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In this work, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix has been
investigated by studying the eleven well-known superallowed Fermi Beta decays; their parent nuclei
are 10C, 14O, 26Al, 34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, and 74Rb. The numerical value of the
Vud element of the CKM mixing matrix has been calculated following the standart procedure. Using
a different method from those of the previous studies, the effect of the isospin breaking due to the
Coulomb forces has been evaluated more accurately. Here, the shell model has been modified by
Pyatov’s restoration because of the isospin breaking and the transition matrix elements have been
found by means of the random phase approximation (RPA).
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1. Introduction

Superallowed Jπ0+ → 0+ Fermi beta decay in nu-
clei is a good tool in order to test the results and predic-
tions of the electroweak standard model. Therefore, the
superallowed transition is the subject of intense studies
for several decades [1 – 14]. One of the most important
problems in the standard model of particle physics is
the unitarity of the CKM matrix which states the quark
eigenstates of weak interaction in terms of quark mass
eigenstates. Currently, determination of the matrix el-
ements in order to understand the underlying mecha-
nism of the CP violation in and beyond the standart
model is a hot topic in particle physics [15]. There are a
few processes to test the unitarity of this matrix in par-
ticle and nuclear physics. In the side of nuclear physics
the free neutron decay, the pion beta decay, and the su-
perallowed Fermi beta decay are the related processes
to consider. The related element of CKM matrix with
the superallowed Fermi Beta decay, as is well known,
is Vud. According to the unitarity condition [16, 17]:

V 2
ud +V 2

us +V 2
ub = 1. (1)

Up to date, the contribution from the radiative terms
because of the W± gauge bosons mediated theory is
understood well [18, 19], the topic of research of this
field shifted to the isospin breaking (nuclear mismatch)
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correction on the transition matrix elements of the
model which is used to calculate Vud.

In this field, there are a few active groups which are
focused on the investigations of the isospin breaking
correction. To date, Towner and Hardy made many cal-
culations for the value of the isospin breaking correc-
tion terms using the shell model and full-parantage ex-
pansions in terms of Woods-Saxon radial wave func-
tions [2, 4, 5, 14]. Ormand and Brown also used the
shell model and Hartree-Fock calculations for the
breaking terms in question [6, 10]. Another method
based on the formalism of R-matrix theory has been
performed by Barker [7, 8]. Next work in which RPA
correlations added to a Hartree-Fock calculation that
putting together charge symmetry and charge indepen-
dence belong to Sagawa et al. [11]. Following, a large
shell model calculation has been performed for the
A = 10 case by Navrátil et al. [12]. Finally, Wilkinson
also tried to determine and eliminate the isospin break-
ing by appropriate extrapolation to Z ≈ 0 looking on
experimental data [9, 13] and using the different parti-
cle data to search on the unitarity of the CKM matrix,
successively [20 – 24].

In the present work, the isospin breaking due to the
isovector part of the shell model potential has been
seperated and its effect eliminated by Pyatov’s restora-
tion method [25]. Therefore after the restoration, the
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remaining isospin breaking should be attributed to the
Coulomb forces, solely. Here, it is important to empha-
size that none of the mentioned publications contact
with this major detail.

2. Method

As is well known, the single particle shell model po-
tential is given by

U(r) = −U0 f0(r)+U1 f1(r)tz +VC(r). (2)

In (2), f0(r) and f1(r) are the radial functions of the
isoscalar and isovector potentials, U0 and U1 are pa-
rameters, and VC(r) is the Coulomb potential, respec-
tively. The form of the Coulomb potential is

VC =
A

∑
k=1

vC(k)
(

1
2
− tz(k)

)
, (3)

where

tz =




1
2

for neutrons,

−1
2

for protons.

It is clear that the isovector and Coulomb terms voilate
the isospin symmetry of the potential in (2),⌊

Ĥsp −VC, T̂µ
⌋
] �= 0. (4)

Here, in the second quantisation representation single-
particle Hamiltonian is

Ĥsp = ∑
τ, j,m

ε jm(τ)a+
jm(τ)a jm(τ), τ = n, p, (5)

where ε jm(τ) is the single-particle energy of the nucle-
ons with the angular momentum j, and a+

jm(τ), a jm(τ)
is the single-particle creation (annihilation) operator.

The isospin operators T̂µ are defined in the following
way:

T̂µ =

{
T̂z, µ = 0,

(T̂x + iµ T̂y), µ = ±1.
(6)

In addition,

T− =
A

∑
i=1

ti
−, T+ =

A

∑
i=1

ti
+.

Since the electromagnetic interaction voilates the
isospin symmetry, the isospin breaking caused by the
Coulomb forces is natural. On the other hand, the
isoscalar and isovector parts which represent the strong
interaction between the nucleons should satisfy charge
independence condition, i. e. the breaking effect of the
isovector part should be suppressed using a method.
The method which is used in the present study is Py-
atov’s restoration procedure. According to Pyatov’s
method, the breaking symmetry of the model hamil-
tonian is restored by adding a proper residual force.
The residual interaction ĥ should satisfy the following
condition:⌊

Ĥsp −VC(r)+ ĥ, T̂µ
⌋

= 0. (7)

Pyatov showed that ĥ has to be in the form of

ĥ =
1

2γ
[
Ĥsp −VC(r), T̂µ

]+ [
Ĥsp −VC(r), T̂µ

]
. (8)

γ is an average of double commutator in the ground
state,

γ ≡C =
〈
0
[[

Ĥsp −VC, T̂−µ
]
, T̂µ

]
0
〉
. (9)

Such a form of the residual interaction allows us to
treat the Coulomb mixing effects of the isospin simply.
Thus, the restoration of the isotopic invariance for the
nuclear part of the hamiltonian is satisfied, and the total
hamiltonian operator can be written in the form

Ĥ = Ĥsp + ĥ. (10)

3. Isobar Analogue States

We shall consider the isobaric 0+ excitations in odd-
odd nuclei generated from the correlated ground state
of the parent even-even nuclei by the charge-exchange
forces and use the eigenstates of the single particle
hamiltonian Ĥsp as a basis. The basis set of the particle-
hole operators are defined as

Â j(p,n) =
1√

2 j + 1 ∑
m

a+
jm(p)a jm(n), (11)

Â+
j (p,n) =

1√
2 j + 1 ∑

m
a+

jm(n)a jm(p).

The bosonic commutation relations of these operators
are given by⌊

Â+
j (p,n), Â j′(p,n)

⌋
= δ j j′ (Nj(n)−Nj(p)) , (12)
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Â j, Â+

j′
⌋

= −
⌊

Â+
j′ , Â j

⌋
.

Here Nj(n) and Nj(p) are the occupation numbers of
the corresponding neutron and proton states.

The form of ĥ and γ in particle space is given as

ĥ =
1
2γ ∑

j, j′
E j′(n, p)E j(n, p)

(
Â j′(p,n)Â+

j (p,n)

+ Â+
j′(p,n)Â j(p,n)

) (13)

and

γ = ∑
j

E j(n, p)〈 j, p|| j,n〉(Nj(n)−Nj(p)). (14)

In these expressions

∑
j

E j(n, p)≡
(

∑
j
(ε j(n)−ε j(p))〈 j, p|| j,n〉+Vnp

)

and

Vnp ≡ 〈 j, p|vC| j,n〉.
In RPA, the collective 0+ states are considered as one
phonon excitation described as

Q̂+
i |0〉 = ∑

j
ψ j(p,n)Â j(p,n)|0〉. (15)

In (15), ψ j, Q̂+
i are the real amplitude and the phonon

creation operator, respectively. The |0〉 is the phonon
vacuum which corresponds to the ground state of the
even-even nucleus,

Q̂i|0〉 = 0. (16)

We obtain the following orthonormalization condition
for the amplitudes:

〈0|⌊Q̂i,Q̂+
i
⌋ |0〉= ∑

j
(Nj(n)−Nj(p))ψ2

j (p,n). (17)

The eigenvalues and the eigenfunctions of the restored
hamiltonian can be obtained by solving the equation of
motion in RPA,⌊

Ĥ,Q̂+
i

⌋ |0〉 = ωiQ̂+
i |0〉. (18)

Here, the ωi’s are the energies of the isobaric 0+ states.
Employing the conventional procedure of RPA, we ob-
tain the dispersion equation for the excitation energy
of the isobaric 0+ states as

γ −∑
j

E2
j (n, p)(Nj(n)−Nj(p))

(ωi − ε j(p,n))
= 0, (19)

with ε j(p,n) ≡ (ε j(p)− ε j(n)).

The amplitude can be expressed analytically in the
following form:

ψ j(p,n) =
E j(n, p)

(ωi − ε j(p,n))
1√

Z(ωi)
, (20)

with

Z(ωi) =
∑
j

E2
j (n, p)

(ωi − ε j(p,n))2 (Nj(n)−Nj(p)). (21)

4. Fermi Beta Transitions

The isobaric 0+ states in the neighbour odd-odd nu-
clei (N-1, Z+1 and N+1, Z-1) are characterized by the
Fermi transition matrix elements between these states
and the neighbour even-even nuclei. One could obtain
the following Fermi transition matrix elements by us-
ing the wave functions above:

a) for the transitions (N,Z)→ (N-1,Z+1);

Mi
β− = 〈0|⌊Q̂i, T̂−

⌋ |0〉
= ∑

j
ψ j(p,n)〈 j, p|| j,n〉(Nj(n)−Nj(p)), (22)

b) for the transitions (N,Z)→ (N+1,Z-1);

Mi
β + =〈0|⌊Q̂i, T̂+

⌋ |0〉
=−∑

j
ψ j(p,n)〈 j, p|| j,n〉(Nj(n)−Nj(p)). (23)

It is possible to show that the transitions in question
obey the Fermi sum rule

∑
i

{
|Mi

β−|2 −|Mi
β + |2

}
= ∑

j
|〈 j, p|| j,n〉|2(Nj(n)−Nj(p))

= 2T0 = N −Z.

(24)

The details of the method and the first application to
the isospin breaking have been given in [25] and [26],
respectively. The recent applications have been made
to the rotational invariance in [27] and the isotopic in-
variance in [28 – 30]. In addition, Pyatov’s method has
been applied also to other symmetries in nuclear struc-
ture physics [31 – 40].
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5. The Value of Vud

Superallowed beta decay (Jπ = 0+, T = 1 → Jπ =
0+, T = 1) between the mother and the daughter nu-
clei is a usuable tool to probe the electroweak interac-
tion. Since only vector current contribute to these tran-
sitions, the experimental f t value is related to the vec-
tor coupling constant GV,

f t =
K

G2
V|MF|2

, (25)

with

K/(h̄c)6 = 2π3h̄ ln2/(mec2)5

= (8120.271±0.012)×10−10 s
GeV4 .

Nucleus dependent corrections should be obtained
from the experimental f t values. Introducing the cor-
rection terms the experimental f t values modified by

Ft ≡ f t(1 + δR)(1− δC) =
K

2G2
V(1 + ∆V

R)
. (26)

Here, f is the statistical rate function, t is the par-
tial half-life for the transition. δC, δR, and ∆V

R are the
isospin breaking correction, the radiative correction
and the nucleus independent radiative correction, re-
spectively.

The radiative correction is separated into two terms,

δR = δ ′
R + δNS. (27)

The first term is independent of the nuclear structure
while the second one depends on nuclear structure as
does δC. Because of this separation the left side of the
statement (26) becomes

Ft ≡ f t(1 + δ ′
R)(1 + δNS− δC). (28)

In consequence, in (28), the first correction term is in-
dependent of the nuclear structure and the second term
is related with the structure. In addition, separation into
two terms of δC has became a tradition such as

δC = δC1 + δC2. (29)

Here, δC1 represents the effect of Coulomb and other
charge dependent nuclear forces that cause configura-
tions mixing among the 0+ state wave functions in the
parent and also daughter nuclei. The δC2 includes the
other effect of Coulomb interaction, i. e. it gives rise to

different binding energies because of the different ra-
dial wave functions of the decaying proton in the par-
ent nucleus and of the neutron which is transformed by
the decay process in the daughter nucleus.

In electroweak theory, the relationship between
Fermi and vector coupling constant is GV = GFVud.
The Fermi coupling constant GF, is obtained from
muon beta decay. From (26) and (28), the matrix el-
ement Vud is [11]

V 2
ud =

2984.38(6)
Ft

. (30)

In the calculations, the Woods-Saxon potential with
the Chepurnov parametrization [41] was used. The ba-
sis used in our calculation contains all neutron-proton
transitions which change the radial quantum number n
by ∆n = 0,1,2,3. Here, the calculations have been per-
formed for eleven well-known superallowed beta tran-
sitions.

Conventionally, the value of the isospin breaking
correction term δC1 has been calculated by

|MF|2 = 2(1− δC1). (31)

However, as mentioned above the effect of isospin
breaking caused by isovector term should be sup-
pressed in this calculation. If this suppression is miss-
ing, the obtained results by means of this calculation
could not be reliable values. In our best knowledge, up
to date, previous publications has not been contacted
with this point.

6. Calculations and Results

In order to solve the problem, in the present work,
Pyatov’s restoration method has been used. The matrix
elements have been calculated by means of the restored
hamiltonian. Thus, using (31), the value of δC1 which
includes only the influence of the Coulomb interaction,
has been obtained.

In the Table 1, the calculated δC1 values in previous
studies and the present work have been tabulated for
comparation. Table 1 corroborates our argument about
elimination of the effect of the isovector term in the po-
tential (2). For that reason, the obtained results for δC1
in the present work are quite different from the values
of the previous studies.

According to [1] the δC1 must be positive definite. It
should be noted from Table 1 that δC1 can take negative
values, too. However, Blin-Stoyle did not consider the
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Isobars Present Work [6] [8](a) [8](b) [11] [14]
δC1 (%) δC1 (%) δC1 (%) δC1 (%) δC (%) δC1 (%)

10C → 10B 1.399 – 0.070 0.008 −0.01 0.010
14O → 14N 0.578 0.01 0.050 0.038 0.22 0.050
26Al → 26Mg 0.168 0.01 0.011 −0.002 0.27 0.040
34Cl → 34S 0.017 0.06 0.049 0.002 0.34 0.105
38K → 38Ar −0.150 0.11 0.060 0.271 0.32 0.100
42Sc → 42Ca −0.142 0.11 0.012 0.314 0.43 0.060
46V → 46Ti −0.219 0.01 0.022 0.006 – 0.095
50Mn → 50Cr −0.449 0.004 0.009 0.002 – 0.055
54Co → 54Fe −0.245 0.005 0.015 0.011 0.46 0.040
62Ga → 62Zn 0.716 – – – 1.56 0.330
66As → 66Ge 0.448 – – – 0.78 0.250
74Rb → 74Kr 0.516 – – – 0.70 0.130

Table 1. Values of δC1 (%)
compared with previous calcu-
lations.

(a) Values of δC1 (%) using the for-
malism of R-matrix theory.
(b) Values of δC1 (%) using a pure
coulomb CD (charge-dependent)
interaction.

Parent Nucleus f t (sec) δ ′
R (%) δNS (%) δC1 (%) δC2 (%) Ft (sec)

10C 3039.5(47) 1.679(4) −0.345(35) 1.399 0.165(15) 3103.0(51)
14O 3042.5(27) 1.543(8) −0.245(50) 0.578 0.275(15) 3127.7(34)
26mAl 3037.0(11) 1.478(20) 0.005(20) 0.168 0.280(15) 3140.7(19)
34Cl 3050.0(11) 1.443(32) −0.085(15) 0.017 0.550(45) 3146.4(24)
38mK 3051.1(10) 1.440(39) −0.100(15) −0.150 0.550(55) 3152.3(27)
42Sc 3046.4(14) 1.453(47) 0.035(20) −0.142 0.645(55) 3148.8(30)
46V 3049.6(16) 1.445(54) −0.035(10) −0.219 0.545(55) 3155.3(32)
50Mn 3044.4(12) 1.445(62) −0.040(10) −0.449 0.610(50) 3155.0(30)
54Co 3047.6(15) 1.443(71) −0.035(10) −0.245 0.720(60) 3148.4(35)
62Ga 3075.5(14) 1.459(87) −0.045(20) 0.716 1.20(20) 3131.4(72)
74Rb 3084.3(80) 1.50(12) −0.075(30) 0.516 1.50(25) 3137.5(132)

Average Ft 3140.6(9)

Table 2. Ft values of the
eleven superallowed beta tran-
sitions. The data for f t, δ ′

R (%),
δNS (%), δC2 (%), and ∆v

R =
(2.361 ∓ 0.038)% are adopted
from [45]. The nucleus in-
dependent radiative correction
∆V

R is included in the Ft values
in (28).

sum rule like (24) because his argument is limited only
to the shell and Fermi gas model, i. e. it has not been
considered the collective interactions. In the present
work, the restoration term ĥ (8) represents the resid-
ual collective forces. In consequence, according to the
sum rule, firstly, the matrix elements of the Fermi beta
decays could not take arbitrary values, i. e. the sum rule
restrict the values of the matrix elements. Secondly, the
negative and the positive beta decays could not be con-
sidered independently, thus the sum rule connects each
other:

∑
i

{∣∣∣Mi
β−

∣∣∣2 −
∣∣∣Mi

β +

∣∣∣2
}

= 2T0

hence,

∑
i

∣∣∣Mi
β−

∣∣∣2
= 2T0 +∑

i

∣∣∣Mi
β +

∣∣∣2
.

The sum rule makes possible superallowed Fermi
transitions matrix elements larger than

√
T0 [26],

which means δC1 may be negative. As is seen in Ta-
ble 1, the negative δC1 values have been obtained also
in [8] and [11] for several transitions. In [11] has been

Table 3. Unitarity (V 2
ud +V 2

us +V 2
ub) of the CKM matrix.

The Obtained
(Vud) (Vus) (Vub) Unitarity

Present Work (V 2
ud +V 2

us +V 2
ub)

0.9748(4) 0.2196(23) 0.0036(10) 0.9985(13)
from [42] from [42]

0.9748(4) 0.2234(18) 0.00361(47) 1.0001(11)
from [23] from [23]

0.9748(4) 0.2259(18) 0.00367(47) 1.0013(11)
from [43] from [43]

0.9748(4) 0.2257(21) 0.00431(30) 1.0012(12)
from [44] from [44]

given only total δC (δC = δC1 +δC2) however it implies
that δC1 is negative for the 10C → 10B transition. In ad-
dition, in [26], δC1 is negative also for the transitions
50Mn → 50Cr and 54Co → 54Fe.

The experimental f t values, δ ′
R, δNS, δC, and the

Ft values are listed in Table 2. The Ft values are cal-
culated using (28).

The average Ft value of the eleven data in Table 2 is

Ft = 3140.6(9) sec.

From (30) we obtain

V 2
ud = 0.9502(8),
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which becomes

Vud = 0.9748(4).

To search on the unitarity, the numerical values of
Vub and Vus have been adopted from [23, 42 – 44]. In or-
der to avoid any eclecticsism, the unitarty of the CKM
matrix calculated using several different data for Vus
and Vub elements.

The average value of the obtained results in Table 3
is

V 2
ud +V 2

us +V 2
ub = 1.0003(12).

It is noted that the numerical value here for the unitarity
condition is close to the result in [45].

It is important to stress here that there is not a unique
concensus on the data of these matrix element in parti-
cle physics. The different groups that follow different

procedures could give different data for them. Discrep-
ancies on the data in the particle physics affect the uni-
tarity examination directly. However, Vud is the biggest
one in (1), i. e. the unitarity condition is more sensitive
to the value of Vud than the value of others.

As is seen in Table 2 the present results are es-
sentially in good agreement with the conserved vector
current (CVC) hypothesis approximately at the level
of 0.06% as in [6].

7. Conclusion

Using the different method we obtained different
numerical values for the isospin breaking correction.
Thus, it is seen that elimination of the effect of the
isovector part of the nuclear shell potential by Pya-
tov’s method has a critical role in the calculation of
the isospin breaking correction.
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