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The vibrational part of the dihydrogen Hamiltonian obeys a quantized Sommerfeld-Kratzer poten-
tial, which takes into account internal H2 symmetries. All constants ωe, ke, and re needed for the H2
vibrational system derive from hydrogen mass. Ionic Kratzer bond theory gives covalent bond energy
within 0.08% and all levels within 0.02%, which is 30 times better than with a Dunham oscillator and
as accurate as early ab initio quantum mechanics.
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1. Introduction

Physicists focus on the simple line spectrum of
atom H with fine and hyperfine structure and less
on the more complex band spectrum of molecule
H2 [1]. Since Bohr’s simple, fairly accurate atom the-
ory made H prototypical for atomic spectroscopy, a
simple bond theory should make H2 prototypical for
molecular spectroscopy [2]. However, only a com-
plex quantum mechanics (QM) theory can account ac-
curately for H2 levels and its potential energy curve
(PEC) [3, 4]. During the last decades, the rigour of ab
initio QM has been abandoned in favour of density
functional theory (DFT) while simpler Bohr-type bond
theories remain of interest [5]. Since for both H and H2,
the role of internal symmetries is still uncertain, we ex-
pand on these symmetries for H2.

By its complexity, QM also fails on a simple analyt-
ical function for PECs, i. e. a low parameter universal
function (UF) [2, 6, 7], needed to unify shape-invariant,
asymmetric PECs [2]. This justifies many attempts to
find a UF, usually dealt with using Dunham theory [8].
If H2 is supposed to be the best starting point to get at
universal behaviour, its vibrational levels must be un-
derstood with a simple low-order oscillator like Dun-
ham’s or Kratzer’s, a thesis we develop here [2, 6].

Since anharmonicity flaws the harmonic oscillator
(HO), which is important for physics [9], we con-
front it with the H2 spectrum in Section 2. Dunham
and Kratzer oscillators are in Section 3. In Section 4,
the three H2 parameters r0, ωe, and ke are derived
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solely from mass mH. In Section 5, effects of P and
C for H2 are quantified and old quantum theory leads
to a quantized Kratzer bond theory. The accuracy of
Dunham and Kratzer oscillators in Section 6 not only
shows that Kratzer’s is superior to Dunham’s but also
that a Kratzer theory is as accurate as earlier ab initio
QM [10]. Internal H2 symmetries are discussed in Sec-
tion 7. Implications for the theory of the chemical bond
are in Section 8. Section 9 concludes.

2. Quantum Harmonic Oscillator and
Anharmonicity in Bond H2

H2 rotator-vibrator levels Ev,J vary with vibrational
and rotational quantum numbers v and J. For vibra-
tional levels v (J = 0), Schrödinger’s quantum har-
monic oscillator (HO) [11] gives equally spaced levels
with

Ev+1/2 = ωe(v+ 1/2) or Ev+1/2/ωe = v+ 1/2, (1)

where ωe is the fundamental vibrational frequency.
Nevertheless, (1) disagrees with the observed H2 an-
harmonicity. A series expansion in half integer v

Ev+1/2 = ωe(v + 1/2)−ωexe(v + 1/2)2

+ ωeye(v + 1/2)3 − . . .
(2)

gives a better agreement but this is equivalent with an
expansion in integer v

Ev = A + Bv +Cv2 + Dv3 − . . . . (3)



802 G. V. Hooydonk · Kratzer Potential for Vibrational Levels in Molecular Hydrogen

Table 1. Observed vibrational data for the X1Σg
1 state of

H2 [12] (in cm−1).
Vibrational differences Vibrational energies

(quanta) or levels E(v,0)
v (∆G(v+ 1/2) in [12]) (G0(v) in [12])

0 4402.93 0.00
1 4161.14 4161.14
2 3925.79 8086.93
3 3695.43 11782.36
4 3467.95 15250.31
5 3241.61 18491.92
6 3013.86 21505.78
7 2782.13 24287.91
8 2543.25 26831.16
9 2292.93 29124.09

10 2026.38 31150.47
11 1736.66 32887.13
12 1415.07 34302.20
13 1049.16 35351.36
14 622.02 35973.38

Fig. 1. Plot of 14 vibrational levels E(v,0) [12] versus v. Lin-
ear fit (straight line); second-, fourth-, and sixth-order fits co-
alesce to a single broad curve (–×–).

Coefficients A, B, C, . . . derive from those in (2), e. g.
A = 1/2ωe(1−xe +ye− . . .) . . .. Figure 1 gives the Ev(v)
plot for all 14 observed H2-levels in Table 1 [12]. The
first-, second-, fourth-, and sixth-order fits give errors
of respectively 1839.93, 111.84, 7.15, and 0.24 cm−1.
In second-order fit, Ev = [−161.11 + 4397.26v −
128.19v2] cm−1, suggested by Morse [13, 14], gives
errors of 112 cm−1. Even a sixth-order fit is not of
spectroscopic accuracy. With errors of 3.2 cm−1, ear-
lier ab initio QM [10] ranks between fourth- and
sixth-order fits. With errors of 1840 cm−1, (1) obvi-
ously fails for the simplest and stable vibrator in na-
ture, H2.

Using reduced mass, equilibrium separation r0, and
kinetic energy T = 1/2µv0

2 = 1/2µωe
2r0

2, the vibra-
tor energy E0 = T0 +V0 depends on V0, according to
−1/2ker0

2 (Hooke, Dunham) or −1/2e2/r0 (Coulomb).
For E0 = 0, the fundamental frequency ωe is available
with the equations

Hooke, Dunham:

E0 = 1/2µHωe
2r0

2 − 1/2ker0
2 = 0;

µHωe
2 = ke or ωe =

√
(ke/µH),

(4)

Coulomb:

E0 = 1/2µHωe
2r0

2 − 1/2e2/r0 = 0;

ke = e2/r0
3;

µHωe
2 = e2/r0

3 or ωe =
√

[e2/(µHr0
3)].

(5)

Hooke’s equation (4) gives a standard HO relation but
fails to identify ke. Coulomb’s equation (5) identifies ke
as

ke = e2/r0
3, (6)

giving ωe = 4390 cm−1 as observed (see below). With
Dunham’s coefficient a0 = 1/2ker0

2 [2, 7, 8], all asymp-
totes converge to ionic bond energy Dion:

V (r0) = a0 = 1/2ker0
2 = 1/2e2/r0 = 1/2Dion

≈ 79000 cm−1.
(7)

The only asymptote missing in (7) is the covalent bond
energy De = 36118.3 cm−1 (see Section 6.3), which
is much smaller than (7), but the standard for scaling
the spectroscopic constants [2, 7]. With (5) – (6), it is
evident that, if r0 for H2 is available classically, ωe or
ke are available too (Section 6).

3. Revisiting the HO: Dunham and Kratzer
Potentials

Sinusoidal solutions for HO (1) derive from Hooke’s
force F =−ker and Newton’s second law F = ma [11].
With V (r) = 1/2ker2, a Hooke-Dunham HO potential
behind (4)

VHO = 1/2ke(r−r0)2 = 1/2ker0
2(r/r0−1)2 = a0dD

2 (8)

is so firmly entrenched that alternatives are rarely em-
ployed, although it is wrong [2, 15]. Variable

dD = (r/r0 −1) or r/r0 = 1 + dD (9)
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transforms (8) in VHO = a0dD
2, where a0 = 1/2ker0

2.
VHO/a0 = dD

2 has the solutions ±dD for the r-
dependence in non-convergent, symmetric PECs. Even
Dunham’s more flexible series expansion

VHO = a0dD
2(1 + a1dD + a2dD

2 + . . .) (10)

faces convergence problems [7]. Asymmetric PECs,
convergent without expansions, use alternatives:

dSK = (1− r0/r) = [1−1/(1 + dD)]
= dD/(1 + dD),

(11)

VSK = 1/2ker0
2(1− r0/r)2 = a0(1− r0/r)2

= 1/2(e2/r0)(1− r0/r)2,
(12)

respectively, which is the dimensionless Sommerfeld1-
Kratzer variable (11) and potential (12) [2, 15]. Re-
duced VSK/a0 gives the solutions ±dSK for asymmet-
ric, convergent PECs [2, 7, 15] but is ionic (see further
below). For a classical approach to H2 based on (12),
r0 must be available with classical physics.

4. Classical Equilibrium Separation rrr0 in H2

An independent classical calculus of r0 will lead to
a classical ωe using

ωe =
√

(ke/µ)/(2πc)=
√

[e2/(µr0
3)]/(2πc). (13)

The only classical formula available for spherical
point-like particles with mass mx is

mx = (4π/3)γxrx
3 (14)

with γx, the density (g/cm3) and 4π/3, the spheri-
cal form factor, applicable for two spheres in a H2
dumbbell. Questions emerge for micro-systems: (a) Is
(14) adequate for H2 concerning form factor and den-
sity; (b) Is 2mH or reduced mass 1/2mH needed?; (c) Do
results apply for r0 in Dion = e2/r0 or for 2r0 in a0 =
1/2ker0

2 = 1/2e2/r0, all appearing in (7)?
The sum of electron and proton mass [21] is mH =

1/(5.97538.1023) g. With γH = 1 g/cm3, (14) gives

rH = [(3mH)/(4πγH)]1/3 = 7.36516 ·10−9 cm

= 0.736516 Å
(15)

1Sommerfeld first used (11) for H [16, 17]. His pupil Kratzer used
it for a general bond theory [18] and their colleague Kossel [19] for
an ionic bond theory. Fues [20] solved the wave equation for (12).

as classical radius rH, whereas rB = 0.529177 Å. Since
rHH = 2rH, r0 is rHH = 1.473032 Å, which is typical for
a virial rather than a Coulomb energy (observed r0 =
rHH = 0.740144 Å [22]), if γx=1 g/cm3 makes sense2.

The classical result r0 (15) immediately gives
(i) with (13), the fundamental H2 vibrational fre-
quency3, equal to

ωe = 4410.1722 cm−1, (16)

where 4402.93 cm−1 [12] or 4401.213 cm−1 [22] are
observed; (ii) with (7), a virial energy for H2, equal
to half the ionic bond energy Dion or

−V0 = e2/(2rH) = a0 = 78844.9125 cm−1 (17)

(observed a0 = 1/2ker0
2 ≈ 79000 cm−1 [24]);

(iii) with the same dimension for (16) – (17),
a quantum hypothesis emerges. The small ra-
tio of step ωe ∼ 4400 cm−1 (16) and total gap
a0 ∼ 79000 cm−1 (17) shows that a number steps v as
in (1) – (3) is needed to cover this gap. This ratio is the
number

q = ωe/a0 = 4410.1722/78844.9125

= 0.05593477,
(18)

which can bring in quantization following step δ v,
function of v. Hence, bond quantum hypothesis

r/r0 −1 = ∆/r0 = dHO = δv = qv (19)

must be plugged in variable dHO and dSK for poten-
tials VHO and VSK (see Section 6). With (15), mass mH
indeed provides with three fundamental parameters ωe,
r0, and ke for bond H2.

5. Kratzer Bond Theory. Connection with
C, P, and CP in H2

5.1. Vibrational H2 Energy and CP Symmetries

The Hamiltonian H (or energy E) for four-particle
system H2 (with pairs of charge-conjugated leptons a, b

2For systems with constant mx/γx, all rx are (nearly) equal, as
observed for isotopomers H2, D2, and T2 [23].

3The same formula for an electron (me = mH/1837.15267 and ra-
dius rB) gives ωe = 219474.65 cm−1 = 2 ·109737.31 cm−1, or twice
the Rydberg e2/rB [21]. This shows how the internal mechanics of H
and H2 are intimately connected.
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and nucleons A, B) consists of four kinetic and six
potential energy terms [24]:

H = 1/2pa
2/ma + 1/2pb

2/mb + 1/2pA
2/mA

+ 1/2pB
2/mB − e2/raA − e2/rbB − e2/rbA

− e2/raB + e2/rab + e2/rAB.

(20)

With n, v, and J for electronic Eelec, vibrational Evib,
and rotational energies Erot, total energy obeys E =
Eelec + Evib + Erot = En + Ev + EJ. Subtracting4 E0 =
En = 1/2mava

2 + 1/2mbvb
2 − e2/raA − e2/rbB and ne-

glecting Erot = EJ, (20) becomes Evib = E − E0 ≈
1/2mAvA

2 + 1/2mBvB
2 − e2/rbA − e2/raB + e2/rab +

e2/rAB. Notations r = rbA = rBa and mv2 = mAv2
A =

mBv2
B (m = 1836.15me close to mH = 1837.15me) lead

to ∆E = ∆T + ∆V or

∆E = E −E0

≈ 2(1/2mv2)−2e2/r +(e2/rAB)(1 + rAB/rab)

= mv2 +(e2/rAB)[(1 + rAB/rab −2rAB/r)]

≡ mv2 +(e2/rab)[(1 + rab/rAB −2rab/r)]

≡ mv2 +(e2/r)[(r/rAB + r/rab −2)],

(21)

where all three composite Coulomb terms ∆V are
equal. For large rAB, rAB ≈ rab gives ∆E = E −E0 ≈
mv2 +2e2(1/rAB −1/r). With r0 and rAB = r1 = a1r0,
r = r2 = a2r0 and factor 1/2, we get

1/2∆E ≈ 1/2mv2 +(e2/r0)(r0/rAB − r0/r)

= 1/2mv2 +(e2/r0)(r0/r1 − r0/r2)

= 1/2mv2 +(e2/r0)(1/a1 −1/a2),

(22)

a simple result for Evib (see also Section 6.1). To pro-
ceed with all equivalent variants in (21), the most ap-
propriate scaling aid must be found. Since nucleons
have the greater inertia, we prefer scaling by rAB,
which appears in ionic bonding, is important in BO
(Born-Oppenheimer) approximations and is the com-
mon variable for PECs [24].

Magnitude and sign of Coulomb terms in (21) de-
pend on the configuration (geometry) of H2, which is
subject to internal symmetries [25]. The ionic solution
−e2/rAB for (21) would require either that coefficient
(1 + rAB/rab − 2rAB/r) for e2/rAB in (21) is not only
constant but also negative. Its final sign depends on ge-
ometry related operator parity P2 = 1 or geometry in-
dependent charge operator C2 = 1 [25]. To accommo-
date for this algebra, we use a form factor ±Ar, defined

4The use of v for vibrational quantum number as well as for ve-
locity must be clear from the context given.

as

±Ar = ±(1 + rAB/rab −2rAB/r). (23)

Its subscript r refers to scaling by rAB, its magnitude to
the H2 geometry, and its sign ± to the discrete values
allowed by internal symmetry C. Energy (21) rewritten
as

Evib = ∆E(= ∆H′ = p2/m±Are2/rAB)

= +mv2 ±Are2/rAB
(24)

has positive kinetic energy T and positive or negative
potential energy V , but this algebra must be in line with
classical physics. Only attractive −Are2/rAB can give
a stable bond, repulsive +Are2/rAB cannot5 [25, 26].

Proceeding with (24) and its periodic motion (for
vibration and rotation, see Section 4.2), angular ve-
locity ω , velocity v = ωr, and angular momentum
p = mHv = mHωr lead to the classical equation:

∆E = +mHω2rAB
2 ±Are2/rAB. (25)

This cannot only be interpreted by vibrations ω2 =
Are2/(µHr3) like (7) but also by rotations obeying Ke-
pler’s third law ω2r0

3 = Are2/µH = C. For rotations
coupled to vibrations, old quantum theory gives

p1 = f h̄/r1, p2 = f h̄/r2, and pHH = f h̄/rHH, (26)

where f is a field factor. With Bohr’s theory as guide-
line, all relations and identities easily follow:

(a) 2mHω2r3 = 2mHv2r = Are2 or

v2 = 1/2Are2/(mHr),

(b) 2mHωr2 = 2mHvr = 2pHr = f h̄ or

v = 1/2 f h̄/(mHr),

(c) v = Are2/( f h̄) and

r = 1/2( f 2/Ar)(h̄2/(mHe2).

(27)

For Ar = 1, the field scale factor f in (27) can be iden-
tified by using the classical r0 (15):

r0 = 1/2 f 2h̄2/(mHe2) ∼ [(3mH/(4πγH)]1/3 and

f ∼ mH
2/3(h̄/e)[3/(4πγ)]1/6 ∼ 1/q

(28)

in agreement with (18), pending corrections for re-
duced mass and the virial.

5Ionic −e2/rAB is only suspicious for two neutral atoms when
rAB 
 rcrit, with rcrit the critical distance, where ionic and non-ionic
PECs cross [25]. At closer range, particle transfers can occur. Gener-
ically, ionic −Are2/rAB is also obtained, independent of geometry
or without particle transfer, by charge inversion symmetry C in one
atom [25].
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With (26), kinetic energy T = pH
2/mH = ( f 2h̄2/

mH)/r2 can now be plugged in (24). The result is

∆H′ = ±Are2/r + mHω2r2

= ±Are2/r +( f 2h̄2/mH)/r2

= ±Are2/r +[ f 2h̄2/(mHe2)](e2/r2).

(29)

Using constants A = Are2 and B = e2 f 2h̄2/(mHe2), this
is of general Kratzer form:

V (r) = A/r + B/r2. (30)

The equilibrium dV/dr at r0, gives B =−1/2Ar0 for the
stable solution VSK(r0) < 0, since B/r2 > 0. We get

∆H′ = −Are2/r + 1/2Are2/r2 or

∆′′H = ∆H′ + 1/2Are2/r0

= +(1/2Are2/r0)(1− r0/r)2 = VSK,

(31)

the Sommerfeld-Kratzer Coulomb potential (12) for
−Ar =−1. Quantum theory gives solution (31) or (12)
for vibrational H2 levels obeying a Kratzer, not a Dun-
ham oscillator [2, 25].

The second derivative d2/dr2 of (29) for the force
constant equations leads to

ωe
2 = Are2/(mHr0

3); ke = Are2/r0
3, (32)

which is impossible with Hooke’s law for Schrödin-
ger’s HO (1), see Section 2. The reduced mass µ
for H2,

µ = mHmH/(mH + mH)
= mH/(1 + mH/mH) = 1/2mH,

(33)

gives the scale factor s = 1/2 for dimer H2 = HaHB. The
dimensionless recoil correction in AB(mA,mB) is

s = 1/(1 + ma/mB). (34)

Following Section 2, Are2 simplified to e2 means that
the inter-atomic field is ionic [27]. At r0

ke = Are2/r0
3 ≡ e2/r0

3 (35)

implies that the Coulomb attraction −e2/r0, i. e. ionic
bond energy Dion, appears for covalent H2 [2, 27]. We
found [27] that plugging observed r0 = 0.74 Å [22]
in (35) returns observed ke = 5.7.105 dyne/cm and
ωe ≈ 4400 cm−1 for H2 [12, 22], see Section 2.

5.2. Quantum Hypothesis for H2 Vibrations and
Connection with Intra-Molecular Rotations

Like (25) – (27), the angular velocity ve for a ro-
tating electron me in H derives from the ratio of ra-
dial equilibrium condition mev2

e/r = e2/r2 and quan-
tum rule for angular momentum mver = pr = nh̄, or

ve = mev2
er/mever = e2/(nh̄) = αc/n (36)

without recoil. Using Bohr radius rB and H-size differ-
ences ∆H

r = e2/mev2
e = n2h̄2/(mee2) = n2rB,

∆H = r− rB = rB(n2 −1)
(37)

are incompatible with the linear rule (26). Quantization
of the field by 1/n instead of the angular momentum
by n, gives the same rotational energies for H, En =
−RH/n2, since

ve = mev2
er/mever = (e2/n)/h̄ (38)

is identical with (36). Unlike (37), field quantiza-
tion 1/n brings in a linear n-dependence

r = h̄/(meve) = nh̄2/(mee2) = nrB (39)

instead of a quadratic n2-dependence in (37). Linearly
quantized r-differences

∆r = r− rB = (n−1)rB = �rB (40)

bring in Sommerfeld’s secondary quantum number � =
n− 1. With (40), H2 quantization needs ∆r = r− r0 =
(n−1)r0, a linear, instead of a quadratic integer quan-
tum number. Reduced equivalent

∆r/r0 = r/r0 −1 = (n−1) = � (41)

validates quantum hypothesis for vibrations in
bonds (19), if � is denoted by the number v in (1).
With this information, we can apply rule (19) for any
separation r.

6. Quantization of Symmetric Linear and
Asymmetric Inverse Field Shifts

Quantum hypothesis (19) for inverse6 and linear
Kratzer and Dunham variables gives:

Kratzer:

r0/r=r0/(r0 ±∆)=1/(1±∆/r0)=1/(1± δr), (42a)

6Ha and Hb in H2 = HaHb can be distinguished by mass ma and
mb and sizes ra and rb. As in a balance, this gives mara = mbrb(=C),
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Dunham:

r/r0 = (r0 ±∆)/r0 = (1±∆/r0) = (1± δr), (42b)

where δr or δv is the numerical equivalent of a step
(25) – (27). Difference ∆

r− r0 = +∆ = +1/2∆− (−1/2∆) (43)

is distributed in an anti-symmetric way, i. e. left and
right to the center of mass, placed at the origin, but
equal in absolute magnitude and based on the arith-
metic average. In terms of symmetries, (43) gives sym-
metric H2. However, symmetric (43) is different in
Dunham and Kratzer variables (42).

6.1. The v-Dependence: Different Analytical Form
for Quantized Dunham and Kratzer Oscillators

(i) The symmetric distribution (43), applied to Dun-
ham’s procedure for r = r0 ±∆, gives

r/r0 = 1±∆/r0 = (1± δr) = (1± δv), (44)

where left and right are avoided by virtue of (43).
Dunham potential (8) away from r0 becomes
1/2ker2

0(r/r0)2 = a0(r/r0)2 = a0(1 ± δr)2. With (19),
reduced Dunham potential differences are

V ′
Du −V ′

0 = ∆V ′
Du = −1/2(1−qv)2 + 1/2

= +qv− 1/2q2v2.
(45)

Using a0 (24) and q (25), the numerical result of Dun-
ham H2 theory in cm−1 is:

∆VDu = ∆Ev = 4410.17v−123.34v2 cm−1. (46)

This is close to the observed second-order fit in Sec-
tion 2 but with a large error of 111 cm−1. The improve-
ment over HO (1) is considerable but a parameter for
qv cannot reduce these errors.

where C is a constant, with dimensions (e/v)2, leading to recoil (34)
using ma/mb = rb/ra. Hence, relations between mx and rx obey
mx =C/rx or rx/C = 1/mx. If rHH required addition, reduced mass µ
appears naturally

rHH = (ra +rb) =C(1/ma +1/mb) =C(ma +mb)/(mamb) =C/µ .

If mass mHH required addition, reduced separation ρ = rarb/(ra +rb)
appears naturally, too:

mHH = ma +mb = C(1/ra +1/rb) = C(ra + rb)/(rarb) = C/ρ.

This explains (47) below since, if reduced separation is ρ+ by sum,
reduced separation ρ− by difference obeys

1/ρ− = 1/ra −1/rb = (rb − ra)/rarb.

(ii) Quantization for a Kratzer potential gives a
problem with the anti-symmetric or left-right symmet-
ric distribution (43). Inverse r0/r = r0/(1± ∆) does
not account for positions of Ha and Hb with respect to
their common center, i. e. ±1/2∆ in (43). Equivalent re-
arrangements of the four inter-atomic Coulomb terms
in (20) led to (22), where the composite the Coulomb
sum (e2/r0)(r0/ra − r0/rB) gives similar inverse sepa-
rations 1/rA = 1/(r0− 1/2∆) and 1/rB = 1/(r0 + 1/2∆).

Applying these formally to a Kratzer variable gives

r0/rA − r0/rB = r0(rB − rA)/rArB

= 1/(1− 1/2δr)−1/(1 + 1/2δr)

= δr/(1− 1/4δ 2
r ).

(47)

Using (19), a more complex quantized v-dependence
appears for a Kratzer theory,

1/(1−1/2qv)−1/(1+1/2qv)= qv/(1−1/4q2v2), (48)

instead of the simpler linear qv-dependence in Dun-
ham’s (45). The reduced Kratzer oscillator difference
is

∆V ′
Kr = −1/2[1−qv/(1− 1/4q2v2)]2 + 1/2 =

+qv/(1− 1/4q2v2)− 1/2q2v2/(1− 1/4q2v2)2 (49)

to be compared with Dunham’s (45). In cm−1, the nu-
merical Kratzer result is

∆VKr = (+4410.17v−123.34v2−3.49v3)

/(1−0.00078v2)2 cm−1.
(50)

Its accuracy is discussed in Section 6.2. Relation (50)
gives higher-order terms in v as in (2) – (3), to accom-
modate for anharmonicity. A parameter for qv in (48)
can affect goodness of fits.

Maximum v0 for variable qv gives v/v0. For Dun-
ham, (1 − x)2 = (1 − v/v0)2 and x = v/v0 = 0 re-
turns the well depth; x = 1 or v = v0 gives zero.
For Kratzer (1 − y)2, y = (v/v0)/[1 − 1/4(v/v0)2] =
qv/[1− 1/4(qv)2], y = 1 implies that qv = 1− 1/4(qv)2

or v2 + 4v/q−4/q2 = 0. Solving for v0 gives

v0(Kr) = v0(Du)/[1/2(1 +
√

2)]

= 17.877967/1.207107 = 14.811,
(51)

i. e. 14 levels as observed (see Table 1). The fact that
band 15 is missing is in line with Kratzer theory (51)
and is confirmed by the greater number of levels, ob-
served for D2 and T2 [22, 23].
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Table 2. Errors for H2 levels E(v,0) with Dunham (second-
and fourth-order) and Kratzer (second-order) functions (in
cm−1).
v Observed E(v,0) Dunham Kratzer

second-order fourth-order second-order
0 0.00 161.11 8.08 3.57
1 4161.14 53.18 −8.34 −3.91
2 8086.93 −33.74 −8.43 −3.94
3 11782.36 −94.63 −1.67 −0.77
4 15250.31 −126.64 5.20 2.45
5 18491.92 −128.61 8.56 4.15
6 21505.78 −101.96 7.09 3.59
7 24287.91 −50.66 1.75 1.13
8 26831.16 18.13 −4.81 −2.02
9 29124.09 92.98 −9.39 −4.48

10 31150.47 157.65 −8.71 −4.51
11 32887.13 188.98 −1.59 −1.37
12 34302.20 155.08 9.30 4.04
13 35351.36 11.66 13.69 6.80
14 35973.38 −302.54 −10.72 −4.73

absolute error 111.84 7.15 3.43
% error 0.536 0.044 0.021

6.2. Normalization of Quantized Dunham and
Kratzer Oscillators. Formal Results

Dunham variable δDu and normalized Kratzer vari-
able δKr/p, respectively, equal to

δDu = qv, (52)

δKr/p = (1/p)[1/(1− 1/2pqv)−1/(1 + 1/2pqv)]

= qv/(1− 1/4p2q2v2),
(53)

imply normalizing factor 1 for qv in Dunham’s (52) but
1/(1− 1/4p2q2v2) in Kratzer’s (53). A Kratzer oscilla-
tor needs harmonic mean [(1− 1/2pqv)(1 + 1/2pqv)] =
(1 − 1/4p2q2v2), in line with a harmonic oscillator.
A normalization is needed for a parabola (a− x)2 =
a2(1− x/a)2, where x can be adapted by factor 1/a to
restore (52) or (53). The accuracy of a second-order fit
in (53) for H2 is at maximum for p = 0.83795.

The second-order fits for plots of levels ver-
sus δDu (52) and δKr/0.83795 (53) in Figure 2 are

Eδ (Du) = −40971.3574δ 2
Du + 78614.1312δDu

−161.1126 cm−1,
(54)

Eδ (Kr) = −40754.1814δ 2
Kr+ 76766.2419δKr

−3.56576 cm−1,
(55)

with respective goodness of fit of R2 = 0.9998627
for (54) and R2 = 0.9999999 for (55). Although all
coefficients are as theoretically expected, they do not

Fig. 2. Plot of E(v,0) versus Dunham dDU (curve ×) and
Kratzer dSK (curve ◦) variables with second-order fits.

Fig. 3. Errors for E(v,0) for H2 (in cm−1) with second-order
fits for Dunham (×) and Kratzer (◦) oscillators.

give a normalized parabola (see also Section 6.3). Er-
rors for (54) and (55) show great differences, as shown
in Table 2 and Figure 3. Errors of 0.021% for (55) al-
most vanish when compared with Dunham’s: they are
30 times smaller than 0.54% for (54) and 530 times
smaller for HO (1), with errors of 1840 cm−1 (see Sec-
tion 2). Kratzer’s second-order fit is even better than
Dunham’s fourth-order fit, with errors of 7 cm−1 (see
Table 2). Errors of 3.5 cm−1 in Kratzer’s theory com-
pare with those of 3.2 cm−1 in early QM [10].

6.3. Parabolic Behaviour: Covalent H2 Bond Energy
De from Ionic Energy Dion

Covalent H2 bond energy De is obtained directly
from ionic bond energy Dion by making (54) and (55)
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Fig. 4. Energy levels E(v,0) for H2 (in cm−1) with Kratzer
parabola (59) versus x (curve +) and with (57) versus com-
plementary 1 − x (curve circ), giving De as intercept (see
text).

a perfect parabola (1− δ ′)2 = (1− 2δ ′ + δ ′2). Coef-
ficient ratio 40754 · 1814/(1/2 · 76766 · 2419) in (55)
gives δ ′

Kr = 1.061774δKr and δ ′
Du = 1.042341δDu

for (54). Plotting energies versus variables x and 1− x
as in Figure 4 gives well depth or covalent bond en-
ergy De as intercept in

Ex(Du) = [−37710.3788x2−0.0000x

+ 37549.2663] cm−1,
(56)

Ex(Kr) = [−36150.0077x2 + 0.0000x

+ 36146.4419] cm−1.
(57)

The covalent bond energy De of H2, is 37549.27 cm−1

for Dunham’s theory (error 3.96%) but

De = 36146.442 cm−1 (58)

for Kratzer’s theory (error 0.078%). Result (57) is il-
lustrative for the behaviour of a linear Coulomb term,
made invisible by complementarity. In fact,

Eδ ′ = [−36150.0077δ ′2 + 72300.0154δ ′

−3.5658] cm−1 (59)

gives 72300.0154 ≡ 2,36150.0077 as required.
This ionic term in (59) gives covalent De (58)
within 0.078% of observed De = 36118.3 cm−1, better
than early QM7 [24].

7In 1927, Heitler and London obtained r0 = 0.80 Å, ωe =
4800 cm−1, and De = 3.14 eV or 25300 cm−1 [24].

7. Internal H222 Symmetries

Since bisecting H2, allowed by stoichiometry or
mass conservation, gives two hydrogen atoms, we must
verify whether one is either an exact copy (P even) or
a mirror image (P odd) of the other. CP-effects in H2
are available by the differences between them or the
ratios of ±1 and the form factor ±Ar (23), related to
the errors in Table 2. C is a discrete symmetry ±1,
whereas P is a geometry dependent (continuous) sym-
metry ±x, where x may vary with the H2 structure,
on which the form factor Ar gives evidence. Errors
for bands Tv are those for levels in Table 2, multi-
plied by Ev/(T0.0 + Ev), where T0.0 is 90203.52 cm−1

or 90206.1 cm−1 [12]. This gives an average error
for Tv of only 0.005%. Whatever and however compli-
cated the 3D H2 structure, its geometry remains con-
stant (within 0.005%) according to the Kratzer bond
theory. The second-order fit for observed terms,

Tv = [36150.0077δ ′2−72300.0154δ ′

+ 90207.0858] cm−1,
(60)

reveals why, after all, a negative ionic attractive
Coulomb term −e2/rAB shows for covalent H2.

The discrete symmetry behind −Ar, i. e. attractive
−e2/r, can only derive from two atom centers in a H2
dumbbell, occupied by +e and −e. Classically, this is
achieved with an ion pair but this requires unlikely8

particle transfers at long range. Yet, −e2/r is also ob-
tained with charge inversion C but this transforms an
atom in an antiatom, i. e. antihydrogen H [25]. Al-
though C-based solutions are the more generic, they
are usually not allowed by the prospect of HH annihi-
lation [25].

Whatever the reason for attractive −e2/r (by virtue
of C or by the creation of an ion pair), odd or in-
version symmetry P always leads to atom centers
with a positive +1 and a negative mark −1, indepen-
dent of the sign of charges on these marks. Although
P in H2 is reasonably well obeyed (within 0.005%) for
a fixed H2 geometry (one atom being the mirror image
of the other by inversion symmetry), it is still uncertain
whether internal symmetry P in H2 is violated or not.
To get more certainty about P, the origin of the small
errors (< 0.005%) must be retraced. In [26], we show

8Attractive ionic bonding −e2/r needs a particle transfer be-
tween atoms X . Large energy gap IEX − EAX (IEX and EAX are
ionization energy and electron affinity), makes particle transfers in
ionic bonding, improbable at long range r 
 r0.
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that this origin resides in an extra H2 symmetry, not yet
discussed.

8. Discussion

(i) A connection between Dion and De affects the
theory of the chemical bond: ionic bonding rational-
izes covalent bonding in H2. Reduced µion = 1/2mH[1−
(me/mH)2] differs from µcov = 1/2mH by only 3 ·
10−5%. Resonance between ions [H+H−; H−H+]
avoids a permanent dipole moment [25].

(ii) Magnitude and sign of the term in Ar show that
only attractive V = −e2/rAB, not mutually exclusive
repulsive +e2/rAB can lead to stable H2. Hence, the H2
dumbbell is anti-symmetrical �⊗ or ⊗�, instead
of symmetrical �� or ⊗⊗. Nevertheless, symmetry
based solutions for bonds generate problems with C
for neutral H (formation of antihydrogen H [25]). We
discuss some of these issues more in depth in [26].

(iii) Kratzer Coulomb energy −e2/r0 is important
for universal behaviour and a UF [2, 27]. Only scal-
ing by ionic Dion [7, 27] unifies constants of ionic and
covalent bonds between all monovalent atoms in the
Periodic Table [2, 27 – 29]. Why Dion is a better scal-
ing aid than De [2, 27] is understood with (60), since
Dion, related to −72300.0154δ ’, is the first scaling
aid [2, 27, 28], whereas De only appears in second in-
stance, see (57) and (59). Difficulties for scaling with-
out De [29] are in line with shortcomings of Dunham
theory, as reported here.

(iv) Universal behaviour is usually connected with
the smooth G(F)-plot of Varshni functions F for αe
and G for ωexe, whereby F and G are relate to the
Dunham coefficients a1 and a2 in (3) and r/r0 [2, 6, 7].
With Kratzer, higher-order terms in r seem super-
fluous, whereas higher-order terms in v are gener-
ated by the link between v and r0/r. The quadratic
term 1/2(e2/r0)(ωe/a0)2 = [0.5 ·4410.172/78844.91=
123.34] cm−1 agrees with the observed H2 levels. This
second-order Kratzer term is close to H2 anharmonic-
ity ωexe of 123.07 cm−1 [6, 12, 22]. In Dunham’s (10)
it is related to the fourth-order term and the coeffi-
cient a2 [2, 7].

(v) For chemistry, Morse and Dunham poten-
tials are used more widely than Kratzer’s [2] but

the interest in this function [30] remains justified,
as it connects rotations (rolling [31]) with vibra-
tions.

(vi) Recent double photoionization experiments on
H2 [32] led to non-Heitler-London ionic states for the
H2 ground state, which is in line with the present ionic
Kratzer bond theory [33].

(vii) For isotopomers HD, D2. . . the results must
be as accurate as for H2, since with the approxima-
tion mD = 2mH, similar r0 values are obtained for D2.
This suffices to extend ionic bonding to covalent iso-
topomers [22, 23], without giving details here.

(viii) Why H2 only shows 14 bands is understood
with maximum v = 14.81 (51), deriving from mH.

(ix) Despite the good performances of an ionic
model for covalent H2, it fails, just like early ab ini-
tio QM [10], on spectroscopic accuracy. However, er-
rors of 3.5 cm−1 with simple Kratzer theory are almost
the same as errors of 3.2 cm−1 with the more compli-
cated and elaborate QM methods [10]. In both cases,
errors are larger than with the recent QM [3]. To re-
move small errors of Kratzer theory for H2, it suffices
to adapt symmetries by going over from an achiral to a
chiral bond model [26].

9. Conclusion

A first-principles Sommerfeld-Kratzer potential ac-
counts quite accurately for H2 vibrations. A simple
bond theory exists, which is in line with the existence
of a UF. Ionic Kratzer bond theory for covalent H2 dif-
fers from the conventional Dunham oscillator and the
QM theories. This theory only needs hydrogen mass
mH as input to assess the full H2 vibrational spectrum
and links the ionic with the covalent bond energy. A
symmetry-adapted Kratzer theory gives spectroscopic
accuracy (errors of order 0.00002%) for prototypical
chiral bond H2, as we will show in [26].
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