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In this paper, a new projective equation (φ ′ = σφ + φ2) is used to obtain the variable separation
solutions with two arbitrary functions of the (2+1)-dimensional Broek-Kaup system with variable
coefficients (VCBK). Based on the derived solutions and by selecting appropriate functions, some
novel folded solitary wave evolutional behaviours are investigated.
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1. Introduction

Over the past 30 years the concept of solitons has
entered into various branches of many natural science
such as chemistry, biology, mathematics, communica-
tion, and in particular in almost all branches of physics
like fluid dynamics, plasma physics, field theory, op-
tics, and condensed matter physics [1 – 7]. Searching
for an analytical exact solution to a nonlinear system
has long been an important and interesting topic in
nonlinear science both for physicists and mathemati-
cians, and various methods for obtaining exact solu-
tions of a nonlinear system have been proposed, for
example, the bilinear method [8], the standard Painlevé
truncated expansion [9], the method of “coalescence
of eigenvalue” or “wavenumbers” [10], the homoge-
nous balance method [11], and the mapping method
[12], etc. The mapping approach is a kind of classic,
efficient, and well-developed method to solve nonlin-
ear evolution equations, the remarkable characteristic
of which is that we can have many different ansatzs
and therefore, a large number of solutions.

In the past, we have found the exact solutions
of some nonlinear systems via the Ricatti equa-
tion (φ ′ = σ + φ2) mapping method, such as (1+1)-
dimensional related Schrödinger equation, (2+1)-di-
mensional Broer-Kaup-Kupershmidt system, (2+1)-di-
mensional Generalized Broer-Kaup system, (3+1)-di-
mensional Burgers system, (3+1)-dimensional Jimbo-
Miwa system, (2+1)-dimensional modified dispersive
water-wave system, (2+1)-dimensional Boiti-Leon-
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Pempinelli system, (2+1)-dimensional Korteweg-de
Vries system, (2+1)-dimensional asymmetric Nizhnik-
Novikov-Veselov system, etc. [13 – 22]. In this paper,
with a new projective equation (φ ′ = σφ + φ2) and a
linear variable separation approach, a new family of
exact solutions with arbitrary functions of the (2+1)-
dimensional Broek-Kaup system with variable coeffi-
cients (VCBK) is derived and based on the derived so-
lutions, we find a few novel folded solitary wave exci-
tation.

The (2+1)-dimensional VCBK system is

uty −a(t) [uxxy −2(uux)y −2vxx] = 0,

vt + a(t) [vxx + 2(uv)x] = 0,
(1)

where a(t) is an arbitrary function of time t. It is
evident that when a(t) = 1, the VCBK system will
be degenerated to the well-know (2+1)-dimensional
Broer-Kaup-Kupershmidt (BKK) system, which may
be derived from the inner parameter dependent sym-
metry constant of the Kadomtsev-petviashvili model.
When y = x, the (2+1)-dimensional Broer-Kaup-
Kupershmidt system is reduced to the usual (1+1)-
dimensional BKK system, which is often used to de-
scribe the propagation of long waves in shallow wa-
ter [23]. Using some suitable dependent and indepen-
dent variable transformations, the (2+1)-dimensional
BKK system can be further transformed to the (2+1)-
dimensional dispersive long-water wave equation and
(2+1)-dimensional Ablowitz-Naup-Newell-Segur sys-
tem [24]. Actually the (2+1)-dimensional BKK sys-
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tem has been widely investigated in details by many
researcher [25].

The basic idea of the new equation (φ ′ = σφ + φ2)
mapping approach is as follows. For a given nonlinear
partial differential equation (NPDE) with the indepen-
dent variables x = (x0 = t,x1,x2, · · · ,xm), and the de-
pendent variable u, in the form

P(u,ut ,uxi ,uxix j , · · ·) = 0, (2)

where P is in general a polynomial function of its argu-
ments, and the subscripts denote the partial derivatives,
the solution may be assumed to be in the form

u =
n

∑
i=0

{
Ai(x)φ i[q(x)]

}
(3)

with

φ ′ = σφ + φ2, (4)

where Ai(x) and q(x) are functions of the indicated ar-
gument to be determined, σ is an arbitrary constant,
and the prime denotes φ differentiation with respect
to q. To determine u explicitly, one substitutes (3) and
(4) into the given NPDE and collects the coefficients
of the polynomials of φ , then eliminates each coeffi-
cient to derive a set of partial differential equations for
Ai and q, and solves the system of partial differential
equations to obtain Ai and q. Finally, (4) is known to
possess the general solutions

φ =




−1
2

σ
[

1 + tanh(
1
2

σq)
]
, σ �= 0,

−1
2

σ
[

1 + coth(
1
2

σq)
]
, σ �= 0,

−1
2

σ
[

1− tan(
1
2

σq)
]
, σ �= 0,

−1
2

σ
[

1 + cot(
1
2

σq)
]
, σ �= 0,

−1
q

, σ = 0.

(5)

Substituting Ai, q, and (5) into (3), one obtains the ex-
act solutions to the given NPDE.

2. New Exact Solutions of the (2+1)-Dimensional
VCBK System

First, let us make a transformation of (1): v = uy.
Substituting this transformation into (1), yields

uyt + a [2uxuy + 2uuxy + uxxy] = 0. (6)

Now we apply the mapping approach to (6). By the
balancing procedure, ansatz (3) becomes

u(x,y, t) = f (x,y, t)+ g(x,y, t)φ(q), (7)

where f , g, and q are functions of (x,y, t) to be deter-
mined. Substituting (7) and (4) into (6) and collecting
coefficients of the polynomials in φ , then setting each
coefficient to zero, we have

f = −1
2

qt + aqxx + aq2
xσ

aqx
, g = −qx, (8)

with

q = χ(x, t)+ ϕ(y), (9)

where χ(x, t) and ϕ(y) are two arbitrary functions of
the indicated arguments.

Case 1. For σ �= 0, we can derive the following soli-
tary wave solutions and periodic wave solutions of (1):

u1 =−1
2

χt + aχxx −aχ2
x σ tanh

[ 1
2 σ(χ + ϕ)

]
aχx

, (10)

v1 =−1
4

χxϕyσ2

{
−1 + tanh

[
1
2

σ(χ + ϕ)
]2

}
, (11)

u2 =−1
2

χt + aχxx −aχ2
x σ coth

[ 1
2 σ(χ + ϕ)

]
aχx

, (12)

v2 =−1
4

χxϕyσ2

{
−1 + coth

[
1
2

σ(χ + ϕ)
]2

}
, (13)

u3 =−1
2

χt + aχxx + aχ2
x σ tan

[ 1
2 σ(χ + ϕ)

]
aχx

, (14)

v3 = −1
4

χxϕyσ2

{
1 + tan

[
1
2

σ(χ + ϕ)
]2

}
, (15)

u4 =−1
2

χt + aχxx −aχ2
x σ cot

[ 1
2 σ(χ + ϕ)

]
aχx

, (16)

v4 = −1
4

χxϕyσ2

{
1 + cot

[
1
2

σ(χ + ϕ)
]2

}
(17)

with two arbitrary functions being χ(x, t) and ϕ(y).

Case 2. For σ = 0, we can derive the following
variable separated solution of (1):

u5 = −1
2

χt + aχxx

aχx
+

χx

χ + ϕ
, (18)
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v5 = − χxϕy

(χ + ϕ)2 (19)

with two arbitrary functions being χ(x,t) and ϕ(y).

3. Some Novel Folded Localized Excitations in the
(2+1)-Dimensional VCBK System

Due to the arbitrariness of the functions χ(x, t) and
ϕ(y) included in the above cases, the physical quanti-
ties u and v may possess rich structures. In this section,
we mainly discuss some folded localized coherent ex-
citations in the (2+1)-dimensional VCBK system. For
simplicity, we only discuss the field v2 of (13), namely

V = v2 =

−1
4

χxϕyσ2

{
−1 + coth

[
1
2

σ(χ + ϕ)
]2

}
.

(20)

In order to construct kinds of interesting folded lo-
calized excitations, we introduce some suitable multi-
valued functions [26]. For instance,

χx =
M

∑
j=1

Vj(ε −c jt), x = ε +
M

∑
j=1

Pj(ε −c jt), (21)

where c j ( j = 1,2, · · · ,M) are arbitrary constants, Vj
and Pj are localized excitations with the properties
Vj(±∞) = 0, Pj(±∞) = consts. We also treat the func-
tion ϕ(y) in this way,

ϕy =
N

∑
j=1

Uj(ζ ), y = ζ +
N

∑
j=1

Q j(ζ ). (22)

Now we focus our attention on the intriguing evolu-
tion of two folded solitary waves for the solution V . If
we select χ and ϕ to be some appropriate multi-valued
functions, then we can see that the interactions among
the folded solitary waves are completely elastic. For
instance, if we choose χ and ϕ as

χx = −sech(ε − t)2 − sech(ε + t)2,

x = ε −0.6tanh(ε − t)−0.6sech(ε + t),

ϕy = sech(ζ )2, y = ζ −0.6tanh(ζ ),

(23)

we can derive the time evolution of folded solitary
waves for the physical quantity V presented in Fig-
ure 1 with fixed parameters σ = 1, at different times
(a) t = −3, (b) t = 0, (c) t = 3.

(a)

(b)

(c)

Fig. 1. Evolutional profile of the two folded solitary waves
for the solution V expressed by (20) with condition (23) at
different times (a) t = −3, (b) t = 0, (c) t = 3, respectively.

If we choose χ and ϕ as

χx = − tanh(ε − t)2 − sech(ε + t)2,

x = ε −0.8tanh(ε − t)−0.8sech(ε + t),

ϕy = sech(ζ )2, y = ζ −0.8sech(ζ ),

(24)

we can derive another time evolution of folded soli-
tary waves for the physical quantity V presented in
Figure 2 with fixed parameters σ = 1, at different
times (a) t = −5, (b) t = −2.5, (c) t = 0,, (d) t = 2.5,
(e) t = 5. From Figure 1 and 2, one can find the in-
teractions between the two folded solitary waves are
completely elastic since their amplitudes, velocities,
and wave shapes do not undergo any change after their
collision.
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(a)
(b)

(c)
(d)

(e)

Fig. 2. Evolutional profile of the two folded solitary waves
for the solution V expressed by (20) with condition (24) at
different times (a) t =−5, (b) t =−2.5, (c) t = 0, (d) t = 2.5,
(e) t = 5, respectively.

Furthermore, if we choose χ and ϕ as

χx = −sech(ε − t)2 − sech(ε + t)2,

x = ε −0.2sech(ε − t)−0.2sech(ε + t),

ϕy = sech(ζ )2, y = ζ −0.2sech(ζ ),

(25)

we can derive another time evolution of folded solitary
waves for the physical quantity V presented in Figure 3
with fixed parameters σ = 1, at different times (a) t =
−3, (b) t =−1.6, (c) t =−0.8, (d) t =−0.4, (e) t = 0.3,
(f) t = 0.6, (g) t = 1.6, (h) t = 3. From Figure 3 we
can see that a rotation behaviour happens when the two
folded solitary waves collide with each other, but their
amplitudes, velocities, and wave shapes do not change
after the collision.

4. Summary and Discussion

In the past, many authors have found the exact solu-
tions of some nonlinear systems via the Ricatti equa-
tion (φ ′ = σ + φ2) mapping method. In summary, via
a new projective equation (φ ′ = σφ + φ2) and a linear
variable separation approach, we find some new exact
solutions of the (2+1)-dimensional Broek-Kaup sys-
tem with variable coefficients, and based on the derived
solitary wave solution v2 of (13), we find a few novel
folded solitary wave excitations. To our knowledge, the
time evolutions of the two folded solitary waves dis-
played in Figure 2 and 3 are different from the ones
presented in the previous work.

As to the application of this equation (φ ′ = σφ +φ2)
mapping approach to some other nonlinear systems,
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(a)
(b)

(c)
(d)

(e)
(f)

(g)
(h)

Fig. 3. A novel time evolution of folded solitary waves for the solution V expressed by (20) with condition (25) at different
times (a) t = −3, (b) t = −1.6, (c) t = −0.8, (d) t = −0.4, (e) t = 0.3, (f) t = 0.6, (g) t = 1.6, (h) t = 3, respectively.
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we will carry out a further investigation in our future
work.
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