

√
2
.

Comparing the coefficients between the left and the
right, we have

A =
3+ 2

√
2

16
, B =−

√
2

32
, C =

3− 2
√

2
16

, D =

√
2

32
.

Since

3+ 2
√

2
16(x− 1−√

2)2
=

3+ 2
√

2
16

[
1

1+
√

2

]2[ 1
1− x

1+
√

2

]2

=
1

16

[ ∞

∑
i=0

(
1

1+
√

2

)i

xi
]2

,

the coefficient of x2n−2 in 3+2
√

2
16(x−1−√

2)2 is

1
16

2n−2

∑
i=0

[
1

1+
√

2

]i[ 1
1+

√
2

]2n−2−i

=
1

16
(2n− 1)(3− 2

√
2)n−1.

Similarly, one can get the coefficients of x2n−2

in −√
2

32(x−1−√
2)

, 3−2
√

2
16(x−1+

√
2)2 , and

√
2

32(x−1+
√

2)
. They

are 2−√
2

32 (3− 2
√

2)n−1, 1
16 (2n− 1)(3+ 2

√
2)n−1 and

2+
√

2
32 (3+ 2

√
2)n−1, respectively. So the coefficient of

x2n−2 in (x+1)2

4(x2−2x−1)2 is

(3− 2
√

2)n−1
(

2n− 1
16

+
2−√

2
32

)

+(3+ 2
√

2)n−1
(

2n− 1
16

+
2+

√
2

32

)
.

(9)

A direct computation shows that

(x+ 3)2

4(x2 + 2x− 1)2
=

3+ 2
√

2

16
(

x+ 1−√
2
)2 −

√
2

32
(

x+ 1−√
2
)

+
3− 2

√
2

16
(

x+ 1+
√

2
)2 +

√
2

32
(

x+ 1+
√

2
)

and the coefficient of x2n−2 in (x+3)2

4(x2+2x−1)2 is

(
3+ 2

√
2
)n−1

[
2n− 1

16

(
17+ 12

√
2
)
+

2+
√

2
32

]

+
(

3−2
√

2
)n−1

[
2n− 1

16

(
17−12

√
2
)
+

2−√
2

32

]
.

(10)

Because

x2 + 4x+ 3
2(x4 − 6x2 + 1)

=
4+

√
2

16
(
x− 1−√

2
) +

4−√
2

16
(
x− 1+

√
2
)

− 4+ 3
√

2

16
(

x+ 1−√
2
) +

3
√

2− 4

16
(

x+ 1+
√

2
) ,

the coefficient of x2n−2 in x2+4x+3
2(x4−6x2+1) is

6− 5
√

2
8

(
3− 2

√
2
)n−1

+
6+ 5

√
2

8

(
3+ 2

√
2
)n−1

.

(11)

Summarize (9), (10), and (11), we obtain the results.
�
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G K f (G) G K f (G) G K f (G) G K f (G)
HR3 75.57 HR10 1754.26 HR17 7771.12 HR24 20867.88
HR4 152.00 HR11 2284.36 HR18 9144.62 HR25 23476.7
HR5 271.10 HR12 2910.94 HR19 10670.60 HR26 26294.00
HR6 438.74 HR13 3642.01 HR20 12357.10 HR27 29327.90
HR7 662.89 HR14 4485.56 HR21 14212.00 HR28 32586.20
HR8 951.53 HR15 5449.59 HR22 16243.40 HR29 36077.10
HR9 1312.65 HR16 6542.12 HR23 18459.40 HR30 39808.40

Table 1. Kirchhoff indices of HRn for
3 ≤ n ≤ 30.

Briefly, we denote A2n−3 − A2n−5 + A2n−7 − ·· · −
A5 +A3 −A1 as Ā, the coefficient of x in Ā as Y and
the constant of Ā as X . For the upcoming computation,
we give a result from Calculus.

Lemma 3.6.

(2n− 3)y2n−4− (2n− 5)y2n−6+ · · ·+ 3y2 − 1 =(∫ (
(2n−3)y2n−4−(2n−5)y2n−6+· · ·+3y2−1

)
dy
)′

=
(2n− 3)y2n+(2n− 1)y2n−2+ y2 − 1

(1+ y2)2 .

By a similar computation as that in Lemma 3.5 and
the result of Lemma 3.6, one can get

Y =
1
16

[
(9
√

2− 10)
(
(3− 2

√
2)n−2 − (3− 2

√
2)n−3+

· · ·+(3− 2
√

2)− 1
)]

− 1
16

[
(9
√

2+10)
(
(3+2

√
2)n−2

−(3+2
√

2)n−3+· · ·+(3+ 2
√

2)−1
)]

+
1
8

[
(9− 6

√
2)

·
(
(2n− 3)(3− 2

√
2)n−2 − (2n− 5)(3− 2

√
2)n−3 + · · ·

+3(3−2
√

2)−1
)]
+

1
8

[
(9+6

√
2)
(
(2n−3)(3+2

√
2)n−2

−(2n− 5)(3+ 2
√

2)n−3 + · · ·+ 3(3+ 2
√

2)− 1
)]

=

1
32

[
(3− 2

√
2)n−1

(
(12− 6

√
2)n− 16+ 13

√
2
)

+(3+ 2
√

2)n−1
(
(12+ 6

√
2)n− 16− 13

√
2
)]

+
1
4
.

Lemma 3.7.

α2n−1 =− (9
√

2+ 12)n
4

(3+ 2
√

2)n−1

+
(9
√

2− 12)n
4

(3− 2
√

2)n−1.

Proof: Because det(xI−LS) =−2+(x−2)A2n−1−
2B2n−2. So, α2n−1 = c2n−1 − 2β2n−2+ 4Y − 2X . �

By a similar computation, the result when n ≥ 4 and
even is the same as the odd case.

Theorem 3.8.

K f (HRn) =
4n3 − n

3
− n2

[
((3− 2

√
2)n−1(9

√
2− 12)

− (3+ 2
√

2)n−1(9
√

2+ 12)
]

·
[
(3+ 2

√
2)n +(3− 2

√
2)n − 2

]−1
.

Proof: Combining (4), (8), and (12) one can get the
value of K f (HRn). �

The Kirchhoff indices of Cyclopolyacenes from
HR3 to HR30 are listed in Table 1. Comparing the
Kirchhoff index of HRn with its Wiener index, we have
Theorem 3.9.

Theorem 3.9.

lim
n→∞

K f (HRn)

W (HRn)
=

1
3
.

Proof: Consider the distance between two vertices,
one from V1 and another from V2. The sum of distances
between Vertex 1 and each vertex in V2 is

1+2+3+ · · ·+n+(n+1)+n+ · · ·+3+2= n2+2n.

Note that the sum of distances between each vertex in
V1 labeled by an odd number and each vertex in V2 is
equal.

The sum of distances between Vertex 2 and each
vertex in V2 is

2+3+2+ · · ·+n+(n+1)+n+ · · ·+3= n2+2n+2.

Likewise, the sum of distances between each vertice in
V1 labeled by even and each vertex in V2 is equal. So
the sum of distances between V1 and V2 is

(n2 +2n)×n+(n2+2n+2)×n= 2n3+4n2+2n.

The sum of distance between vertices in V1 (also in V2)
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is n3. So W (HRn) = 4n3 + 4n2 + 2n. By Theorem 3.8,
the result follows. �
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