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The fractional Fokker-Planck equation (FFPE) has been used in many physical transport problems
which take place under the influence of an external force field and other important applications in var-
ious areas of engineering and physics. In this paper, by means of the homotopy perturbation method
(HPM), exact and approximate solutions are obtained for two classes of the FFPE initial value prob-
lems. The method gives an analytic solution in the form of a convergent series with easily computed
components. The obtained results show that the HPM is easy to implement, accurate and reliable for
solving FFPEs. The method introduces a promising tool for solving other types of differential equa-
tion with fractional order derivatives.
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1. Introduction

The Fokker-Planck equation (named after Adriaan
Fokker and Max Planck) describes the time evolution
of the probability density function of position and ve-
locity of a particle, which is one of the classical, widely
used equations of statistical physics. In the presence of
an external force field F(x) = −U ′(x), the evolution
of a test particle is usually described in terms of the
Fokker-Planck equation (FPE) [1]:

∂W
∂t

=

[
∂
∂x

U ′(x)
mη1

+ k1
∂2

∂x2

]
W (x,t), (1)

where W (x, t) defines the probability of finding the par-
ticle at a certain position x at a given time t, m denotes
the mass of the particle, k1 the diffusion constant asso-
ciated with the transport process, and the friction coef-
ficient η1 is a measure for the interaction of the particle
with its environment. Some properties of the FPE (1)
are mentioned by Metzler et al. [2]. These properties
cause that the conventional FPE (1) is not adequate to
describe anomalous subdiffusion. As a model for char-
acterizing subdiffusion, in an external potential field
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U(x), the fractional Fokker-Planck equation (FFPE)

∂W
∂t

= 0D1−α
t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
W (x, t), (2)

has been suggested [3 – 6]. Here, W (x, t) is the prob-
ability density, U(x) indicates the potential of over-
damped Brownian motion, a prime stands for the
derivative with respect to the space coordinate, kα de-
notes the generalized diffusion coefficient with phys-
ical dimension [cm2 s−α ], and ηα is the generalized
friction coefficient possessing the dimension [sα−2]
and 0D1−α

t stands for the Riemann-Liouville fractional
derivative of order 1−α , which is defined as follows
[7 – 9]:

0D1−α
t W (x, t) =

1
Γ (α)

∂′

∂t

t∫
0

W (x,s)
(t − s)1−α ds, (3)

where α ∈ [0,1), and Γ (x) is the gamma function. The
fundamental property of the Riemann-Liouville frac-
tional derivative is the fractional differentiation of a
power,

0D1−α
t tq =

Γ (q + 1)
Γ (q + α)

tq+α−1, for any real q. (4)
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It is well-known that among many other appli-
cations, the model of a Brownian particle in a pe-
riodic potential can be used to describe Brownian
motors and molecular motors [10 – 12], such as ki-
nesins, dyneins, and myosins. However, many other
systems, such as RNA polymerases, exonuclease and
DNA polymerases, helicases, the motion of ribosomes
along mRNA, and the translocation of RNA or DNA
through a pore, are advantageously described as par-
ticles moving along a disordered substrate. Depend-
ing on the statistical properties of the potential, the
long-time limit of the process can be quite different
from that in a washboard potential [13]. It has been
shown that the heterogeneity of the substrate potential
may lead to anomalous dynamics [14, 15]. In particu-
lar, over a range of forces around the stall force subdif-
fusion is observed [24]; i. e. the displacement grows as
〈δ r2(t)〉 ∼ tα with 0 < α < 1.

It should be noted that the FFPE (2) with fractional
order of time derivation happens in discontinuous time
in large time scales in weather forecast or in the very
small time scales in high energy physics. In this prob-
lem the discontinuous time reflects almost periodic
discontinuity of time. Discontinuing of time happens
according to the E-infinity theory, and the fractional
model is the best candidate to describe such problems.
Time-fractional equations always behave fascinatingly
as illustrated in [16, 17].

There is a more general form of the Fokker-Planck
equation. Nonlinear FPE has important applications in
various areas such as plasma physics, surface physics,
population dynamics, biophysics, engineering, neuro-
sciences, nonlinear hydrodynamics, polymer physics,
laser physics, pattern formation, psychology, and mar-
keting (see [18, 19] and references therein). For N vari-
ables x1, . . . ,xN , the general nonlinear FFPE can be
written in the following form:

∂W
∂t

= 0D1−α
t

[
−

N

∑
i=1

∂
∂xi

Ai(x,t,W )

+
N

∑
i, j=1

∂2

∂xi∂x j
Bi, j(x,t,W )

]
W (x,t),

(5)

where x = (x1, . . . ,xN), A1 and Bi, j are known func-
tions.

Because of the large number of applications of the
Fokker-Planck equation, a lot of work is done in or-
der to find the numerical solution of this equation. For
examples, we refer the readers to [2, 5, 6, 19, 20].

Fractional differential equations have been caught
much attention recently due to the exact description
of nonlinear phenomena. It is known that no analyti-
cal method was available before 1998 for such equa-
tions even for linear fractional differential equations.
In 1998, the variational iteration method (VIM) was
first proposed to solve fractional differential equations
with greatest success, see [21]. From then the varia-
tional iteration method and the homotopy perturbation
method (HPM) became the best candidates for solv-
ing various fractional equations. For example, the vari-
ational iteration method is employed in [22] for solving
fractional vibration equations and in [23] for solving a
Fokker-Planck equation. Application of the VIM and
HPM to the fractional evolution equations is investi-
gated in [24]. He’s homotopy perturbation method is
used for solving nonlinear partial differential equations
of fractional order [25]. In [26], the applications of the
HPM method to coupled systems of partial differential
equations with time fractional derivatives are provided.

In the present work, we construct solutions for the
two classes of FFPE, (2) and (5), using He’s HPM. In
recent years a lot of attention has been drawn to study
the homotopy perturbation method to investigate vari-
ous scientific models. The HPM, based on series ap-
proximation, is one among the newly developed an-
alytical methods for strongly nonlinear problems and
has been proven successful in solving a wide class of
differential equations [24 – 37]. The method provides
the solution in a rapidly convergent series with compo-
nents that can be simply computed. The HPM is useful
for obtaining both closed form explicit solutions and
numerical approximations of linear or nonlinear dif-
ferential equations and it is of great interest to applied
science, engineering, physics, biology, etc.

2. Basic Idea of the Homotopy Perturbation
Method

To illustrate the basic ideas of this method, we con-
sider the following nonlinear differential equation [27]:

L(W )+ N(W )− f (r) = 0, r ∈ Ω , (6)

with the boundary conditions

B(W,∂W/∂n) = 0, r ∈ Π , (7)

where L and N are linear and nonlinear differential
operators, respectively, B a boundary operator, f (r) a
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known analytical function and Π is the boundary of the
domain Ω .

By the homotopy technique, we construct a homo-
topy V (r, p) : Ω · [0,1]→ R which satisfies

H(V, p) = (1− p) [L(V )−L(W0)]
+ p [L(V )+ N(V)− f (r)] = 0,

p ∈ [0,1], r ∈ Ω ,

(8)

where p ∈ [0,1] is an embedding parameter, W0 is an
initial approximation of (6), which satisfies the bound-
ary conditions (7).

Obviously, from (8) we will have

H(V,0) = L(V )−L(W0) = 0, (9)

H(V,1) = L(V )+ N(V)− f (r) = 0, (10)

the changing process of p from zero to unity is just that
of V (r, p) from W0(r) to W (r).

According to the HPM, we can first use the embed-
ding parameter p as a “small parameter”, and assume
that the solution of (8) can be written as a power series
in p:

V = V0 + pV1 + p2V2 + . . . . (11)

Setting p = 1 results in the approximate solution of (6):

W = lim
p→1

V = V0 +V1 +V2 + . . . . (12)

The series in (12) is convergent for most cases, and
also the rate of convergence depends on the linear and
nonlinear differential operators [27].

The combination of the perturbation method and the
homotopy method is called the homotopy perturbation
method, which has eliminated the limitations of the tra-
ditional perturbation methods. On the other hand, this
technique can have the full advantage of the traditional
perturbation techniques.

3. Applications

3.1. The FFPE Used for Characterizing Subdiffusion

Consider the FFPE initial value problem

∂W
∂t

= 0D1−α
t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
W (x,t),

W (x,0) = ϕ(x).

(13)

According to (8), a homotopy V (x, t, p) : Ω · [0,1]→ R

can be constructed as follows:

(1− p)
(

∂V
∂t

− ∂W0

∂t

)

+p
(

∂V
∂t

− 0D1−α
t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
V

)
= 0,

p ∈ [0,1], (x, t) ∈ Ω ,

(14)

where W0 = V0(x,0) = W (x,0).
One can now try to obtain a solution of (14) in the

form of

V (x, t) =V0(x, t)+ pV1(x, t)+ p2V2(x, t)+ . . . . (15)

Substituting (15) into (14), and arranging the coeffi-
cients of “p” powers, yields:

p0 :
∂V0

∂t
= 0,

p1 :
∂V1

∂t
= 0D1−α

t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
V0,

p2 :
∂V2

∂t
= 0D1−α

t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
V1,

...

pn :
∂Vn

∂t
= 0D1−α

t

[
∂
∂x

U ′(x)
mηα

+ kα
∂2

∂x2

]
Vn−1,

n = 3,4,5, . . . ,

(16)

with the following initial conditions:

Vi(x,0) =

{
ϕ(x), i = 0,

0, i = 1,2,3, . . .
(17)

Example 1. Firstly, we consider the FFPE (13) with

U ′(x)
mηα

= −1, kα = 1, and ϕ(x) = x(1− x), (18)

which is considered by Chen et al. [6].
Using above parameter values and (4), the solution

of the system (16), according to conditions (17), can
be easily obtained by integrating each equation of the
system with respect to t as follows:

V0(x, t) = x(1− x),

V1(x, t) =
(2x−3)tα

αΓ (α)
,

V2(x, t) = − 2t2α

2αΓ (2α)
,

Vn(x, t) = 0, for n = 3,5,6, . . .

(19)
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Substituting (19) into (12) yields

W (x, t) = x(1−x)+
(2x−3)tα

Γ (α + 1)
− 2t2α

Γ (2α + 1)
, (20)

which is the exact solution of the FFPE (13) with the
parameter values (18).

Example 2. Secondly, consider the FFPE (13) with

U ′(x)
mηα

=
1

x + 1
, kα = 1, and ϕ(x) = (x+1)3, (21)

which is considered by Chen et al. [6].
Using parameter values in (21) and (4), we can sim-

ply obtain the solution of the system (16), according to
conditions (17) as follows:

V0(x, t) = (x + 1)3, V1(x,t) =
8(x + 1)tα

αΓ (α)
,

Vn(x, t) = 0, for n = 2,4,5, . . . .
(22)

Substituting (22) into (12) yields the exact solution
of the FFPE (13) with the parameter values (21),

W (x, t) = (x + 1)3 +
8(x + 1)tα

Γ (α + 1)
. (23)

Example 3. Consider the FFPE (13) with

U(x) = cos(x)−6x, mηα = 6, kα = 2,

and ϕ(x) = 0.1,
(24)

which is considered by Deng [5].
By substituting (24) into system (16) with initial

conditions (17), we continued solving (16) for Vn, n =
0,1, . . . until V5 and hence obtain a six-term approxi-
mation ψ5 = ∑5

n=0Vn. The components of ψ5 can be
easily obtained with the aid of the relation (4). The
closed form approximate solution of (13) with the pa-
rameter values of (24) using HPM is given by

ψ5(x, t) =
1

10
− tα

60Γ (α + 1)
cos(x)

+
t2α

360Γ (2α + 1)
[
2cos2(x)−6sin(x)+ 12cos(x)−1

]
+

t3α

2160Γ (3α + 1)
[−6cos3(x)−120cos2(x)

+ 36sin(x)cos(x)+ 144sin(x)−103cos(x)+ 60
]

+
t4α

12960Γ (4α + 1)
[
24cos4(x)+ 1008cos3(x)

−216cos2(x)sin(x)−3456sin(x)cos(x)

+ 5516cos2(x)−2310sin(x)−360cos(x)−2767
]

(a)

(b)

Fig. 1. Behaviour of the probability density W (x,t), esti-
mated by ψ5, versus x for different values of t with α = 1.0,
shown in (a), and α = 0.8, shown in (b), for the FFBE (13)
with the parameter values of (24).

− t5α

77760Γ (5α + 1)
[
120cos5(x)+ 8640cos4(x)

−1440cos3(x)sin(x)−51840cos2(x)sin(x)

+ 121428cos3−236268sin(x)cos(x)

+ 216096cos2(x)−16920sin(x)−101963cos(x)
−111288

]
. (25)

The behaviour of the probability density W (x, t) 	
ψ5 versus x, for different values of t and α , is shown in
Figures 1 and 2.

3.2. The General FFPE

Consider the general FFPE initial value problem

∂W
∂t

= 0D1−α
t

[
−

N

∑
i=1

∂
∂xi

Ai(x, t,W )
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(a)

(b)

Fig. 2. Behaviour of the probability density W (x,t), esti-
mated by ψ5, versus x for different values of α at t = 0.15,
shown in (a), and t = 0.35, shown in (b), for the FFBE (13)
with the parameter values of (24).

+
N

∑
i, j=1

∂2

∂xi∂x j
Bi, j(x,t,W )

]
W (x,t),

W (x,0) = ϕ(x). (26)

According to (8), a homotopyV (x,t, p) : Ω · [0,1]→
R can be constructed as follows:

(1− p)
(

∂V
∂t

− ∂W0

∂t

)

+ p
(

∂V
∂t

− 0D1−α
t

[
−

N

∑
i=1

∂
∂x1

A1(x,t,V )

+
N

∑
i, j=1

∂2

∂xi∂x j
Bi, j(x,t,V )

]
V

)
= 0,

(27)

where W0 = V0(x,0) = W (x,0).

One can now try to obtain a solution of (27) in the
form of

V (x, t) =V0(x, t)+ pV1(x, t)+ p2V2(x, t)+ . . . . (28)

Substituting (28) into (27), and arranging the coef-
ficients of “p” powers, yields a system of differential
equations that depend on functions Ai and Bi, j with the
following initial conditions:

Vi(x,0) =
{

ϕ(x), i = 0,
0, i = 1,2,3, . . . .

(29)

Example 4. Consider the FFPE (26) with N = 2,
x = (x,y), and

A1(x,y) = x, A2(x,y) = 5y,

B1,1(x,y) = x2, B1,2(x,y) = 1,

B2,1(x,y) = 1, B2,2(x,y) = y2, and

ϕ(x,y) = x, x,y ∈ R,

(30)

which is considered by Tatari et al. [19] in case of α =
1.

Substituting (28) into (27) with the parameter func-
tions of (30), and arranging the coefficients of “p”
powers, yields

p0 : V0t = 0,

p1 : V1t = 0D1−α
t [x2V0xx + y2V0yy

+ 2V0xy + 3xV0x − yV0y −2V0],

p2 : V2t = 0D1−α
t [x2V1xx + y2V1yy

+ 2V1xy + 3xV1x − yV1y −2V1],
...
pn : Vnt = 0D1−α

t [x2Vn−1xx + y2Vn−1yy

+ 2Vn−1xy + 3xVn−1x − yVn−1y −2Vn−1],
n = 3,4,5, . . . ,

(31)

with the following initial conditions:

Vi(x,y,0) =
{

x, i = 0,
0, i = 1,2,3, . . . .

(32)

With the aid of (4), solutions of some equations
of the system (31) with respect to initial conditions
(32) give the first few components of a series solution
V (x,y, t) that are derived as follows:

V0(x,y, t) = x, V1(x,y, t) = x
tα

αΓ (α)
,

V2(x,y, t) = x
t2α

2αΓ (2α)
, V3(x,y, t) = x

t3α

3αΓ (3α)
,
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V4(x,y, t) = x
t4α

4αΓ (4α)
, V5(x,y,t) = x

t5α

5αΓ (5α)
,

. . . . (33)
Therefore:

W (x,y, t) = x
(

1 +
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)

+
t3α

Γ (3α + 1)
+

t4α

Γ (4α + 1)

+
t5α

Γ (5α + 1)
+ . . .

)
.

(34)

So the solution of the FFPE (26), with N = 2 and func-
tions of (30), in a closed form is

W (x,y, t) = x
∞

∑
n=0

tnα

Γ (nα + 1)
. (35)

In case of α = 1, the exact solution of the problem
considered by Tatari et al. [19] is directly obtained:

W (x,y, t) = x exp(t). (36)

Example 5. Finally, we applied the HPM to nonlin-
ear FFPE. Consider the FFPE (26) with N = 1, x = x,
and

A1(x, t,W ) =
4W
x

− x
3
, B1,1(x,t,W ) = W,

and ϕ(x) = x2, x ∈ R,

(37)

which is considered by Tatari et al. [19] in case of
α = 1.

Substituting (28) into (27) with the parameter func-
tions of (37), and arranging the coefficients of “p” pow-
ers, yields

p0 : V0t = 0,

p1 : V1t = 0D1−α
t

[(
2V0xx −

8
x

V0x +
4
x2 V0 +

1
3

)
V0

+
(

2V0x +
x
3

)
V0x

]
,

p2 : V2t = 0D1−α
t

[(
2V0xx −

8
x

V0x +
4
x2 V0 +

1
3

)
V1

+
(

4V0x +
x
3

)
V1x +

(
2V1xx −

8
x

V1x +
4
x2 V1

)
V0

]
,

p3 : V3t = 0D1−α
t

[(
2V0xx −

8
x

V0x +
4
x2 V0 +

1
3

)
V2

+
(

4V0x +
x
3

)
V2x +

(
2V1xx −

8
x

V1x +
4
x2 V1

)
V1

+ 2V1xV1x +
(

2V2xx −
8
x

V2x +
4
x2 V2

)
V0

]
,

... (38)

with the initial conditions

Vi(x,0) =

{
x2, i = 0,

0, i = 1,2,3, . . .
. (39)

Now, solving the system (38) according to condi-
tions (39), we obtain

V0(x, t) = x2, V1(x, t) = x2 tα

αΓ (α)
,

V2(x, t) = x2 t2α

2αΓ (2α)
, V3(x, t) = x2 t3α

3αΓ (3α)
,

. . .

(40)

Hence, the first 4-term HPM series solution can be
written as

W (x, t) = x2
(

1 +
tα

Γ (α + 1)
+

t2α

Γ (2α + 1)

+
t3α

Γ (3α + 1)
+ . . .

)
.

(41)

So the solution of the FFPE (26), with N = 1 and func-
tions of (37), can be written in a closed form as

W (x, t) = x2
∞

∑
n=0

tnα

Γ (nα + 1)
. (42)

In case of α = 1, the exact solution of the problem
considered by Tatari et al. [19] is directly obtained:

W (x, t) = x2 exp(t). (43)

4. Conclusions

The homotopy perturbation method was imple-
mented successfully for solving two classes of frac-
tional Fokker-Planck equation initial value problems.
It can be concluded that the HPM is very powerful and
efficient in finding analytical as well as numerical solu-
tions for wide classes of fractional linear and nonlinear
partial differential equations. It provides the solution
in terms of convergent series with easily computable
components in a straightforward manner without using
restrictive assumptions or linearization. It is important
to note that the HPM method provides a closed form
of the solution that rapidly converges to the exact one
if it’s free of singularities. Finally, the study shows that
the HPM requires less computational work than exist-
ing approaches while supplying quantitatively reliable
results.
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