Bioactive Phenylethanoids and Coumarines from
Basalmocitrus cameroonensis

Jean Duplex Wansi a, b, Judith Liliane Djouaka Bavoua c, Emmanuel Ngeufa Happi a,
Krishna Prasad Devkota b, Bruno Ndjakou Lenta b, Muhammed Ahmed Mesaik d,
Muhammad Iqbal Choudhary d, Zacharias Tanee Fomum c, and Norbert Sewald b

a Department of Chemistry, University of Douala, Faculty of Science, P. O. Box 24157 Douala, Cameroon
b Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33501 Bielefeld, Germany
c Department of Organic Chemistry, University of Yaoundé I, Faculty of Science, P. O. Box 812 Yaoundé, Cameroon
d International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan

Reprint requests to Dr. Jean Duplex Wansi. Phone: +237-77-81-77-31. E-mail: jdwansi@yahoo.fr

Z. Naturforsch. 2009, 64b, 452 – 458; received November 28, 2008

Two new phenylethanoids, basalethanoid A (1) and B (2), and one new ceramide, basalamide A (3), together with eleven known compounds (4 – 14) were isolated from the MeOH extract of the stem barks of Basalmocitrus cameroonensis. The structures of all compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral (EI and ESI) data, chemical reactions, and comparison with previously known analogs. Compounds 1, 2, 5, and 7 – 10 demonstrated a strong inhibition on reactive oxygen species (ROS) production in the oxidative burst activity of whole blood on activation with serum opsonized zymosan in the range of IC50 = 0.06 – 12.30 µg mL−1.

Key words: Basalmocitrus cameroonensis, Rutaceae, Phenylethanoid, Ceramide, Oxidative Burst Inhibition

Many clinical disorders are associated with the immune system. Suppression of the immune system is required in the management and treatment of inflammation and allergic diseases, while stimulation is highly desirable for the treatment of HIV, immunodeficiency and infectious diseases [1]. Immune suppression and cytotoxic activity affecting the function of the immune system have been reported for many synthetic and natural agents [2]. Various disease conditions such as infections, organ transplantation, cancer, rheumatoid arthritis, and systemic lupus erythematosus are currently treated with novel immunomodulating agents [3].

In continuation of our research for bioactive molecules from Cameroonian rainforest medicinal plants, Basalmocitrus cameroonensis (Rutaceae), a shrub or small tree with young thorny seedlings, was studied. This plant is used as food and as remedy for several diseases in Cameroon. The seeds of Basalmocitrus cameroonensis are prepared to obtain oil and the adhesive [4]. To the best of our knowledge, no phytochemical investigation has been reported on this genus. This paper reports the isolation and structure elucidation of two new phenylethanoids (1 and 2) and one new ceramide (3) (Fig. 1), and eleven known compounds (4 – 14) from B. cameroonensis, together with data on the immunomodulatory activity of the isolated compounds.

Results and Discussion

The air-dried stem bark of B. cameroonensis was powdered and extracted with MeOH. The crude extract was separated by repeated column chromatography and preparative TLC (PTLC) to afford the two new phenylethanoids 1 and 2, one new ceramide (3), and eleven known compounds identified as (2S,3S,4R,5R,14E)-1,3,4,5-tetrahydroxy-2-{(2′R)-2′-hydroxy octadecanoylamino}tetraicos-14-ene (4), (R)-byakangelicin (5), trans-fagaramide (6), 4,5- dimethoxysalicylaldehyde (7), marmesin (8), scopoletin (9), marmin (10), stigmasterol-3-O-β-D-
glucopyranoside, stigmasterol, betulinic acid, and lupeol [5–10].

Basalethanoid A (1) and B (2) were obtained as white amorphous powders, showing a positive reaction with FeCl₃ indicating their phenolic nature. Their UV spectrum exhibited two absorption maxima at 279 and 235 nm characteristic of phenylethanoids [11, 12]. The presence of hydroxyl and ester functions was indicated by two IR bands at 2915 and 1730 cm⁻¹, respectively. From the R-ESI-MS, the molecular composition was found to be C₄₀H₇₂O₃Na by [M+Na]⁺ at m/z = 623.5380 (calcd. 623.5385) and C₃₈H₆₈O₃Na by [M+Na]⁺ at m/z = 595.5070 (calcd. 595.5072), respectively.

The ¹H NMR spectra of 1 and 2 showed the typical AA'XX' system of a p-disubstituted benzene ring at δ = 7.04 (d, J = 8.1 Hz, H-2', H-6') and 6.79 (d, J = 8.1 Hz, H-3', H-5'), the presence of a CH₂CH₂O unit at δ = 4.22 (t, J = 6.9 Hz, H-1), and 2.84 (t, J = 6.9 Hz, H-2), and a free hydroxyl group at δ = 8.53 (br s, OH-4') exchangeable with D₂O. This inference was supported by the ¹³C NMR and DEPT data, which showed characteristic signals of a p-disubstituted benzene ring at δ = 115.4 (C-3', C-5'), 128.2 (C-1'), 129.7 (C-2', C-6') and 155.7 (C-4'), and the CH₂CH₂O unit at δ = 65.0 (C-1) and 34.2 (C-2) [13]. Furthermore, in the ¹H NMR spectrum, a terminal methyl at δ = 0.89 (t, J = 6.9 Hz) and methylenes at δ = 2.29 (t, J = 7.5 Hz, -CH₂-CO-), 1.58 (m, CH₂-CH₂-CH₂-CO-), and 1.25 (br s, nH) were also observed. These data suggested the presence of a long chain linked to a 4-hydroxyphenylethanol moiety. The presence of a long chain was further confirmed by the ¹³C NMR spectrum, which showed characteristic signals at δ = 173.7 (C-1''), 34.1 (C-2''), 31.8–29.3 (CH₂n), 24.8 (C-3''), and 14.0 (CH₃) [14].

To determine the linkage between the long chain and the 4-hydroxyphenylethanol moiety, an HMBC experiment was used. In the HMBC spectrum, correlation of H-1 (δ = 4.22) with C-1'' (δ = 173.7), C-1' (δ = 128.2)
doublet at $\delta = 34.2$ suggested that the long chain is linked to the 4-hydroxyphenylethanol moiety by an ester function.

The methanalysis of 1 and 2 yielded methyl dotriacontanoate (1a) (identified by ESI-MS which indicated a pseudomolecular ion at $m/z = 517$ [M+Na]$^+$, corresponding to a molecular formula $C_{33}H_{66}O_2$), methyl triacontanoate (2a) (identified by ESI-MS which indicated a pseudomolecular ion at $m/z = 489$ [M+Na]$^+$, corresponding to a molecular formula $C_{31}H_{62}O_2$) and 4-hydroxyphenylethanol. The latter was identified by 1H NMR and EI-MS. From these spectroscopic data, basalohanoid A (1) and B (2) were characterized as 2(4-hydroxyphenethyl)dotriacontanoate and 2(4-hydroxyphenethyl)heptatriacontanoate, respectively. Phenylethanoids have previously been described in the genus Citrus and Fogara (Rutaceae) [11, 12].

Basalahanide A (3) was obtained as a brown amorphous powder. The IR spectrum showed an absorption band at 3480 cm$^{-1}$ due to the OH functions, a strong absorption band at 1665 cm$^{-1}$ indicating the presence of a secondary amide group [15], and at 2950, 2900 and 1505 cm$^{-1}$ (aliphatic) suggesting it to be a fatty acid amide. The molecular composition was determined by HR-ESI-MS ($[M+Na]^+$) was identified by ESI-MS which indicated a pseudomolecular ion at $m/z = 517$ [M+Na]$^+$, corresponding to a molecular formula $C_{33}H_{66}O_2$).

The methanalysis of 1 and 2 yielded methyl dotriacontanoate (1a) (identified by ESI-MS which indicated a pseudomolecular ion at $m/z = 517$ [M+Na]$^+$, corresponding to a molecular formula $C_{33}H_{66}O_2$), methyl triacontanoate (2a) (identified by ESI-MS which indicated a pseudomolecular ion at $m/z = 489$ [M+Na]$^+$, corresponding to a molecular formula $C_{31}H_{62}O_2$) and 4-hydroxyphenylethanol. The latter was identified by 1H NMR and EI-MS. From these spectroscopic data, basalahanoid A (1) and B (2) were characterized as 2(4-hydroxyphenethyl)dotriacontanoate and 2(4-hydroxyphenethyl)heptatriacontanoate, respectively. Phenylethanoids have previously been described in the genus Citrus and Fogara (Rutaceae) [11, 12].

The 1H NMR spectrum of 3 displayed a downfield doublet at $\delta = 7.37$ (d, $J = 9.4$ Hz, NH), a very strong aliphatic methylene band at $\delta = 1.26 – 1.46$, as well as the signals of six protons at $\delta = 0.87$ (t, $J = 6.9$ Hz, H-19' and H-24) and five free hydroxyl groups at $\delta = 3.98, 4.24, 4.42, 4.47$ and 4.50, all exchangeable with D$_2$O. The 1C NMR and DEPT spectral data of 3 were supportive of the above analysis, showing a carbonyl group at $\delta = 172.2$ (C-1'), one double bond at $\delta = 130.1$ (C-16 or C-17) and 130.7 (C-16 or C-17), oxygenated carbons at $\delta = 75.7$ (C-3), 75.1 (C-2'), 72.4 (C-5), 71.5 (C-4), 60.9 (C-1), and 51.9 (C-2), aliphatic methylenes at $\delta = 22.5 – 32.8$, and two methyls at $\delta = 14.3$ (C-19' and C-24) [16, 17]. The correlations of $\delta = 7.37$ (NH) with $\delta = 172.2$ (C-1'), 75.7 (C-3) and 51.9 (C-2) observed in the HMBC spectrum (Fig. 2), which confirmed the presence of an amide function in compound 3, suggested it to be a ceramide [18]. The chemical shifts of the allylic methylene carbons in 3 were assigned at $\delta = 32.5$ (C-15 or C-18) and $\delta = 32.4$ (C-15 or C-18) based on the clearly observed HMBC correlations with the olefinic signals at $\delta = 5.37$ (m, H-16 and H-17). Since the chemical shifts of allylic methylene carbons are different when alkene double bonds are cis-oriented ($\delta < 27$ ppm) and trans-oriented ($\delta > 30$ ppm) [19], the double bond in 3 was assigned an E-configuration.

In order to determine the lengths of the sphingosine and fatty acid chains, the position of the double bond, and the absolute configuration of 3, the acid methanalysis method of Gaver and Sweeley was used [18]. A sphingosine (3a) and a fatty acid methyl ester (3b) were obtained by methanalysis of compound 3. The 1H NMR data of 3a and 3b indicated that the double bond was located in the sphingosine unit in 3. The length of the fatty acid chain 3b was determined by EI-MS, which showed significant fragment ion peaks at $m/z = 297$ [CH$_3$(CH$_2$)$_{16}$CHOHCO]$^+$, 312 [CH$_3$(CH$_2$)$_{16}$CHOHCONH]$^+$, and 356 [CH$_3$(CH$_2$)$_{18}$CHOHCONHC(CH$_2$)$_2$-CH$_2$OH]$^+$. The length of sphingosine 3a was determined by the characteristic ions at $m/z = 355$ [CH$_3$(CH$_2$)$_{20}$CH=CH(CH$_2$)$_{10}$CHOH]$,^3+$, 325 [CH$_3$(CH$_2$)$_{20}$CH=CH(CH$_2$)$_{10}$CHOH]$,^2+$ and by the base peak $m/z = 278$ [CH$_3$(CH$_2$)$_{18}$CH=CH(CH$_2$)$_{10}$CH]$^+$ in the EI-MS [20]. The peak at $m/z = 278$ [CH$_3$(CH$_2$)$_{18}$CH=CH(CH$_2$)$_{10}$CH]$^+$ and the typical fragment ion at $m/z = 472$ [CH$_3$(CH$_2$)$_{18}$CH=CH(CH$_2$)$_{10}$CHOH]$,^2+$-CH(CH$_2$OH)$^+$ and the typical fragment ion at $m/z = 711$ through McLafferty rearrangement confirmed that the double bond is on the long chain base. In order to determine the position of the double bond, MS-MS fragmentations of 3a were studied, and the results indicated the double bond to be between C-16 and C-17 (Fig. 3). Cross peaks in the 1H-1H COSY spectrum were observed between an amide proton ($\delta = 7.37$) and H-2 ($\delta = 4.08$), which, in turn, was coupled to three protons at $\delta = 3.57$ (H-1a), $\delta = 3.55$ (H-1b), and $\delta = 3.38$ (H-3). Furthermore, H-3 showed correlation with H-2 and with H-4, and finally H-4 showed correlation with H-5 ($\delta = 3.38$). No cross peaks were observed of the signal at $\delta = 3.97$ (H-2')}
to any downfield proton signals, but in the HMBC spectrum it showed strong correlation with C-1′ (δ = 172.2). This suggested that the fifth hydroxyl group is present at C-2′ of the fatty acid chain. The positions of the four hydroxyl groups in the long chain base were further confirmed by the mass fragmentation pattern (Fig. 3) as well as by the HMBC correlations. Thus the long chain base and fatty acid of 3 must be (E) 2-aminotetracos-16-ene-1,3,4,5-tetraol and 2-hydroxynonadecanoic acid, respectively. On the basis of this evidence, the structure of basalamide A (3) was determined to be 2-hydroxy-N-{(E)-1,3,4,5-tetrahydroxytetracos-16-ene-2-yl}nonadecanamide.

The stereochemistry at the chiral centers C-1 to C-4 has already been established in nubenamide [19]. By comparison of the optical rotation value of 3a \([\alpha]_{D}^{28} = +8.4 \ (c = 0.20, \text{MeOH})\) with the literature value of nubenamide, the absolute configuration of basalamide A (3) was found to be 2S, 3S, 4R, and 5R. In the same manner, the optical rotation value of 3b \([\alpha]_{D}^{28} = -22.8 \ (c = 0.60, \text{CHCl}_3)\) suggested the absolute configuration of C-2′ of the fatty acid to be R by comparison with the literature values of tithoniamide B [21]. Thus, the structure of compound 3 was assigned as (2S,3S,4R,5R,16E)-1,3,4,5-tetrahydroxy-2\{-[(2′R)-2′-hydroxynonadecanoylamino]\}tetracos-16-ene.

Ceramides, which are mostly found in cell walls of plants and animals, have already been reported in the literature [16, 18 – 21]. Compounds 1, 2, 5, and 7 – 10 were screened over a wide range of concentrations (3.1 – 50 µg mL\(^{-1}\)) for their immunomodulatory potential. These compounds were shown to possess inhibitory activity upon activation with serum opsonized zymosan, which was tested in vitro for oxidative burst studies of whole blood. Compounds 7 – 14 showed significant effects on the oxidative burst of the whole blood (IC\(_{50}\) range 0.06 – 0.09 µg mL\(^{-1}\)), while compounds 1, 2, and 5 showed inhibition activity (IC\(_{50}\) range 7.00 – 12.30 µg mL\(^{-1}\)) equal to the control (Ibuprofen IC\(_{50}\) = 11.20 µg mL\(^{-1}\)) (Table 1). The test compounds exhibited a clear suppressive effect on phagocyte oxidative burst response upon activation with serum opsonized zymosan in a dose-dependent manner.

Table 1. Effect of compounds 1, 2, 5 and 7 – 10 on oxidative burst of whole blood.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>IC(_{50}) (µg mL(^{-1}))</th>
<th>Compounds</th>
<th>IC(_{50}) (µg mL(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.70 ± 2.20</td>
<td>2</td>
<td>12.30 ± 3.90</td>
</tr>
<tr>
<td>5</td>
<td>7.00 ± 1.40</td>
<td>7</td>
<td>0.09 ± 0.02</td>
</tr>
<tr>
<td>8</td>
<td>0.08 ± 0.01</td>
<td>9</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.07 ± 0.01</td>
<td>Ibuprofen</td>
<td>11.20 ± 1.90</td>
</tr>
</tbody>
</table>

Experimental Section

General

Optical rotations \([\alpha]_{D}^{28}(\text{MeOH or CHCl}_{3}, \ c \ \text{in g mL}^{-1})\) were determined by using a JASCO digital polarimeter (model DIP-3600). Infrared spectra were recorded on a JASCO FT/IR-410 spectrophotometer. UV spectra were determined on a Spectronic Unicam spectrophotometer. HR-ESI-MS were recorded on an APEX III (Bruker Daltonik) 7 Tesla (ESI-FT-ICR-MS). EI-MS spectra were recorded on a Finnigan MAT 95 spectrometer (70 eV) with perfluorkerosene as reference substance for HR-EI-MS. The \(^1\)H and \(^{13}\)C NMR spectra were recorded at 500 and 125 MHz, respectively, on a Bruker AMX 500 NMR spectrometer. Methyl, methylene and methine carbons were distinguished by DEPT experiments. Homonuclear \(^1\)H connectivities were determined by using the COSY experiment. One-bond \(^1\)H-\(^{13}\)C connectivities

\[\text{Fig. 3. Selected mass fragmentation patterns for compound 3.}\]
were determined with HMBC experiments. Chemical shifts are reported in δ (ppm) using TMS as internal standard and coupling constants (J) are measured in Hz. Column chromatography was carried out on silica gel (70–230 mesh, Merck) and flash silica gel (230–400 mesh, Merck). TLC was performed on Merck precoated silica gel 60 (F254, Merck), and spots were visualized by using ceric sulfate spray reagent. All reagents used were of analytical grade.

Collection and identification

The stem barks of *B. cameroonensis* was collected and identified by Mr. Nana Victor of the National Herbarium, Yaoundé, Cameroon. The herbarium specimen documenting the collection has been deposited in the National Herbarium, Yaoundé, Cameroon (Ref. No. 6159 SRF/CAM).

Extraction and isolation

Air-dried, powdered stem barks of *B. cameroonensis* (5.5 kg) were extracted with MeOH at r. t. for 72 h. After removing the solvents by evaporation under reduced pressure, the obtained crude extract (165.0 g) was chromatographed by moving the solvents by evaporation under reduced pressure, (5.5 kg) were extracted with MeOH at r. t. for 72 h. After reaction has been deposited in the National Herbarium, Yaoundé, Cameroon. The herbarium specimen documenting the collection was identified by Mr. Nana Victor of the National Herbarium Collection and identification grade.

All reagents used were of analytical grade.

Chemical derivatives

Methanlysis of compounds 1 and 2

Compounds 1 and 2 (5.0 mg each) were added to a mixture of HCl (3.5 mL, 1 N) and dry MeOH (6.0 mg) and refluxed for 16 h with magnetic stirring. Then H2O (10.0 mL) was added to the refluxed mixture, which was extracted with n-hexane (3 × 10 mL). The fatty acid methyl esters (1a, 2.0 mg and 2a, 1.4 mg) were obtained after the purification of the n-hexane extract over a silica gel column with n-hexane-CH2Cl2 (9:1) as solvent.

Methanlysis of compound 3

Compound 3 (7.5 mg), was added to a mixture of HCl (3.5 mL, 1N) and dry MeOH (6.0 mg), and refluxed for 16 h with magnetic stirring. Then H2O (10.0 mL) was added to the refluxed mixture, which was extracted with n-hexane (3 × 10 mL). The fatty acid methyl ester (3b, 2.0 mg) was obtained after the purification of the n-hexane extract over a silica gel column with n-hexane-CH2Cl2 (9:1) as solvent. The MeOH/H2O phase was evaporated under reduced pressure. The residue obtained was also purified over a silica gel column and eluted with CH2Cl2-MeOH (15:1) to yield a sphingosine (3a, 1.5 mg).

2-(4-Hydroxyphenethyl)dotriacontanoate (1)

White amorphous powder. – UV (MeOH): λ_{max} (log ε) = 279 (3.8), 235 (3.9) nm. – IR (CHCl3): ν_{max} = 2915, 2850, 1730, 1614, 1392 cm^{−1}. – 1H NMR (500 MHz, CDCl3): δ = 0.89 (t, J = 6.9 Hz, 3H, 31[′]−H), 1.25 (br s, 56H, 4[′]−30[′]−H), 1.58 (m, 2H, 3[′]−H), 2.29 (t, J = 7.5 Hz, 2H, 2[′]−H), 2.84 (t, J = 6.9 Hz, 2H, 2[′]−H), 4.22 (t, J = 6.9 Hz, 2H, 1[′]−H), 6.79 (d, J = 8.1 Hz, 2H, 5[′]−H) and 5.17−H), 7.04 (d, J = 8.1 Hz, 2H, 5[′]−H), 5.17 (d, J = 8.1 Hz, 2H, 5[′]−H), 7.04 (d, J = 8.1 Hz, 2H, 5[′]−H), 7.04 (d, J = 8.1 Hz, 2H, 5[′]−H).
Methyl dotriacontanoate (1a)

White powder. – MS (EI, 70 eV): m/z = 494. – 1H NMR (500 MHz, CDCl3): δ = 0.73 (t, J = 7.5 Hz, 3H, -CH3), 1.40 – 1.09 (br s, -CH2OH), 2.06 (t, J = 7.8 Hz, 2H, -2H), 3.80 (s, 3H, -OCH3).

2(4-Hydroxyphenethyl)hentriacontanoate (2)

White amorphous powder. – UV (MeOH): λmax (log ε) = 280 (3.5), 245 (3.7) nm. – IR (CHCl3): νmax = 3067, 2922, 1636 cm⁻¹. – 1H NMR (500 MHz, CDCl3): δ = 0.89 (t, J = 6.9 Hz, 3H, 29-H), 1.24 (br s, 52H, 41-28-H), 1.59 (m, 2H, 3'-H), 2.30 (t, J = 7.5 Hz, 2H, 2'-H), 2.84 (t, J = 6.9 Hz, 2H, -2H), 4.22 (t, J = 6.9 Hz, 2H, 1-H), 6.79 (d, J = 8.1 Hz, 2H, 3'-H and 5'-H), 7.04 (d, J = 8.1 Hz, 2H, 2'-H and 6'-H), 8.53 (br s, 1H, -OH). – 13C NMR (125 MHz, CDCl3): δ = 13.1 (C-19'), 24.8 (C-3'), 29.3 (methylene), 134.3 (C-2'), 34.2 (C-2), 65.0 (C-1), 115.4 (C-3' and C-5'), 128.3 (C-1'), 129.7 (C-2' and C-6'), 155.7 (C-4'), 173.7 (C-19). – MS ((+)-ESI): m/z = 595 [M+Na]⁺. – HRMS ((+)-ESI): m/z = 595.5070 (calcld. 595.5072 for C₃₅H₇₀O₉Na, [M+Na]⁺).

Methyl triacontanoate (2a)

White powder. – MS (EI, 70 eV): m/z = 466. – 1H NMR (500 MHz, CDCl3): δ = 0.66 (t, J = 7.4 Hz, 3H, -CH3), 1.38 – 1.10 (br s, -CH2OH), 2.08 (t, J = 7.7 Hz, 2H, -2H), 3.83 (s, 3H, -OCH3).

1,3,4,5-Tetrahydroxy-2-(l'2'-R)-2'-hydroxyanodecanoyl-lactraminetracos-16-ene (3)

Brown amorphous powder. – [α]D²⁸ = + 9.5 (c = 0.15, MeOH). – IR (CH3OH): νmax = 3480, 2950, 2900, 1665, 1505 cm⁻¹. – 1H NMR (500 MHz, D2O): δ = 0.87 (t, J = 6.9 Hz, 6H, 19'-H and 24-H), 1.18 (br s, 62H, 8-14-H, 20-23-H, 4'-18-H), 1.56 (m, 2H, 3'-H), 1.94 (m, 4H, 15-H and 18-H), 3.38 (br s, 2H, 3-H and 5-H), 3.55 (dd, J = 6.3, 10.6 Hz, 1H, 1b-H), 3.57 (dd, J = 6.3, 10.6 Hz, 1H, 1a-H), 3.67 (m, 1H, 4-H), 3.97 (dd, J = 4.4, 8.8 Hz, 1H, 2'-H), 3.98 (br s, 1H, 2'-OH), 4.08 (m, 1H, 2-H), 4.24 (br s, 1H, 4-CH2OH), 4.42 (br s, 1H, 5-OH), 4.47 (br s, 1H, 3-OH), 4.50 (br s, 1H, 1-0H), 5.37 (br s, 2H, 16-H and 17-H), 7.37 (d, J = 9.4 Hz, 1H, -NH). – 13C NMR (125 MHz, [D6]DMSO): δ = 14.3 (C-19' and C-24), 22.5 (C-1' and C-23), 25.9 (C-4'), 31.2 – 29.0 (methylene), 31.7 (C-6), 32.4 (C-18), 32.5 (C-15), 32.8 (C-1), 51.9 (C-2), 60.9 (C-1), 71.5 (C-4), 72.4 (C-5), 75.1 (C-2'), 75.7 (C-3), 130.1 (C-16), 130.7 (C-17), 172.2 (C-1'). – MS ((+)-ESI): m/z = 737 [M+Na+2H]⁺. – HRMS ((+)-ESI): m/z = 734.6270 (calcld. 734.6275 for C₃₅H₇₂O₉Na, [M+Na]⁺).

Acknowledgements

We wish to acknowledge the Alexander von Humboldt (AvH) Foundation, Germany for post doctoral fellowships to J. D. Wansi and K. P. Devkota at Bielefeld University, the European Commission for the Marie Curie IIF fellowship to B. N. Lenta, and the International Foundation for Sciences (IFS), Sweden, for financial support (F/3978-2).

