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The variational iteration method is applied to solve the Kawahara equation. This method produces
the solutions in terms of convergent series and does not require linearization or small perturbation.
Some examples are given. The comparison with the theoretical solution shows that the variational
iteration method is an efficient method.
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1. Introduction

The Kawahara equation is an equation which mod-
els the plasma waves and the capillary gravity water
waves [1 – 3]. Moreover, this equation describes water
waves with surface tension [4]. In this paper we con-
sider the standard form of the Kawahara equation given
by [5]:

ut + uux + u3x −u5x = 0, (1)

where ukx = ∂k
u

∂xk
. We solve (1) with subject to the initial

condition

u(x,0) = f (x), x ∈ R . (2)

In [5] an algebraic direct method is described to con-
struct the exact travelling wave solutions for this prob-
lem. Authors of [6] used Adomian decomposition
method (ADM) and the Sinc-Galerkin method for nu-
merical approximation of the travelling wave solutions
of this equation and they obtained the exact travelling
wave solutions of the Kawahara equation for the initial
conditions by using ADM. Also ADM is used in [7]
for numerical approximation of the travelling wave so-
lutions of the modified Kawahara equation. Author of
[8] demonstrated the existence of compaction solutions
and solitary patterns solutions for two specific forms of
the Kawahara-type equation.

In the current investigation, we employ the varia-
tional iteration method (VIM) for solving the Kawa-
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hara equation. This method was proposed by the Chi-
nese mathematician Ji-Huan He [9, 10] as a modifi-
cation of a general Lagrange multiplier method [11].
The VIM plays an important role in recent researches
for solving various kinds of problems (see for exam-
ple [12 – 16] and the references therein). This method
does not require specific transformations for nonlinear
terms as required by some other existing techniques.

An elementary introduction of VIM is given in [17].
The main concepts in variational iteration method,
such as general Lagrange multiplier, restricted varia-
tion, and correction functional are explained heuris-
tically. Subsequently, the solution procedure is sys-
tematically addressed, in particular for nonlinear
oscillators.

Using the VIM we can find the exact solution of the
problem. As Wazwaz said in [18] in the variational it-
eration method (VIM), the linear and nonlinear struc-
tures are handled in a like manner without any need to
restrictive assumptions. The reliability of the method
and the reduction in the size of computational domain
give this method a wider applicability. As an advan-
tage of the VIM over the ADM, the former method
provides the solution of the problem without calcu-
lating Adomians polynomials. This technique solves
the problem without any need to discretization of the
variables. Therefore, it is not affected by computation
round off errors and one is not faced with necessity of
large computer memory and time. This scheme pro-
vides the solution of the problem in a closed form
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while the mesh point techniques [19] provide the ap-
proximation at mesh points only. Also this procedure
is useful for finding an accurate approximation of the
exact solution. The He’s variational iteration method
gives several successive approximations through using
the iteration of the correction functional. The reliabil-
ity of the method and the reduction of the size of com-
putational domain have attracted the attention of many
researchers to use it in various areas of science and en-
gineering. With our best of knowledge [20] is the only
paper which has investigated the convergence of the
variational iteration method.

Recently, some other extraordinary virtues of the
method have been exploited and wide applications
have been found in various fields. The variational it-
eration method was employed in [21] to solve the
Cauchy problem arising in one-dimensional nonlinear
thermoelasticity. The advantages of the technique to
overcome the difficulty of calculation of Adomian’s
polynomials in the decomposition procedure of Ado-
mian is shown. He’s variational iteration method is
used in [22] to solve various integral equations. The
results show that VIM is very effiective and conve-
nient for solving integral equations. Wazwaz [23] em-
ployed VIM to present an analytic frame work to han-
dle the linear and the nonlinear Goursat problems. Au-
thors of [24] used He’s variational iteration method to
find the solution of nonlinear Jaulent-Miodek equation,
Korteweg-de Vries (KdV), and modified Korteweg-de
Vries (MKdV) equations. All the examples show that
the results of the VIM are in excellent agreement with
those of ADM . They showed that VIM with the fewest
number of iterations or even in some cases, once, can
converge to correct results. Abbasbandy [25] solved
the quadratic Riccati differential equation by He’s vari-
ational iteration method with considering Adomian’s
polynomials. Comparisons were made between Ado-
mian’s decomposition method, homotopy perturbation
method, and the exact solution. Authors of [26] em-
ployed this procedure to solve the Klein-Gordon equa-
tion which is the relativistic version of the Schrödinger
equation. The variational iteration technique is used
in [27] to solve a system of two nonlinear integro-
differential equations which arises in biology, describ-
ing biological species living together. VIM is em-
ployed by authors of [28] to solve a parabolic integro-
differential equation which describes problems in heat
conduction in materials with memory. This scheme is
applied to solve the Lane-Emden equation which arises
in astronomy [29]. Authors of [30] employed the varia-

tional iteration procedure to solve the Cauchy reaction-
diffusion equation.

The main analytic approach in the literature is the
Adomian decomposition method [31]. But the main
disadvantage of the Adomian method is that the so-
lution procedure for calculation of Adomian polyno-
mials is complex and difficult as pointed by many re-
searchers. A complete comparison between the Ado-
mian decomposition method and the variational itera-
tion method is available on [18]. Also some new devel-
opments and new interpretations of the variational iter-
ation method is available on [17]. For a relatively com-
prehensive survey on the method and its applications,
the readers are referred to the review article [32]. Also
authors of [33] used He’s variational iteration method
to find the solution of a generalized pantograph equa-
tion. The interested reader can see [34 – 40] for more
applications of the variation iteration method. The or-
ganization of this paper is as follows:

In Section 2, we apply the VIM on (1) with ini-
tial condition (2). To present a clear overview of the
method, in Section 3 we give two examples with ana-
lytical solutions, and solve them using the variational
iteration technique. A brief conclusion is given in Sec-
tion 4.

2. The Application of VIM

In this section the application of the VIM is dis-
cussed for solving problem (1)-(2). As stated before,
the variational iteration method is based on the gen-
eral Lagranges multiplier method. To illustrate the ba-
sic concept of VIM, we consider the following general
nonlinear differential equation:

Lu + N u = g(x), (3)

where L is a linear operator, N is a nonlinear operator,
and g(x) is a known analytical function. According to
VIM we can construct a correction functional as fol-
lows:

un+1(x) = un(x)

+
∫ x

0
λ (s){Lun(s)+ N(ũn(s))−g(s)}ds, n ≥ 0,

(4)

where λ is a general Lagrangian multiplier [11] which
can be identified optimally via the variational the-
ory, the subscript n denotes the nth-order approxima-
tion, and ũn is considered as a restricted variation, i. e.
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δ ũn = 0 [9, 10]. Therefore, we first determine the La-
grange multiplier λ which will be identified optimally
via integration by parts. The successive approxima-
tions un+1, n ≥ 0, of the solution u will be readily
obtained upon using the determined Lagrangian mul-
tiplier and any selective function u0. Consequently, the
solution is given by u = limn→∞ un.

Now, according to the VIM, we consider the correc-
tion functional in t direction for (1) in the following
form:
un+1(x, t) =

un(x, t)+
∫ t

0
λ

{
∂un(x,s)

∂s
+ un(x,s)

∂ũn(x,s)
∂x

+
∂3ũn(x,s)

∂x3 − ∂5ũn(x,s)
∂x5

}
ds, n ≥ 0.

(5)

To find the optimal value of λ we have

δun+1(x, t) = δun(x,t)

+ δ
∫ t

0
λ

{
∂un(x,s)

∂s
+ un(x,s)

∂ũn(x,s)
∂x

+
∂3ũn(x,s)

∂x3 − ∂5ũn(x,s)
∂x5

}
ds,

(6)

or

δun+1(x, t) = δun(x,t)+δ
∫ t

0
λ

{
∂un(x,s)

∂s

}
ds, (7)

that results in

δun+1(x, t) = δun(x,t)(1+λ )−
∫ t

0
δun(x,t)λ ′ds, (8)

which yields

λ ′(s) = 0, 1 + λ (s) = 0|s=t . (9)

Thus we have λ =−1 and we can obtain the following
iteration formula:
un+1(x, t) = un(x,t)

−
∫ t

0

{
∂un(x,s)

∂s
+ un(x,s)

∂un(x,s)
∂x

+
∂3un(x,s)

∂x3 − ∂5un(x,s)
∂x5

}
ds, n ≥ 0.

(10)

Therefore, the approximation solution is given as
u(x, t) = limn→∞ un(x,t).

3. Numerical Examples

To incorporate our discussion given in the previous
section, we consider two examples with known exact
solutions [5].

Table 1. Errors |u3(xi,t j)−u(xi,t j)| for Example 1.

xi t j = 0.1 0.2 0.3 0.4 0.5

0.1 0.10 ·10−7 0.60 ·10−7 0.21 ·10−6 0.67 ·10−6 0.16 ·10−5

0.2 0 0.20 ·10−7 0.18 ·10−6 0.60 ·10−6 0.15 ·10−5

0.3 0 0.20 ·10−7 0.18 ·10−6 0.58 ·10−6 0.14 ·10−5

0.4 0 0.40 ·10−7 0.17 ·10−6 0.56 ·10−6 0.13 ·10−5

0.5 0 0.40 ·10−7 0.18 ·10−6 0.52 ·10−6 0.12 ·10−5

3.1. Example 1

We first consider the Kawahara equation which has
the travelling wave solution of which is to be obtained
subject to the initial condition [5, 6]

u(x,0) = − 72
169

+
105
169

sech4(K x),

where K = 1
2
√

13
.

We start with an initial approximation u0(x, t) =
u(x,0) and we use the iteration formula (10). We can
obtain directly the other components as

u0(x, t) = − 72
169

+
105
169

sech4(K x). (11)

u1(x, t) = − 72
169

+
105
169

sech4(K x)

− 420
28561

sech(K x)K t
[
72cosh4(K x)−105

−2704K2cosh4(K x)+ 5070K2cosh2(K x)

+ 43264K2cosh4(K x)−263640K4cosh2(K x)

+ 283920K4
] 1

cosh9(K x)
,

(12)

and so on, in the same manner the rest of components
of the iteration formula (10) were obtained using the
well-known symbolic package Maple. Using Taylor
series, we obtain the closed form of the solution:

u(x, t) = − 72
169

+
105
169

sech4(K(x + ct)), (13)

where c = 36
169 . The results are the same as with the

results of the Adomian decomposition method [6]. The
absolute errors obtained for u3(x, t) for different values
of xi and t j are shown in Table 1.

3.2. Example 2

In this example [5] we consider the Kawahara equa-
tion (1) which has the travelling wave solution. Sup-
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Table 2. Errors |u3(xi,t j)−u(xi,t j)| for Example 2.

xi t j = 0.1 0.2 0.3 0.4 0.5

0.1 0.28 ·10−8 0.40 ·10−7 0.20 ·10−6 0.63 ·10−6 0.15 ·10−5

0.2 0.28 ·10−8 0.39 ·10−7 0.19 ·10−6 0.62 ·10−6 0.15 ·10−5

0.3 0.28 ·10−8 0.38 ·10−7 0.19 ·10−6 0.60 ·10−6 0.14 ·10−5

0.4 0.17 ·10−8 0.36 ·10−7 0.18 ·10−6 0.56 ·10−6 0.13 ·10−5

0.5 0.20 ·10−8 0.34 ·10−7 0.17 ·10−6 0.53 ·10−6 0.13 ·10−5

pose

u(x,0) = − 72
169

+
420
169

sech2(K x)
(1 + sech(K x))2 , (14)

where K = 1√
13

.
Again we start with an initial approximation

u0(x, t) = u(x,0) and by substituting this equation into
(10) we have

u1(x, t) = − 72
169

+
420
169

sech2(K x)
(1 + sech(K x))2

− 840
28561

sinh(K x)Kt
[
2704K4cosh(K x)2

− 676K2cosh(K x)2 + 72cosh(K x)2

− 27547K4cosh(K x)−1183K2cosh(K x)

+ 144cosh(K x)−348 + 40729K4

+ 1859K2
] 1

1 + cosh(K x)5 . (15)

The remaining un(x,t), n ≥ 2, can be completely de-

termined using the Maple package. Again using Taylor
series, we obtain the closed form solution

u(x, t) =− 72
169

+
420
169

sech4(K(x + ct))
(1 + sech(K(x + ct)))2 . (16)

In Table 2 the absolute errors obtained for u3(x, t) for
different values of xi and t j are shown.

4. Conclusion

In this work, He’s variational iteration method has
been successfully applied to solve the Kawahara equa-
tion. The approximate solutions are compared with the
exact solutions in Tables 1 and 2. This method solves
the problem without any need to discretization of the
variables. Therefore, it is not affected by computation
round off errors. Also this method is useful for find-
ing an accurate approximation of the exact solution. As
an advantage of the variational iteration method over
the decomposition procedure of Adomian, the present
method provides the solution of the problem without
calculating Adomians polynomials. In our work, we
used the Maple package to calculate the terms of the
series obtained from the variational iteration method.
Overall, the reliability of the method and the reduction
of the size of computational domain give this method
wide applications.
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