Influence of Thermal Radiation on Blasius Flow of a Second Grade Fluid
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This work describes the series solution of two-dimensional flow and heat transfer of a second
grade fluid in the presence of radiation. The governing partial differential equations are reduced into
ordinary differential equations by appropriate similarity tranformation. The series solutions of the
resulting ordinary differential equations are obtained by using the homotopy analysis method (HAM).
The convergence of the solution is discussed explicitly. The influence of pertinent parameters on the
velocity and temperature is graphically displayed and discussed. Numerical values of the skin friction

coefficient and the Nusselt number are also tabulated.
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1. Introduction

During the past few decades, the flows of non-
Newtonian fluids have attracted the attention of sev-
eral investigators. Such motivation infact is because
of the occurence of non-Newtonian fluids in indus-
try and technology. To be more specific, such situa-
tions are encountered in plastic manufacture, perfor-
mance of lubricants, application of paints, polymer
processing, food processing, and movement of biolog-
ical fluids. Many biological fluids of higher molecu-
lar weight are non-Newtonian. Geophysical applica-
tions involving ice and magma flows are highly based
upon the rheological properties of non-Newtonian
fluids.

It is now a well-established fact that an inade-
quacy of the Navier-Stokes theory has led to the de-
velopment of several constitutive equations of non-
Newtonian fluids. These constitutive equations con-
tain more rheological parameters and add extra terms
in the resulting equations. These resulting equations
are of higher order and more complicated than the
Navier-Stokes equations [1,2]. Therefore, to develop
either numerical or analytic solutions to the equa-
tions of non-Newtonian fluids is not an easy task. In
view of the diversity of fluids, many constitutive equa-
tions of non-Newtonian fluids are proposed in the lit-
erature. Amongst these much attention has been fo-
cussed to the constitutive relationship in a second grade
fluid. This infact is due to the simplicity of the fluid

model and the hope to obtain an analytic solution of
the equations governing the flow. Some important and
fundamental attempts in this direction may be men-
tioned through the investigations [3—12] and several
references therein.

The radiation effect on the flow and heat trans-
fer problem is very important from industrial point
of view. Particularly, radiation effect is quite signifi-
cant in nuclear power plant and satellites and space
vehicles at high operating temperature. Very little is
known yet about the effects of radiation on the bound-
ary layer flow. Seddeek [13] and Raptis and Perdikis
[14] studied the radiative flows of viscous fluids in
the regime of magnetohydrodynamics. Very recently,
Bataller [15] analysed the radiation effects in the Bla-
sius flow.

The purpose of the present investigation is three
fold. Firstly to extend the analysis of reference [15]
from viscous to the second grade fluid. Secondly to
include the viscous dissipation effects. Thirdly to con-
struct an analytic solution. The structure of the paper is
as follows: The mathematical formulation of the prob-
lem is described in Section 2. In Section 3, the se-
ries solutions of the velocity and the temperature are
derived by using homotopy analysis method [16, 17].
This method is a very powerful analytical tool and has
been already applied by many investigators to various
problems [18 —44]. Section 4 deals with the discussion
of graphs and tables. Finally concluding remarks are
given in Section 5.
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2. Problem Formulation

We consider the two-dimensional Blasius flow and
heat transfer of a second grade fluid incorporating radi-
ation effects. Under the usual boundary layer approx-
imations, the equations which govern the Blasius flow
and heat transfer are

du dv
a—f—@:(), (1)
u  ou_ Ou
“ox vay_ 2 p
u  oud'u Ou ou
Us——+=—=>—=—=——| 2
0y20x  dx dy?  dy dxdy
ol |
v8y3
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subject to the following boundary conditions for the
velocity and temperature:

u=v=0aty=0;u=Uatx =0, 4)
u—Uasy— oo, &)
T=Tyaty=0;T=T,atx=0, (6)
T=T,asy— oo, @)

in which u, v are the velocity components, T is the
temperature, p is the density, ¢, is the specific heat,
k is the thermal conductivity, u is the dynamic viscos-
ity, (> 0) is the second grade parameter, U is the
free stream velocity, T, and T.. are the wall temper-
ature and the ambient fluid temperature, respectively,
and ¢; is the radiative heat flux which under Rosseland
approximations [45] is

40* oT*

RETr ®)

qr =

In the above equation o* and k* denote the Stefan-
Boltzmann constant and the mean absorption coeffi-
cient, respectively. We assume that the temperature dif-
ferences within the flow is such as that the term T4
may be expressed as a linear function of temperature.

Expanding 7% in a Taylor series about 7., and then ne-
glecting higher-order terms one can write

T* = 4T3T — 3T, 9)
From (3), (8), and (9) follows
16G*Tg> T nu (314)2
+—=)=5+— (=
3pcpk* ) dy*  pep \ dy
Lo |, oudu
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u——i—vg =

of = dT
ox

, (10)

where @ = k/pcp is the thermal diffusivity. Denoting
the radiation parameter N; = kk* /46*T3, (10) can be
rewritten as

a_T+ a_T— 3N:+4 aaz_T+L a_u ?
o vay U 3N dy*  pcp \ dy
ou *u ou °u

(09]

pep

If Re, is the local Reynolds number, De is the local
Deborah number, Pr is the Prandtl number and € is the
Brinkman number then we can define

u vy — Ux
= _— = - R ;R :—7
=0 — Vi fa=

w=Urmy;v=5\ s -p, a3

and introduce the following non-dimensional variables
and parameters:

(12)
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Equations (2) and (4) give
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It should be pointed out here that there is no radia-
tion effect when 3N;/3N; + 4 is equal to 1. The non-
dimensional boundary conditions are

f=0; fl=0atn=0, (18)
fl—lasn — oo, (19)
6=0atn =0, (20)
60 —lasn — oo 21

It is noticed that the skin friction coefficient Cy and the
local Nusselt number Nu can be expressed as

Tw Xqw

Cr=—2 Nu= :
v M T kT —1y)

(22)

Here 7y, is the wall skin friction and gy is the heat flux
from the plate. The values of 7, and gy, are

. u fa o%u +23u3u+v82u
pr— _— u— —_— _
v Hay =0 1M 0yox T Toxay | 0y? 0’
y=
(23)
oT
Gu=—k=| . (24)
Y ly=0
Invoking above values (22) gives
1 1
ReiCy= f"(0), Rey >Nu = —6'(0). (25)

3. Solutions by Homotopy Analysis Method
3.1. Zeroth-Order Deformation Problems

The velocity and temperature distributions can be
expressed as a set of base functions

{nkexp(—3nn) | kzo,nzo} (26)
in the form of the following series:
=) Za’in,nnkexp(—%n),
-y Z byn* exp(=3n7),
n=0k=
in which am , and bk,  are the coefficients. Invoking

the so-called rule of solution expressions for f(n) and
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0(n) and (16)—(21), then the initial guesses fo(n) and
0y(n) and the linear operators £ and £, are

_ o exp(=3n)—1
fo(m)=n+ 3 , %)
8o(n) = 1 —exp(—37),
Li(f)=r"4+3f", Lo(f)=1"+3, (29
where
Ly [C) +Con+Csexp(—3n)] =
(30)

L [Cs+Csexp(—3n)] =

and C| — Cs are the constants. Furthermore, (16)—(21)
indicate that the nonlinear operators are
B} *F 1097 9*F
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e[ Lordr (#7)] Y
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Na[f(n,p),0(n,p)] =6 3N 4

&é/f—_’_ c f—//2 (32)
2 =0.
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Denoting the auxiliary non-zero parameter by /i, the
zeroth-order deformation problems can be expressed
as

(1 _P)[:l [f(’?»P) _fo(n)] =P1h1/\/'1[f(77ap)}, (33)
(1 _p)EZ [é(n’p) - 60(77)] ZPZEZNZ[é(n’p)L (34)
f(O,p):O, f_,(ovp):()» f/(oovp)zlv

(35)

6(0,p) =0, B(,p)=1,

where p € [0,1] is an embedding parameter. When
p=0and p =1, we obtain

f(m,0) = fo(n), f(n,1) = f(n),
6(n,0) = 60(n), 6(n,1)=06(n).

Note that the initial guesses fo(n) and 6o(n) ap-

(36)
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Order of f7(0) 07(0) Table 1. Convergence of
Approximations series solution using ho-
5 0.31658 0.41822 motopy analysis method.
10 0.37197 0.46158
15 0.37455  0.46079
20 0.37488  0.46048
25 0.37494  0.46043
30 0.37495 0.46041
35 0.37495 0.46041
40 0.37495  0.46041
De £7(0) Table 2. Values of skin friction
0.0 0.33206 coefficient for different values of
0.1 0.35239 Deborah number De.
0.2 0.37495
0.3 0.40000
0.4 0.42758
De N Pr S 0’(0) Table 3. The values of
02 1.0 1.0 20 042083 local Nusselt number
1.3 0.46041 for different values of
1.6 0.48458 Ny, Pr, €, and De.
1.3 0.5 0.41423
1.0 0.46041
1.5 0.49331
1.0 0.0 0.26580
1.0 0.36311
3.0 0.55772
0.0 2.0 0.44194
0.1 0.45086
0.2 0.46041

proach f(n) and 6(n), respectively, when p varies
from O to 1. By Taylors series one can write

F.p) = fo(m)+ X fu(m)p".
m=1

o (37)
0(n,p) =60(n)+ )., 6u(n)p",
m=1
_ 13d"f(n,p)
fu(m) = — P |y
~ (38)
1 9"0(n,p)
On(1) = %7 p=07

and the convergence of the series (37) depends upon
7y and ;. The values of 71; and 7, are chosen in such
a way that the series (37) are convergent at p = 1. By
using (36) one obtains

£ = fo(m)+ X (),
ml (39)
Y. 6u(n).
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Fig. 1. hi-curve for the function f at 25th-order of approxi-
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Fig. 2. hi-curve for the function 6 at 25th-order of approxi-
mation.

3.2. mth-Order Deformation Problems

Here we first differentiate (33) and (34) m-times
with respect to p and then divide by m!. Setting p =0
we get

L [fm(nvp) _memfl(n)} :thl,m(n)»
EZ[em(nap)_Xme—l(n)] :FlZRZ,m(n)a (41)

with the following boundary conditions:

fn(0) = £,(0) = fy, (o) =0,

(40)

(42)
0,(0) = 6,,(c0) =0,
_ 0,m<1 43)
Am = 17 m>1 ’
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4. Analysis of the Solutions

The series given by (39) are the solutions of the
present flow and heat transfer problems if one guaran-
tees the convergence of these series. The convergence
region and rate of approximations of these series solu-
tions strongly depend upon %, and 7i;. In order to find

fiy=-0.9
0.8
— 0.6
“~ 0.4
---- De=10.2
0.2 —— De=04
— - De=10.5
a L
g 7 2 3 4
)
Fig. 3. Influence of Deborah number De on f”.
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-—-De=0.6
[
[ 1 2 3 4

n
Fig. 4. Influence of Deborah number De on 6.

the admissible values of these parameters, the i-curves
for velocity and temperature are displayed in Figures 1
and 2. These /i-curves have been drawn for the phys-
ical quantities like skin friction coefficient and local
Nusselt number. It is obvious from Figures 1 and 2
that the range for 7i; is —1.4 < h; < 0 and for 7, the

1=-0.9,%,=-1.4, Nr = 1.3,¢= 2
7
0.8
_ 0.6
< 0.4 — Pr=1.0
---—- Pr=1.5
0.2 - — Pr=2.0
- - PI': 2.5
o
o 7 2 3 4 5 &

]
Fig. 5. Influence of Prandtl number Pr on 6.

fly=-0.9

,fis= 1.4, Nr = 1.3, Pr - 1.0

0 1 2 3 4 5 6
Ui

Fig. 6. Influence of Brinkman number € on 6.



832
""):.?1: -0.9, 'r'):.?z = -1.4, Pr - 1,e= 2
1
0.8
0.6
CTS 0.4 — Nr=1
-—-—- Nr=1.23
0.2 - — Nr=1.6
— -Nr=1.9
o
o 7 2 7 4 5 6

)

Fig. 7. Influence of radiation parameter N; on 6.
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Fig. 8. Influence of Prandtl number Pr on 8. Newtonian fluid
case (De = 0).
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— -€=23.0
0
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Fig. 9. Influence of Brinkman number € on 6. Newtonian
fluid case (De = 0).

range is —1.6 < i, < —1. Furthermore, Figures 3 -7
display the influence of Deborah number on the ve-
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locity. Besides this the effect of Prandtl and Brinkman
numbers on the temperature are also presented. It is
evident from Figure 3 that the velocity and the bound-
ary layer thickness increase by increasing the Deborah
number. In Figure 4, the effect of Deborah number De
on the temperature has been plotted. The temperature
and the thermal boundary layer thickness increases by
increasing the Deborah number De. Figures 5 and 6
are devoted to see the effects of Prandtl number Pr and
Brinkman number € on the temperature. These figures
show that the temperature and the thermal boundary
layer thickness increase by increasing the Prandtl and
Brinkman numbers. The effects of radiation parameter
N;, are analysed by Figure 8. By increasing the radia-
tion parameter Ny, the temperature and thermal bound-
ary layer thickness increase when N, is increased.

5. Concluding Remarks

The present work provides the analytic solution for
Blasius flow in a second grade fluid. Heat transfer anal-
ysis has been carried out in the presence of radiation
and dissipation effects. The velocity and temperature
profiles are derived. From the presented analysis the
following points can be noted:

e The effects of Deborah number on the velocity
and thermal boundary layer thickness is similar in a
qualitative sense.

e The effects of Deborah number, Prandl num-
ber, Brinkman number, and the radiation parameter
on the thermal boundary layer thickness are simi-
lar.

e There is an increase in the skin friction coefficient
when Deborah number increases.

e An excellent agreement is noted between the cor-
responding numerical [15] and homotopy solutions in
a viscous fluid.

e The series solution in a viscous fluid which is yet
not available in the literature can be obtained by choos-
ing Deborah number equal to zero.
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