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This investigation is concerned with the flow and heat transfer analysis between two disks rotating
about non-coaxial axes normal to the disks. The constitutive equation of an incompressible Sisko
fluid is used. The fluid is electrically conducting and the Hall effect is taken into account. Analytic
solutions of the governing nonlinear problem is obtained by homotopy analysis method (HAM). The
graphs are presented and discussed. Finally a comparison is made between the results of viscous and
Sisko fluids.
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1. Introduction

Nature is abundant of fluids for which the Navier-
Stokes equations are inadequate. Such fluids include
shampoo, blood, mud, ice cream, clay, coating, paints,
ketchup, certain oils and greases, polymer melts, many
emulsions etc. Because of several industrial technolog-
ical applications, the non-Newtonian fluids are consid-
ered more important than viscous fluids. Unlike the
viscous fluids there is not a single constitutive equa-
tion available in the literature by which the behaviour
of all the non-Newtonian fluids can be analyzed. In fact
this is due to the diversity of non-Newtonian fluids in
nature. The constitutive equations of non-Newtonian
fluids involve rheological parameters. Except in the
case of some basic flows, the constitutive equations
of non-Newtonian fluids give rise to more complex-
ities in the momentum equation. The resulting equa-
tions are of higher order than the Navier-Stokes equa-
tions and the adherence boundary conditions are insuf-
ficient for the determinacy [1]. The equations of non-
Newtonian fluids are much complicated and making
the task of obtaining the accurate solutions is a diffi-
cult one. Moreover the magnetohydrodynamic (MHD)
features of non-Newtonian fluids add further complica-
tions in the governing equations. Such flow of an elec-
trically conducting fluid under the action of a constant
magnetic field has applications in many devices such
as MHD power generators, MHD pumps and accelera-
tors etc. Examples include flow of nuclear fuel slurries,
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flow of liquid metals and alloys, flow of plasma, flow
of mercury amalgams, lubrications of heavy oils and
greases. In spite of all these challenges various work-
ers [2 – 14] in that field are engaged recently in obtain-
ing the analytic solutions of non-Newtonian fluids.

It is known that Berker [15] discussed the possibil-
ity of the exact solution for viscous flow caused by
the non-coaxial rotation of a disk and fluid at infin-
ity. He analyzed the flow between two rotating disks
of some angular velocity. It is proved that an infinite
number of solutions exists for this flow configuration.
An extra condition is necessary for a unique solution.
However there is a unique solution when there is a sin-
gle disk. Coirier [16] examined the flow due to non-
coaxial rotation of a disk with different angular ve-
locities and fluid at infinity. The steady flow engen-
dered by non-coaxial rotation of a porous disk and
viscous fluid at infinity has been presented by Erdo-
gan [17, 18]. Also the asymptotic solutions for uniform
suction and blowing at the disk are obtained in [17, 18].
The flow analysis of [17] is extended to the MHD and
heat transfer situations by Murthy and Ram [19]. The
unsteady flows created by the non-coaxial rotations of
the disks and viscous hydrodynamic and MHD fluids
in various situations have been studied by Pop [20],
Kasiviswanathan and Rao [21], Erdogan [22 – 24], and
Hayat et al. [25 – 29]. A large number of relevant stud-
ies for flows of Newtonian and non-Newtonian flu-
ids between parallel disks rotating about a common
axis have been presented in a review article by Ra-
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jagopal [30]. Recently Ersoy [31] discussed the flow
due to a pull with constant velocity of eccentric rotat-
ing disks with the same angular velocity.

In this attempt we discuss the Hall and heat trans-
fer effects on the steady flow of an incompressible
and electrically conducting Sisko fluid. The fluid is be-
tween the insulated disks of constant temperatures. The
flow is caused by a sudden pull of eccentric rotating
disks. The governing nonlinear problem is solved by
a powerful analytic technique namely the homotopy
analysis method (HAM) [32 – 44]. It is only recently
that successful attempts have been made to compute
analytically the flows of viscoelastic fluids employing
HAM. The obtained series solutions of velocity and
temperature are sketched and analyzed in detail.

2. Mathematical Formulation

Consider the electrically conducting Sisko fluid be-
tween two infinite disks rotating with angular veloc-
ity ΩΩΩ about two non-coaxial axes with distant 2l. The
z-axis is chosen normal to the disk. The fluid is electri-
cally conducting in the presence of a constant applied
magnetic field. The disks at z = h and z =−h are pulled
with constant velocities U and −U, respectively.

The appropriate boundary conditions are [31]:

u = −Ω(y− l)+U1, v = Ωx +U2,

w = 0 at z = h,

u = −Ω(y + l)−U1, v = Ωx−U2,

w = 0 at z = −h.

(1)

The above boundary conditions suggest the velocity of
the form [20, 22 – 24]

u = −Ωy + f (z), v = Ωx + g(z), w = 0. (2)

The equations governing the MHD steady flow of an
incompressible fluid are

divV = 0, (3)

ρ(V · )V = divT+ J×B, (4)

·B = 0, ×B = µmJ, ×E = 0. (5)

In the above equations V, ρ , J, µm, E, and σ are ve-
locity, fluid density, current density, magnetic perme-
ability, total electric field, and electrical conductivity,
respectively. Furthermore, the generalized Ohm’s law
in the presence of a Hall current is

J+
ωeτe

B0
(J×B0) = σ

[
E+ V×B+

1
ene

pe

]
, (6)

where e is the electron charge, B0 is the applied mag-
netic field, ωe is the cyclotron frequency of electrons,
τe is the electron collision time, ne is the number den-
sity of the electron and pe is the electron pressure. Here
ion-slip and thermo electric effects are neglected. The
induced magnetic field is negligible. Also ωeτe ≈O(1)
and ωiτi � 1, where ωi and τi are the cyclotron fre-
quency and collision time for ions, respectively.

The Cauchy stress tensor for a Sisko fluid is [45]

T = −pI+ S, (7)

S =

[
a + b

∣∣∣∣12 tr(A2
1)
∣∣∣∣

n−1
2
]

A1,

A1 = L+ LT , L = gradV.

(8)

It should be noted that for b = 0 and a = µ , (8) reduces
to the equation of a viscous fluid. Invoking (2) into (8)
one obtains

Sxx = Syy = Szz = Sxy = Syx = 0,

Sxz = Szx =


a + b

((
d f
dz

)2

+
(

dg
dz

)2
) n−1

2

 d f

dz
,

Syz = Szy =


a + b

((
d f
dz

)2

+
(

dg
dz

)2
) n−1

2

 dg

dz
.

(9)

Through (2), (3) is automatically satisfied and (4)
along with (6) yields

∂p
∂x

= ρΩ[Ωx + g(z)]+
∂Sxz

∂z

+
σB2

0(1 + iφ)
1 + φ2

(
Q
2h

− f (z)
)

,

(10)

∂p
∂y

= ρΩ[Ωy− f (z)]+
∂Syz

∂z

+
σB2

0(1 + iφ)
1 + φ2

(
P
2h

−g(z)
)

,

(11)

∂p
∂z

= 0, (12)

when

Q =
∫ h

−h
f (z)dz, P =

∫ h

−h
g(z)dz, (13)

p �= p(z) and φ = ωeτe is the Hall parameter.
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The relevant boundary conditions are of the form

f (z) = Ωl +U1, g(z) = U2 at z = h, (14)

f (z) =−Ωl−U1, g(z) = −U2 at z = −h. (15)

From (10) – (13) we may obtain

Ωρg(z)+
∂Sxz

∂z
−H f (z) = C1, (16)

−Ωρ f (z)+
∂Syz

∂z
−Hg(z) = C2, (17)

where

H =
σB2

0(1 + iφ)
1 + φ2 . (18)

Equations (10) and (11) upon integration give

p = p0 +
1
2
(x2 +y2)+

[
C1 +

HQ
2h

]
x+
[
C2 +

HP
2h

]
y,

where p0 is the reference pressure and Ci (i = 1,2) are
the arbitrary constants. In above equation there arises
a pressure gradient between the two disks that corre-
sponds to the Poiseuille flow when C1 + HQ

2h �= 0 and
C2 + HP

2h �= 0. In absence of the Poiseuille flow and to
ensure the symmetry of the velocity distribution about
the disk z = 0, we choose

C1 = −HQ
2h

, C2 = −HP
2h

. (19)

Substituting (9) and (18) into (16) and (17) we have

a
d2F
dz2 + b

[
d2F
dz2

(
dF
dz

dF̄
dz

) n−1
2

+
n−1

2
dF
dz

(
dF
dz

dF̄
dz

) n−3
2
(

d2F
dz2

dF̄
dz

+
dF
dz

d2F̄
dz2

)]

−
(

σB2
0(1 + iφ)
1 + φ2 + iΩρ

)
F

+
(

σB2
0(1 + iφ)
1 + φ2

)(
Q+ iP

2h

)
= 0, (20)

in which the boundary conditions are

F(h) = Ωl +U1 + iU2,

F(−h) = −(Ωl +U1 + iU2),
(21)

F = f + ig, F̄ = f − ig. (22)

At this stage it is convenient to define the dimension-
less quantities as follows:

z∗ =
z
h
, F∗ =

F
Ωl

, b∗1 =
b
a

(
Ωl
h

)n−1

,

M2 =
σB2

0h2

a
, R = Ωρ

h2

a
, V1 =

U1

Ωl
, V2 =

U2

Ωl
.

The resulting dimensionless problem reduces to

d2F
dz2 + b1

[
d2F
dz2

(
dF
dz

dF̄
dz

) n−1
2

+
n−1

2
dF
dz

(
dF
dz

dF̄
dz

) n−3
2
(

d2F
dz2

dF̄
dz

+
dF
dz

d2F̄
dz2

)]

−
(

M2(1 + iφ)
1 + φ2 + iR

)
F

= −
(

M2(1 + iφ)
1 + φ2

)(
Q+ iP
2hΩl

)
, (23)

F(1) = 1 +V1 + iV2,

F(−1) = −(1 +V1 + iV2),
(24)

where the asteriks have been suppressed for simplicity.

3. Analytic Solution by HAM

For series solutions of (23) and (24) we take

F0(z) = (1 +V1 + iV2)z, (25)

L1(F) = F ′′, (26)
L1[D1 + zD2] = 0 (27)

as the initial guess F0 and auxiliary linear operator L1,
respectively, and Di (i = 1,2) are the arbitrary con-
stants.

The zeroth-order deformation problem is written as

(1− p)L1[F̂(z; p)−F0(z)] = ph̄N1[F̂(z; p)], (28)

F̂(1; p) = 1 +V1 + iV2,

F̂(−1; p) = −(1 +V1 + iV2),
(29)

where p∈ [0,1] is an embedding parameter and h̄ is the
auxiliary parameter and the nonlinear operator N1 is

N1[F̂(z; p)] =
∂2F̂(z; p)

∂z2 + b1

[
∂2F̂
∂z2

(
∂F̂
∂z

∂ ˆ̄F
∂z

) n−1
2

+
n−1

2
∂F̂
∂z

(
∂F̂
∂z

∂ ˆ̄F
∂z

) n−3
2
(

∂2F̂
∂z2

∂ ˆ̄F
∂z

+
∂F̂
∂z

∂2 ˆ̄F
∂z2

)]

−
(

M2(1 + iφ)
1 + φ2 + iR

)
F̂ +

M2(1 + iφ)
1 + φ2

Q+ iP
2hΩl

. (30)
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Obviously for p = 0 and p = 1 one has

F̂(z,0) = F0(z),

F̂(z,1) = F(z).
(31)

When p increases from 0 to 1, F̂(z, p) varies from F0(z)
to the solution F(z). By Taylors’ series and (31), we get

F̂(z; p) = F0(z)+
∞

∑
m=1

Fm(z)pm,

Fm(z) =
1

m!
∂mF̂(z, p)

∂pm

∣∣∣
p=0

.

(32)

Choosing h̄1 properly so that the above series is con-
vergent at p = 1, one can write

F̂(z) = F0(z)+
∞

∑
m=1

Fm(z). (33)

The mth-order deformation problem is

L1[Fm(z)− χmFm−1(z)] = h̄1Rm(z), (34)

Fm(1) = Fm(−1) = 0, (35)

Rm(z) = F ′′
m−1(z)−

(
M2(1 + iφ)

1 + φ2 + iR
)

Fm−1(z)

+ (1− χm)
M2(1 + iφ)

1 + φ2
Q+ iP
2hΩl

+ b1Θ(z),

(36)

Θ(z) =
2m+1

∑
t=0

(2δm,t + ∆m,t)zt , for n = 3,

=
2m+3

∑
t=0

(2γm,t + 3λm,t)zt for n = 5,

(37)

χm =

{
0, m � 1,

1, m > 1.
(38)

The mth-order deformation problem has been solved
by using MATHEMATICA up to the first few orders
of approximations for n = 3 and n = 5. The solution is
expressed by

Fm(z) =
2m+n−2

∑
t=0

Cm,t zt , Cm,t = am,t + ibm,t ,

m � 0,

(39)

in which for m � 1 and 0 � t � 2m+ n−2, the recur-
rence formulas are

Cm,0 = χmχ2m+1Cm−1,0

−
(

A
2
−

m+ 1
2 (n−1)

∑
t=0

Γm,2t

(1 + 2t)(2 + 2t)

)
,

Cm,1 = χmχ2mCm−1,1 −Γm,1
1
3
,

Cm,2 = χmχ2m−1Cm−1,2 +
1
2
(A +Γm,0),

Cm,t = χmχ2m−t+1Cm−1,t +Γm,t−2
1

(t −1)t
,

3 � t � 2m+ 1,

Γm,t = h̄
{

χ2m−t+n−2

[
em−1,t −

(M2(1 + iφ)
1 + φ2

+ iR
)

Cm−1,t

]
+ b1Π(z)

}
,

Π(z) = 2δm,t + ∆m,t for n = 3,

Π(z) = 3λm,t + 2γm,t for n = 5,

A = h̄(1− χm)
Q+ iP
2hΩl

,

and the related coefficients δm,t , ∆m,t , λm,t , γm,t for m �
1,0 � t � 2m+ n−2 are

δm,t =
m−1

∑
k=0

k

∑
l=0

min{t,2k+2}
∑

q=max{0,1+t−2k−2m}
dm−1−k,t−q

·
min{q,2k−2l+1}

∑
u=max{0,q−1−2l}

d̂k−l,uel,q−u,

∆m,t =
m−1

∑
k=0

k

∑
l=0

min{t,2k+2}
∑

u=max{0,1+t+2k−2m}
dm−1−k,t−u

·
min{u,2l+1}

∑
q=max{0,u+1+2l−2k}

dk−l,u−qêl,q,

λm,t =
m−1

∑
k=0

k

∑
l=0

l

∑
a=0

a

∑
b=0

min{t,2k+4}
∑

w=max{0,2k+1+t−2m}
dm−1−k,t−w

·
min{w,2l+3}

∑
u=max{0,2l+w−1−2k}

dk−l,w−u

min{u,2a+2}
∑

r=max{0,2a+u−2l−1}
d̂l−a,u−r

·
min{r,2b+1}

∑
p=max{0,r−1−2b}

d̂a−b,pêb,r−p,
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γm,t =
m−1

∑
k=0

k

∑
l=0

l

∑
a=0

a

∑
b=0

min{t,2k+4}
∑

w=max{0,2k+2+t−2m}
dm−1−k,t−w

·
min{w,2k−2l+1}

∑
u=max{0,2l+w−1−2k}

dk−l,w−u

min{u,2a+2}
∑

r=max{0,2a+u−2l−1}
d̂l−a,u−r

·
min{r,2b+1}

∑
p=max{0,r−1−2b}

d̂a−b,peb,r−p,

Cm,t = am,t + ibm,t , Ĉm,t = am,t − ibm,t ,

dm,t = (1 + t)cm,1+t, d̂m,t = (1 + t)ĉm,1+t,

em,t = (1 + t)dm,1+t, êm,t = (1 + t)d̂m,1+t.

(40)

The corresponding mth-order approximation is

M

∑
m=0

Fm(z) =
2M

∑
m=1

Cm,0 +
2M+n−2

∑
m=1

2m+n−3

∑
t=0

Cm,t zt , (41)

and the explicit solution is

F(z) = lim
M→∞

[
M

∑
m=0

Fm(z)

]

= lim
M→∞

[
2M

∑
m=1

Cm,0 +
2M+n−2

∑
m=1

2m+n−3

∑
t=0

Cm,t zt

]
.

(42)

4. Heat Transfer Analysis

This section deals with the heat transfer analysis.
The corresponding temperatures of the lower (z = −h)
and upper (z = h) disks are

τ = τ1 at z = −h,

τ = τ2 at z = h.
(43)

The dimensionless form of the energy equation is

d2θ
dz2 = −EcPr


1 + b1

{(
d f ∗

dz

)2

+
(

dg∗

dz

)2
} n−1

2




·
(

d f ∗

dz

)2

+
(

dg∗

dz

)2

, (44)

where f ∗ = f/Ωl, g∗ = g/Ωl, b1 = (Ωl)n−1b/a, Cp is
the specific heat, Pr = aCp/K is the Prandtl number,
Ec = (Ωl)2/(τ1 − τ2) is the Eckert number and θ =
τ−τ2
τ1−τ2

. Here τ1 > τ2, so that Ec > 0.
In terms of F (44) is

d2θ
dz2 = −Br

[
1 + b1

(
dF
dz

dF̄
dz

) n−1
2
]

dF
dz

dF̄
dz

, (45)

subject to the boundary conditions

θ (−1) = 1, θ (1) = 0, (46)

where Br = EcPr is the Brinkman number.
Selecting the initial guess θ0 and the auxiliary linear

operator L2 of the form

θ0(z) =
1
2
(1− z), (47)

L2(θ̂ ) = θ ′′, (48)

L2[B1 + zB2] = 0, (49)

the zeroth-order problem becomes

(1− p)L2[θ̂ (z; p)−θ0(z)] = ph̄N2[F̂(z; p), θ̂ (z; p)],
(50)

θ̂(−1; p) = 1, θ̂ (1; p) = 0, (51)

N2[F̂(z; p)] =

∂2θ
∂z2 + EcPr


1 + b1

(
∂F̂
∂z

∂ ¯̂F
∂z

) n−1
2

 ∂F̂

∂z
∂ ¯̂F
∂z

,
(52)

in which Bi (i = 1,2) are arbitrary constants. The prob-
lem at the mth order satisfies the following equations:

L2[θm(z)− χmθm−1(z)] = h̄1Sm(z), (53)

θm(−1) = 1, θm(1) = 0, (54)

Sm(z) = θ ′′
m−1(z)+EcPr

m−1

∑
k=0

F ′
m−1−kF̄ ′

k +b1Ψ (z), (55)

Ψ(z)

=
m−1

∑
k=0

k

∑
l=0

l

∑
a=0

[F ′
m−1−kF ′

k−l F̄
′
l−aF̄ ′

a], for n = 3,

=
m−1

∑
k=0

k

∑
l=0

l

∑
a=0

a

∑
b=0

b

∑
c=0

[F ′
m−1−kF ′

k−lF
′
1−aF̄ ′

a−bF̄ ′
b−cF̄ ′

c ]

for n = 5. (56)

When n = 3 and n = 5 the solution is

θm(z) =
2m+n−3

∑
t=0

Am,t zt , m � 0, (57)

in which form � 1 and 0 � t � 2m+ n−2, we have

A3m,0 = χmχ2mA3m−1,0−
2m+n−3

∑
t=0

ζm,2t

(2t + 1)(2t + 2)
,
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A3m,1 = χmχ2m−1A3m−1,1−
2m+n−3

∑
t=0

ζm,2t+1

(2t + 2)(2t + 2)
,

A3m,2 = χmχ2m−2A3m−1,2 +
1
2

ζm,0,

A3m,t = χmχ2m−tA3m−1,t + ζm,t−2
1

(t −1)t
,

3 � t � 2m+ 1,

ζm,t = h̄
2m+n−1

∑
t=0

[χ2m+n−1(A3m,t + EcPrαm,t)

+ b1EcPrΠ(z)],

Π(z) =
2m+2

∑
t=0

βm,t for n = 3, (58)

Π(z) =
2m+4

∑
t=0

γm,t for n = 5, (59)

and the coefficients αm,t , βm,t , γm,t for m � 1,0 � t �
2m+ n−3 are

αm,t =
m−1

∑
k=0

min{t,2m−2k−1}
∑

q=max{0,t−1−2k}
dm−1−k,qd̂k,t−q,

βm,t =
m−1

∑
k=0

k

∑
l=0

l

∑
a=0

min{t,2k+2}
∑

u=max{0,1+t+2k−2m}
dm−1−k,t−u

·
min{u,2l+2}

∑
r=max{0,u+2l−2k}

dk−l,u−r

min{r,2l−2a+1}
∑

p=max{0,r−2a−1}
d̂a,r−pd̂l−a,p,

γm,t =
m−1

∑
k=0

k

∑
l=0

l

∑
r=0

r

∑
s=0

s

∑
a=0

min{t,2k+5}
∑

v=max{0,2k+1+t−2m}
dm−1−k,t−v

·
min{v,2l+4}

∑
w=max{0,2l+v−1−2k}

dk−l,t−w

min{w,2r+3}
∑

u1=max{0,2r+w−2l−1}
dl−r,w−u1

·
min{u1,2s+2}

∑
p1=max{0,2s+u1−2r−1}

d̂r−s,u1−p1

·
min{p1,2a+1}

∑
q=max{0,2a+p1−2s−1}

d̂s−a,p1−qd̂a,q,

A2m,p = (1+ p)Am,p+1, A3m,p = (1+ p)A2m,p+1. (60)

The corresponding mth-order approximation is

M

∑
m=0

θm(z) =
2M

∑
m=1

A3m,0 +
2M+n−3

∑
m=1

2m+n−4

∑
t=0

A3m,t zt (61)

and the explicit expression for the series solution is

θ (z) = lim
M→∞

[ M

∑
m=0

θm(z)
]

= lim
M→∞

[ 2M

∑
m=1

A3m,0 +
2M+n−3

∑
m=1

2m+n−4

∑
t=0

A3m,t zt
]
.

(62)

5. Convergence of the Solution

As pointed out by Liao [32], the convergence of the
series solutions (42) and (62) strongly depend on the
values of h̄1, h̄2, and h̄. For this purpose h̄1, h̄2, and
h̄-curves are drawn in Figures 1 – 3. It is noted that ad-
missible values of h̄1 and h̄2 are −0.45 ≤ h̄1 ≤ 0.05,
−0.5≤ h̄2 ≤−0.05 when n = 3 and−0.4≤ h̄1 ≤−0.1,
−0.45 ≤ h̄2 ≤ −0.1 when n = 5. For the temperature
−2.5 ≤ h̄ ≤ 0.1 when n = 3 and −2.5 ≤ h̄ ≤ −0.2
when n = 5. Our calculations indicate that the series
given by (42) and (62) converge in the whole region
of z when h̄1 = −0.25, h̄2 = −0.32, and h̄ = −1 for
n = 3, whereas h̄1 = −0.27, h̄2 = −0.32, and h̄ = −1
for n = 5.

6. Results and Discussion

Figures 4 – 21 show the profiles of f/Ωl, g/Ωl, and
the temperature θ for various values of b and M with
and without Hall effect for n = 3 and n = 5 in viscous
and Sisko fluids. From Figures 4 and 5 we observe that
the velocity profiles decrease by increasing b for n = 3
and φ = 0. Moreover, the same trend of velocity pro-
files is noted for φ �= 0. However, the behaviour of b
on the velocity profiles for n = 5 is quite opposite in
Figures 10 and 11. The variations of M on the veloc-
ity profiles for n = 3, φ = 0, and φ �= 0 are for vis-
cous and Sisko fluids shown in Figures 6 – 9. In these
Figures it can be seen that velocity profiles are greater
for viscous fluid in comparison to the Sisko fluid. Fur-
ther, the velocities increase for large values of M for
φ = 0 and φ �= 0 in both fluids. Figures 12 – 15 are pre-
pared for the variation of M on the velocity profiles for
n = 5. Here the variation in the velocity profiles is not
much greater for the viscous fluid for compared with
that of the Sisko fluid. The variation of b and Brinkman
number Br on the temperature for φ = 0 and φ �= 0 is
shown in the Figures 16 – 21. Here it is evident that the
temperature increases for increasing b in both cases for
φ = 0 and φ �= 0. Furthermore, the variation of Br with
the temperature is qualitatively similar to that of b in
both cases φ = 0 and φ �= 0 for both fluids. However,
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Fig. 1. h̄1 and h̄2-curves of the velocity for the 10th-order approximation for n = 3.

Fig. 2. h̄1 and h̄2-curves of the velocity for the 10th-order approximation for n = 5.

Fig. 3. h̄-curve of the temperature for the 10th-order approximation for n = 3 and n = 5.
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Fig. 4. Velocity profile for different values of b for M = 1/10, V1 = 0, V2 = 0, φ = 0, and n = 3.

Fig. 5. Velocity profile for different values of b for M = 1/10, V1 = 0, V2 = 0, φ = 1/2, and n = 3.

Fig. 6. Velocity profile for different values of M for b = 1/5, V1 = 0, V2 = 0, φ = 0, and n = 3.
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Fig. 7. Velocity profile for different values of M for b = 0, V1 = 0, V2 = 0, φ = 0, and n = 3.

Fig. 8. Velocity profile for different values of M for b = 1/5, V1 = 0, V2 = 0, φ = 1/2, and n = 3.

Fig. 9. Velocity profile for different values of M for b = 0, V1 = 0, V2 = 0, φ = 1/2, and n = 3.
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Fig. 10. Velocity profile for different values of b for M = 1/10, V1 = 0, V2 = 0, φ = 0, and n = 5.

Fig. 11. Velocity profile for different values of b for M = 1/10, V1 = 0, V2 = 0, φ = 1/2, and n = 5.

Fig. 12. Velocity profile for different values of M for b = 1/5, V1 = 0, V2 = 0, φ = 0, and n = 5.
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Fig. 13. Velocity profile for different values of M for b = 0, V1 = 0, V2 = 0, φ = 0, and n = 5.

Fig. 14. Velocity profile for different values of M for b = 1/5, V1 = 0, V2 = 0, φ = 1/2, and n = 5.

Fig. 15. Velocity profile for different values of M for b = 0, V1 = 0, V2 = 0, φ = 1/2, and n = 5.
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Fig. 16. Temperature for different values of b for Br = 1, V1 = 0, V2 = 0, φ = 0, and R = 1/10.

Fig. 17. Temperature for different values of b for Br = 1, V1 = 0, V2 = 0, φ = 1/2, and R = 1/10.

Fig. 18. Temperature for different values of Br for b = 1/5, V1 = 0, V2 = 0, φ = 0, and R = 1/10.
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Fig. 19. Temperature for different values of Br for b = 0, V1 = 0, V2 = 0, φ = 0, and R = 1/10.

Fig. 20. Temperature for different values of Br for b = 1/5, V1 = 0, V2 = 0, φ = 1/2, and R = 1/10.

Fig. 21. Temperature for different values of Br for b = 0, V1 = 0, V2 = 0, φ = 1/2, and R = 1/10.
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it is noted that the temperature for n = 5 is larger com-
pared with that of n = 3 for viscous and Sisko fluids.

7. Concluding Remarks

Here the flow analysis of a Sisko fluid is discussed in
the presence of Hall current. The heat transfer analysis
is further analyzed. The flow problem for velocity and
temperature distributions are first modeled and then
solved analytically. Analytic solutions of the arising

problems are developed by homotopy analysis method.
To the best of our information the present problem is
not studied yet. Even such analysis is not available in
the literature with Hall and heat transfer effects.
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