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This investigation presents a mathematical model describing the homotopy analysis method
(HAM) for systems of linear and nonlinear integro-differential equations. Some examples are an-
alyzed to illustrate the ability of the method for such systems. The results reveal that this method is
very effective and highly promising.
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1. Introduction

The homotopy analysis method [1, 2], is devel-
oped to search the accurate asymptotic solutions of
nonlinear problems. This technique has been suc-
cessfully applied to many nonlinear problems such
as the viscous flows of non-Newtonian fluids [3, 4],
the Korteweg-de Vries-type equations [5, 6], nonlin-
ear heat transfer [7, 8], finance problems [9, 10], Rie-
mann problems related to nonlinear shallow wa-
ter equations [11], projectile motion [12], Glauert-
jet flow [13], nonlinear water waves [14], ground-
water flows [15], Burgers-Huxley equation [16],
time-dependent Emden-Fowler type equations [17],
differential-difference equation [18], Laplace equa-
tion with Dirichlet and Neumann boundary condi-
tions [19], thermal-hydraulic networks [20], and re-
cently for the Fitzhugh-Nagumo equation [21], and
so on. On the other hand, one of the interesting top-
ics among researchers is solving integro-differential
equations. In fact, integro-differential equations arise
in many physical processes, such as glass-forming pro-
cess [22], nanohydrodynamics [23], drop wise con-
densation [24], and wind ripple in the desert [25].
There are various numerical and analytical meth-
ods to solve such problems, but each method lim-
its to a special class of integro-differential equations.
El-Sayed et al. applied the decomposition method
to solve high-order linear Volterra-Fredholm integro-
differential equations [26]. In [27], the variational iter-
ation method was applied to solve the system of lin-
ear integro-differential equations. Also, Biazar et al.
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solved a system of integro-differential equations by ho-
motopy perturbation method and Adomian decomposi-
tion method [28, 29].

The purpose of this paper is applying the homotopy
analysis method to solve the system of general nonlin-
ear integro-differential equations which is as follows:
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In system (1), m is the order of derivatives and the
continuous several variables functions Hi, Wi, and Ki,
i = 1,2, . . . ,n are given, the solutions to be determined
are ui(x), i = 1,2, . . . ,n. In Section 2, the basic ideas
of the homotopy analysis method are stated. Four ex-
amples are given in Section 3 to show efficiency and
high accuracy of this method. Finally, conclusions are
stated in Section 4.

2. Outline of Homotopy Analysis Method

To illustrate the basic concept of the homotopy anal-
ysis method, we consider the following general nonlin-
ear system:

N[u(r, t)] = 0, (2)

where N is a nonlinear operator, u(r,t) is an unknown
function, and r and t denote spatial and temporal inde-
pendent variables, respectively. For simplicity, we ig-
nore all boundary or initial conditions, which can be
treated in a similar way. By means of generalizing the
traditional homotopy method, Liao [2] constructs the
so-called zero-order deformation equation

(1− p)L[φ(r, t; p)−u0(r,t)] = ph̄H(r,t)N[φ(r,t; p)],
(3)

where p ∈ [0,1] is the embedding parameter, h̄ �= 0
the convergence-control parameter [30], H(r,t) �= 0
an auxiliary function, L an auxiliary linear operator,
u0(r, t) an initial guess of u(r,t), and φ(r,t; p) an un-
known function, respectively. It is important that one
has great freedom to choose auxiliary things in HAM.
Obviously, when p = 0 and p = 1, it holds

φ(r, t;0) = u0(r,t), φ(r,t;1) = u(r,t),

respectively. Thus as p increases from 0 to 1, the so-
lution φ(r, t; p) varies from the initial guess u0(r, t) to
the solution u(r,t). Expanding φ(r,t; p) in Taylor series
with respect to p, one has

φ(r, t; p) = u0(r,t)+
+∞

∑
m=1

um(r,t)pm, (4)

where

um(r, t) =
1

m!
∂mφ(r,t; p)

∂pm
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p=0

. (5)

If the auxiliary linear operator, the initial guess, the
convergence-control parameter h̄, and the auxiliary
function are so properly chosen, that the series (4) con-
verges at p = 1, one has

u(r, t) = u0(r, t)+
+∞

∑
m=1

um(r, t),

which must be one of the solutions of the original non-
linear equation, as proved by Liao [2]. According to the
definition (5), the governing equation can be deduced
from the zero-order deformation equation (3). Define
the vector

�un =
{

u0(r, t),u1(r, t), . . . ,un(r, t)
}
.

Differentiating (3) m times with respect to the embed-
ding parameter p and then setting p = 0 and finally
dividing them by m!, we have the so-called mth-order
deformation equation

L[um(r, t)−χmum−1(r, t)] = h̄H(r, t)Rm(�um−1), (6)

where

Rm(�um−1) =
1

(m−1)!
∂m−1N[φ(r, t; p)]

∂pm−1

∣∣∣
p=0

(7)

and

χm =
{

0, m ≤ 1,
1, m > 1.

It should be emphasized that um(r, t) for m > 1 is gov-
erned by the linear equation (6) with the linear bound-
ary conditions that come from the original problem,
which can be easily solved by symbolic computation
software such as Maple and Mathematica.

3. Applications

In this section, we present some examples to show
efficiency and high accuracy of the homotopy analysis
method for solving system of integro-differential equa-
tions (1).

Example 3.1 Let us first consider a system of
integro-differential equations as follows:

u′(x) = xv(x)+ sinx− x +
∫ π

2

0
xu(t)dt,

v′′′(x) = +sinx− x +
∫ π

2

0
xu(t)dt,

u(0) = 0, v(0) = 1, v′(0) = 0, v′′(0) = −1,
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with the exact solutions

u(x) = xsinx, v(x) = cosx.

According to the section before, we assume that the
solution of the system, u(t) and v(t), can be expressed
by the following set of base functions:

{xp,xm sin x,xn cosx |m,n, p = 0,1,2,3, . . .}.

We choose the linear operators

L1[φi(x; p)] =
∂φi(x; p)

∂x
, L2[φi(x; p)] =

∂3φi(x; p)
∂x3 ,

i = 1,2

with the property

L1[c0] = 0, L2[c0 + c1x + c2x2] = 0,

where ci, i = 0,1,2 are constant. We define the non-
linear operators

N1[φ1(x; p),φ2(x; p)] =

∂φ1(x; p)
∂x

− xφ2(x; p)− sinx + x−
∫ π

2

0
xφ1(t; p)dt,

N2[φ1(x; p),φ2(x; p)] =

∂3φ1(x; p)
∂x3 − sinx + x−

∫ π
2

0
xφ1(t; p)dt.

We choose the auxiliary function H(x) = −1 for sim-
plicity and φ1(x;0) = u0(x) = 0 and φ2(x;0) = v0(x) =
− 1

2 x2 + 1 which satisfy the initial conditions. Hence,
the high-order deformation equations are:

L1[um(x)− χmum−1(x)] = −h̄Rm(�um−1),
L2[vm(x)− χmvm−1(x)] = −h̄Sm(�vm−1)

(8)

with the boundary conditions

um(0) = 0, vm(0) = v′m(0) = v′′m(0) = 0,

where

Rm(�um−1) = u′m−1(x)− xvm−1(x)

− (1− χm)(sinx− x)−
∫ π

2

0
xum−1(t)dt,

Sm(�um−1) = v′′′m−1(x)− (1− χm)(sin x− x)

−
∫ π

2

0
xum−1(t)dt.

Fig. 1. h̄-curves; solid line: 15th-order approximation
of u′′(0); dashed line: 15th-order approximation of v(4)(0).

(a)

(b)

Fig. 2. (a) Error of 15th-order approximate solution UM(x);
solid line: h̄ = 1.45; dashed line: h̄ = 1.2; dotted line: h̄ = 1.
(b) Error of 15th-order approximate solution VM(x); solid
line: h̄ = 1.45; dashed line: h̄ = 1.2; dotted line: h̄ = 1.
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Now, we can obtain ui(x) and vi(x) for i = 1,2, . . .
successively by solving the system of ordinary differ-
ential equations (8), and then by choosing a proper
convergence-control parameter h̄ we receive UM(x) =
∑M

i=1 ui(x) and VM(x) = ∑M
i=1 vi(x) as analytic ap-

proximate solutions. To show the influence of h̄ on
the convergence of UM(x) = ∑M

i=1 ui(x) and VM(x) =
∑M

i=1 vi(x), we first plot the so-called h̄-curves of u′′(0)
and v(4)(0) as shown in Figure 1. It is easy to dis-
cover the valid region of the convergence-control pa-
rameter h̄. Also, the error function UM(x) = ∑M

i=1 ui(x)
and VM(x) = ∑M

i=1 vi(x) i. e. |xsinx − UM(x)| and
|cosx−VM(x)| with M = 15 are shown for different
convergence-control parameter h̄ in Figure 2.

Example 3.2 [31] Let us consider the following
nonlinear system of one integro-differential equation

u′′′(x) = sinx− x−
∫ π

2

0
xtu′(t)dt,

u(0) = 1, u′(0) = 0, u′′(0) = 1,

with the exact solution

u(x) = cosx.

We choose the auxiliary function, the auxiliary linear
operator, the initial guess, and the nonlinear operator,
respectively, as follows:

H(x) = −1,

L[φ(x; p)] =
∂3φ(x; p)

∂x3

with the property L[c0 + c1x + c2x2] = 0,

φ(x;0) = u0(x) = −1
2

x2 + 1,

N[φ(x; p)] =
∂3φ(x; p)

∂3x
− sin(x)+ x

+
∫ π

2

0

(
xt

∂φ(t; p)
∂t

)
dt.

We notice that the initial guess satisfies the initial con-
ditions, therefore the high-order deformation equation
is

L[um(x)− χmum−1(x)] = h̄Rm(�um−1)

with the boundary conditions

um(0) = u′m(0) = u′′m(0) = 0,

Fig. 3. h̄-curves; 15th-order approximation of u(4)(0).

(a)

(b)

Fig. 4. (a) Error of 15th-order approximate solution UM(x)
with h̄ = 0.8; (b) error of 15th-order approximate solu-
tion UM(x); solid line: h̄ = 0.8; dotted line: h̄ = 0.6; dashed
line: h̄ = 1.
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where

Rm(�um−1) = u′′′m−1(x)− (1− χm)(sin(x)− x)

+
∫ π

2

0
xtu′m−1(t)dt.

In Figure 3, the h̄-curve of u(4)(0) has been shown (no-
tice that the u′′′(0) is constant in the form of an approx-
imate series solution and it is not useful to gain valid
region of convergence-control parameter h̄). The er-
ror function |cosx−UM(x)| is shown in Figure 4a. We
compared error functions with different h̄ in Figure 4b
and we can see from these figures that this method is
highly promising.

Example 3.3 Consider the following nonlinear sys-
tem of two integro-differential equations:

u′(x) = v′(x)+
1
4

x− 1
4

∫ π
2

0
xtv(t)dt,

v′′(x) = −u(x)+ x−
∫ π

2

0
xtu(t)dt,

u(0) = 0, v(0) = 0, v′(0) = 1

with the exact solutions

u(x) = sinx, v(x) = sinx.

For this example, the auxiliary functions, the auxiliary
linear operators, the initial guesses and the nonlinear
operators are chosen, respectively, as follows:

H(x) = −1,

L1[φi(x; p)] =
∂φi(x; p)

∂x
, i = 1,2

with the property L1[c0] = 0,

L2[φi(x; p)] =
∂2φi(x; p)

∂x2 , i = 1,2

with the property L2[c0 + c1x] = 0,

φ1(x;0) = u0(x) = 0, φ2(x;0) = v0(x) = x,

N1[φ1(x; p),φ2(x; p)] =
∂φ1(x; p)

∂x
− ∂φ2(x; p)

∂x
− 1

4
x

+
1
4

∫ π
2

0
xtφ2(t; p)dt,

N2[φ1(x; p),φ2(x; p)] =
∂2φ2(x; p)

∂x2 + φ1(x; p)− x

+
∫ π

2

0
xtφ1(t; p)dt.

Fig. 5. h̄-curves; solid line: 15th-order approximation
of u′′(0); dashed line: 15th-order approximation of v′′′(0).

(a)

(b)

Fig. 6. (a) Error of 10th-order approximate solution UM(x);
dotted line: h̄ = 0.80; solid line: h̄ = 0.90; dashed line: h̄ = 1;
(b) error of 10th-order approximate solution VM(x); dotted
line: h̄ = 0.70; solid line: h̄ = 0.83; dashed line: h̄ = 1. (Ex-
ample 3.3).
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(a)

(b)

Fig. 7. (a) Error of 10th-order approximate solution UM(x)
with h̄ = 0.90; (b) error of 10th-order approximate solution
VM(x) with h̄ = 0.83.

The high-order deformation equations are

L1[u,(x)− χmum−1(x)] = −h̄Rm(�um−1),

L2[v,(x)− χmvm−1(x)] = −h̄Sm(�vm−1)

with the boundary conditions

um(0) = 0, vm(0) = 0, v′m(0) = 0,

where

Rm(�um−1) = u′m−1(x)− v′m−1(x)−
1
4
(1− χm)x

+
1
4

∫ π
2

0
xtvm−1(t)dt,

Sm(�vm−1) = v′′m−1(x)−um−1(x)− (1− χm)x

+
∫ π

2

0
xtum−1(t)dt.

In Figure 5, the h̄-curves of u′′(0) and v′′′(0) are shown.
We also plotted the error functions |sinx−UM(x)| and
|sinx−VM(x)| with M = 15 for different h̄ in Figure 6.
Also, separately, the error of 10th-order approximate
solution UM(x) and VM(x) with h̄ = 0.90 and h̄ = 0.83,
respectively, have been shown in Figure 7.

Example 3.4 [32] Now, let us test the homotopy
analysis method on the following linear system of two
Volterra’s integro-differential equations:

u′(x) = 1 + x + x2− v(x)−
∫ x

0
(u(t)+ v(t))dt,

v′(x) = −1− x + u(x)−
∫ x

0
(u(t)− v(t))dt

with the initial conditions

u(0) = 1, v(0) = −1,

and with the exact solutions

u(x) = x + ex, v(x) = x− ex.

Here, we choose the auxiliary functions, the auxiliary
linear operators, the initial guesses and the nonlinear
operators, respectively, as follows:

H(x) = −1,

L[φi(x; p)] =
∂φi(x; p)

∂x
, i = 1,2

with the property L[c0] = 0,

φ1(x;0) = u0(x) = 1, φ2(x;0) = v0(x) = −1,

N1[φ1(x; p),φ2(x; p)] =
∂φ1(x; p)

∂x
−1− x− x2 + φ2(x; p)

+
∫ x

0
[φ1(x; p)+ φ2(x; p)]dt,

Fig. 8. h̄-curves; solid line: 15th-order approximation
of u′(0); dashed line: 15th-order approximation of v′′(0).
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(a) (b)

Fig. 9. (a) Error of 15th-order approximate solution UM(x) with h̄ = 1; (b) The error of 15th-order approximate solution VM(x)
with h̄ = 1.

N2[φ1(x; p),φ2(x; p)] =
∂φ2(x; p)

∂x
+ 1 + x−φ1(x; p)

+
∫ x

0
[φ1(x; p)−φ2(x; p)]dt.

The high-order deformation equations are:

L[um(x)− χmum−1(x)] = −h̄Rm(�um−1),

L[vm(x)− χmvm−1(x)] = −h̄Sm(�vm−1)

with the boundary conditions

um(0) = 0, vm(0) = 0,

where

Rm(�um−1) = u′m−1(x)− (1− χm)(1 + x + x2)

+ vm−1(x)+
∫ x

0
(um−1(t)+ vm−1(t))dt,

Sm(�vm−1) = v′m−1(x)+ (1− χm)(1 + x)

−um−1(x)+
∫ x

0
(um−1(t)− vm−1(t))dt.

As in the previous examples, the h̄-curves and the error
functions have been plotted in Figures 8 and 9, respec-
tively.

4. Conclusions

In this paper, we have studied some systems of
linear and nonlinear integro-differential equations with
the help of homotopy analysis method. The results
showed that the HAM is remarkably effective for these
problems.
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