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In this article, we have considered incompressible Jeffrey fluids and studied the effects of vari-
able viscosity in the form of a well-known Reynold’s model of viscosity in an asymmetric channel.
The fluid viscosity is assumed to vary as an exponential function of temperature. The governing fun-
damental equations are approximated under the assumption of long wavelength and low Reynold
number. The governing momentum and energy equations are solved using regular perturbation in
terms of a small viscosity parameter β to obtain the expressions for stream functions pressure rise
and temperature field. Numerical results are obtained for different values of viscosity parameter β ,
channel width d, wave amplitude b, and Jeffrey parameter λ1. It is observed that the behaviour of the
physical parameters λ1, β , and d on pressure rise versus flow rate is as follows: when we increase
these parameters pressure rise decreases while pressure rise increases with the increase in b. It is also
observed that temperature profile increases when we increase Ec, Pr, and β . Trapping phenomena are
also discussed at the end of the article to see the behaviour of different parameters on streamlines.
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1. Introduction

Heat transfer analysis in two-dimensional flows
have attracted the attention of a number of researchers
in the last few decades due to its applications. These
heat transfer applications include transport of water
from the ground to the upper branches of a tree, glass
fiber production, metal extrusion, hot rolling, wire
drawing, paper production, drawing of plastic films,
metal and polymer extraction, metal spinning, etc.

Peristalsis is a suitable process for a fluid trans-
port that is used by many systems to propel or to mix
the contents of a tube. Some applications of the peri-
staltic transport include, urine transport from kidney
to bladder, swallowing food through the esophagus,
chyme motion in the gastrointestinal tract, vasomotion
of small blood vessels, and movement of spermatozoa
in human reproductive tract. Some important studies
dealing with the peristaltic flow are discussed in [1 – 6].
The study of heat transfer in connection with peristaltic
motion has industrial and biological applications such
as sanitary fluid transport, blood pumps in heart lungs
machine, and transport of corrosive fluids where the
contact of the fluid with machinery parts is prohib-
ited. The effect of heat transfer on the peristaltic flow
of an electrically conducting fluid in a porous space
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is studied by Hayat et al. [7]. The effects of elastic-
ity of the flexible walls on the peristaltic transport of
viscous fluid with heat transfer in a two-dimensional
uniform channel have been investigated by Radhakr-
ishnamacharya and Srinivasulu [8]. Vajravelu et al. [9]
have discussed the interaction of peristalsis with heat
transfer for the flow of a viscous fluid in a vertical
porous annulus region between two concentric tubes.
They concluded that for the large values of amplitude
ratio, the effects of pressure rise on the flow rate is neg-
ligible. The attention of peristaltic and heat transfer
has been recognized and has received some attention
[10 – 20] as it is thought to be relevant in some impor-
tant processes such as hemodialysis and oxygenation.

In most of the above mentioned studies, the fluid
viscosity is assumed to be constant. This assumption
is not valid everywhere. In general the coefficient of
viscosity for real fluids are functions of temperature
and pressure. For many liquids such as water, oils,
and blood, the variation of viscosity due to tempera-
ture change is more dominant than other effects. The
pressure dependence viscosity is usually very small
and can be neglected. All of the above mentioned stud-
ies adopt the assumption of constant viscosity in order
to simplify the calculations. Infact, in many thermal
transport processes, the temperature distribution within
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the flow field is never uniform, i. e. the fluid viscos-
ity changes noticeably if a large temperature difference
exists in a system. Therefore, it is highly desirable to
include the effect of temperature dependent viscosity
in momentum and thermal transport processes [21-25].

Considering the importance of heat transfer in peri-
stalsis and keeping in mind the sensitivity of liquid
viscosity to temperature, an attempt is made to study
the effect of heat transfer in peristaltic flow of Jeffrey
fluid in an asymmetric channel with variable tempera-
ture dependent viscosity. To the best of authors knowl-
edge, no attempt has been made to study the effects of
variable viscosity in Jeffrey fluid. We use an exponen-
tial form of viscosity temperature relation known as
Reynold’s model. The non-dimentional problem is for-
mulated in the wave frame under the long wavelength
and low Reynolds number approximations. By using
regular perturbation method, asymptotic solutions for
stream function, temperature, and pressure rise are ob-
tained. In order to study the quantitative effects, graph-
ical results are presented and discussed for different
physical quantities. We investigate the effects of vari-
able viscosity on the behaviour of the pressure drop,
pressure rise, and temperature profiles. The results are
presented and analyzed for an adequate range of pa-
rameters.

2. Mathematical Formulation

We consider an incompressible Jeffrey fluid in an
asymmetric channel. The lower wall of the channel is
maintained at temperature T1 while the upper wall has
temperature T0. Since we are considering an asymmet-
ric channel, the channel flow is produced due to differ-
ent amplitudes and phases of the peristaltic waves on
the channel.

The geometry of the wall surface is defined as

Y = H1 = d1 + a1 sin
[

2π
λ

(X − ct)
]
,

Y = H2 = −d2 −b1 sin
[

2π
λ

(X − ct)+ ϕ
]
,

(1)

where a1 and b1 are the amplitudes of the waves, λ is
the wave length, d1 + d2 is the width of the channel,
c is the velocity of propagation, t is the time, and X is
the direction of wave propagation. The phase differ-
ence φ varies in the range 0 ≤ φ ≤ π in which φ = 0
corresponds to a symmetric channel with waves out of
phase and φ = π means that the waves are in phase.

Illustration. Geometry of the Problem.

Further, a1, b1, d1, d2, and φ satisfy the condition

a2
1 + b2

1 + 2a1b1 cosφ ≤ (d1 + d2)2.

The equations governing the flow of a Jeffrey fluid are
given by

∂U
∂X

+
∂V
∂Y

= 0,

ρ
(

∂U
∂t

+U
∂U
∂X

+V
∂U
∂Y

)
=

− ∂P
∂X

+
∂

∂X
(SXX )+

∂
∂Y

(SXY ),

ρ
(

∂V
∂t

+U
∂V
∂X

+V
∂V
∂Y

)
=

−∂P
∂Y

+
∂

∂X
(SY X)+

∂
∂Y

(SYY ),

C′
(

∂T
∂t

+U
∂T
∂X

+V
∂T
∂Y

)
=

K′

ρ
2T + υΦ,

(2)

where

2 =
∂2

∂X2 +
∂2

∂Y 2 ,

Φ =
µ(T )
1 + λ1

[
1 + λ2

(
U

∂
∂X

+V
∂

∂Y

)]

·
[

2
(

∂U
∂X

)2

+ 2
(

∂V
∂Y

)2

+
(

∂U
∂Y

+
∂V
∂X

)2
]

.

U , V are the velocities in X- and Y -directions in a fixed
frame, ρ is the constant density, P is the pressure, σ is
the electrical conductivity, K′ is the thermal conductiv-
ity, C′ is the specific heat, and T is the temperature.
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The constitutive equation for the extra stress tensor S
for a Jeffrey fluid is defined by [2]

S =
µ(T )
1 + λ1

(γ̇ + λ2γ̈). (3)

Here µ(T ) is the temperature dependent viscosity, λ1 is
the ratio of relaxation to retardation times, γ̇ the shear
rate, λ2 the retardation time, and dots denote the differ-
entiation with respect to time.

We introduce a wave frame (x,y) moving with ve-
locity c away from the fixed frame (X ,Y ) by the trans-
formation

x = X − ct, y = Y, u = U − c, v = V,

and p(x) = P(X ,t).
(4)

Defining

x̄ =
2πx
λ

, ȳ =
y
d1

, ū =
u
c
, v̄ =

v
cδ

,

δ =
d1

λ
, d =

d2

d1
, p̄ =

d2
1 p

µ0cλ
, t̄ =

ct
λ

,

h1 =
H1

d1
, h2 =

H2

d2
, a =

a1

d1
, b =

b1

d1
,

Re =
cd1

v
, Ψ̄ =

Ψ
cd1

, θ =
T −T0

T1 −T0
,

Ec =
c2

C′(T1 −T0)
, Pr =

ρνC′

K′ , S̄ =
Sd1

µ0c
,

µ(θ ) =
µ(T )

µ0
.

(5)

Using the above non-dimensional quantities, the result-
ing equations in terms of a stream function Ψ (drop-
ping the bars and setting u = ∂Ψ

∂y , v = − ∂Ψ
∂x ) can be

written as

Reδ [ΨyΨxy −ΨxΨyy] =

− ∂p
∂x

+ δ
∂
∂x

(Sxx)+
∂
∂y

(Sxy),
(6)

Reδ 3[−ΨyΨxx +ΨxΨxy] =

− ∂p
∂y

+ δ 2 ∂
∂x

(Syx)+ δ
∂
∂y

(Syy),
(7)

Reδ [Ψyθx −Ψxθy] =
1
Pr

[θyy + δ 2θxx]

+
Ecµ(θ )
(1 + λ1)

[
1 +

λ2cδ
d1

(
Ψy

∂
∂x

−Ψx
∂
∂y

)]
· [4δ 2Ψ2

xy +(Ψyy − δ 2Ψxx)2],

(8)

where

Sxx =
2µ(θ )δ
1 + λ1

[
1+

λ2cδ
d1

(
Ψy

∂
∂x

−Ψx
∂
∂y

)]
Ψxy,

Sxy =
µ(θ )
1 + λ1

[
1+

λ2cδ
d1

(
Ψy

∂
∂x

−Ψx
∂
∂y

)]
[Ψyy−δ 2Ψxx],

Syy = −2µ(θ )δ
1 + λ1

[
1+

λ2cδ
d1

(
Ψy

∂
∂x

−Ψx
∂
∂y

)]
Ψxy.

The corresponding boundary conditions are

Ψ =
q
2
, at y = h1 = 1 + asinx,

Ψ = −q
2
, at y = h2 = −d−bsin(x + φ),

∂Ψ
∂y

= −1, at y = h1 and y = h2,

θ = 0, at y = h1,

θ = 1, at y = h2,

(9)

where q is the flux in the wave frame and a, b, φ , and d
satisfy the relation

a2 + b2 + 2abcosφ ≤ (1 + d)2.

Under the assumption of long wave length δ � 1 and
low Reynold number and neglecting the terms of or-
der δ and higher, (6) to (8) take the form

0 = −∂p
∂x

+
∂
∂y

[
µ(θ )
1 + λ1

∂2Ψ
∂y2

]
, (10)

0 = −∂p
∂y

, (11)

0 =
1
Pr

∂2θ
∂y2 +

Ecµ(θ )
(1 + λ1)

(
∂2Ψ
∂y2

)2

. (12)

Elimination of pressure from (10) and (11) yields

∂2

∂y2

[
µ(θ )
1 + λ1

∂2Ψ
∂y2

]
= 0, (13)

1
Pr

∂2θ
∂y2 +

Ecµ(θ )
(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0. (14)

The flux at any axial station in the fixed frame is

Q̄ =
∫ h1

h2
(u + 1)dy

=
∫ h1

h2
udy +

∫ h1

h2
dy = q + h1−h2.

(15)
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The average volume flow rate over one period(
T = λ

c

)
of the peristaltic wave is defined as

Q =
1
T

∫ T

0
Q̄dt

=
1
T

∫ T

0
(q + h1−h2)dt = q + 1 + d.

(16)

3. Reynold’s Viscosity Model

The Reynold’s model viscosity is defined as

µ(θ ) = e−β θ , (17)

where β is constant.
The Maclaurin’s series expansion of the above equa-

tion can be written as

µ(θ ) = 1−β θ + O(β )2. (18)

With the help of (18), Eqs. (13) and (14) take the form

∂2

∂y2

[
(1−β θ )

1 + λ1

∂2Ψ
∂y2

]
= 0, (19)

∂2θ
∂y2 +

(1−β θ )PrEc

(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0. (20)

4. Solution of the Problem

Equations (19) and (20) are coupled nonlinear dif-
ferential equations. The exact solutions of these equa-
tions are not possible, therefore they had to be obtained
by using the regular perturbation method considering
the viscosity parameter to be β � 1.

The expression for the stream function and temper-
ature profile satisfying boundary condition can be di-
rectly written as (see Appendix):

Ψ =
(1 + λ1)L1y3

6
+

(1 + λ1)L2y2

2
+ L3y

+ L4 + β (L21y7 + L22y6 + L23y5

+ L24y4 + L31y3 + L32y2 + L29y + L30),

(21)

θ = L10y4 + L11y3 + L12y2 + L13y + L14

+ β (R12y12 + R13y11 + R14y10 + R15y9

+ R16y8 + R17y7 + R18y6 + R19y5 + R20y4

+ R21y3 + R22y2 + R25y + R26).

(22)

The axial pressure gradient can be written as:

dp
dx

= − 12(h1 −h2 + q)
(h1 −h2)3(1 + λ1)

+
6β

7(h1 −h2)5(1 + λ1)

· [(h1 −h2)3R27 +(h1 −h2)2R28

+ 18(h1−h2)R29 + R30
]
.

(23)

The pressure rise ∆pλ is given by

∆pλ =
1∫

0

(
dp
dx

)
dx. (24)

where dp
dx is defined in (24).

5. Graphical Results and Discussion

To discuss the effects of various parameters involved
in the problem such as viscosity parameter β , Jeffrey
parameter λ1, channel widths d, wave amplitude b,
Prandtl number Pr, and Eckert number Ec on the so-
lution of the problem numerical results are calculated
and can be analyzed through the following figures. Fig-
ures 1 – 4 illustrate the pressure rise against flow rate
for several values of β , λ1, b, and d. It is seen from
Figure 1 that the maximum pressure rise occurs at zero
flow rate for different values of β and pressure rise de-
creases by increasing β in the region Θ ∈ [−1.5,0.2],
which is known as peristaltic pumping region, and in
the region Θ ∈ [0.21,1.5], pressure rise increases by
increasing β which is the augmented pumping region.
In Figure 2, we have discussed the effects of b on the
pressure rise ∆pλ . It is analyzed, that with increasing b,
pressure rise increases in the region Θ ∈ [−1.5,0.8],
otherwise the pressure rise decreases with the increase
in b in the region Θ ∈ [0.81,1.5]. The first region de-
notes the peristaltic pumping region (∆pλ > 0, Θ > 0)
and the second region is known as augmented pumping
region (∆pλ < 0, Θ > 0).

Figure 3 shows the effects of d on the average pres-
sure rise ∆pλ . It is depicted that the pressure rise
decreases with the increase in d in the region Θ ∈
[−1.5,0.4] (∆pλ > 0, Θ > 0, peristaltic pumping re-
gion), the pressure rise increases with the increase in d
in the region Θ ∈ [0.41,1.5] (∆pλ < 0, Θ > 0, aug-
mented pumping region). The effects of Jeffrey pa-
rameter λ1 can be analyzed through Figure 4. It is
observed that the pressure rise decreases with the in-
crease in λ1 in the region Θ ∈ [−1.5,0.2] (∆pλ >
0, Θ > 0, peristaltic pumping region), the pressure
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Fig. 1. Pressure rise versus flow rate for Ec = 0.2, Pr = 0.3,
a = 0.2, b = 0.3, d = 0.4, φ = 0.2, and λ1 = 0.4.

Fig. 4. Pressure rise versus flow rate for Ec = 0.3, Pr = 0.3,
a = 0.2, b = 0.3, d = 0.4, φ = 0.1, and β = 0.1.

Fig. 2. Pressure rise versus flow rate for Ec = 0.2, Pr = 0.3,
a = 0.2, β = 0.2, d = 0.4, φ = 0.2, and λ1 = 0.4.

Fig. 5. Temperature profile for Ec = 3, Pr = 3, a = 0.3, b =
0.3, d = 0.5, φ = 0.2, q = 0.4, λ1 = 0.2, and x = 0.1.

Fig. 3. Pressure rise versus flow rate for Ec = 0.3, Pr = 0.3,
a = 0.2, b = 0.3, β = 0.2, φ = 0.2, and λ1 = 0.4.

Fig. 6. Temperature profile for β = 0.3, Pr = 3, a = 0.3, b =
0.3, d = 0.5, φ = 0.2, q = 0.4, λ1 = 0.2, and x = 0.1.



718 S. Nadeem and N. S. Akbar · Peristaltic Flow with Variable Viscosity

Fig. 7. Temperature profile for Ec = 3, β = 0.3, a = 0.3, b =
0.3, d = 0.5, φ = 0.2, q = 0.4, λ1 = 0.2, and x = 0.1.

Fig. 8. Temperature profile for Ec = 3, β = 0.3, a = 0.5, b =
0.5, d = 0.5, φ = 0.1, q = 0.4, Pr = 0.2, and x = 0.1.

Fig. 9. Streamlines for different values of Θ = 1.2, 1.3, 1.4, 1.5 (panels a1 to d1). The other parameters are: Ec = 0.1, Pr = 0.1,
a = 0.5, b = 0.5, d = 1, φ = 0.0, λ1 = 0.2, and β = 0.1.
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Fig. 10. Streamlines for different values of λ1 = 0.1, 0.2, 0.3, 0.4 (panels e1 to h1). The other parameters are: Ec = 0.1,
Pr = 0.1, a = 0.5, b = 0.5, d = 1, φ = 0.0, and β = 0.2.

rise increases with the increase in λ1 in the region
Θ ∈ [0.21,1.5] (∆pλ < 0, Θ > 0, augmented pumping
region).

The temperature profile for different values of β , λ1,
Pr, and Ec are plotted in Figures 5 – 8. It is observed
from the figures that the increase in β , Ec, and Pr the
temperature profile increases. The temperature profile
for different values of λ1 is plotted in Figure 8, the
graph overlapped for different values of λ1.

Trapping is another interesting phenomenon in peri-
staltic motion. It is basically the formation of an in-

ternally circulating bolus of fluid by closed stream-
lines. This trapped bolus pushed a head along with
the peristaltic wave. Figure 9 illustrate the streamline
graphs for different values of time mean flow rate Θ .
It is observed that with the increase in Θ trapped bolus
enclosed. The streamlines for different values λ1 are
shown in Figure 10. It is evident from the figure that the
size of the trapped bolus decreases by increasing λ1.
The streamlines for different values of β are shown in
Figure 11. It is observed that with the increase in β , the
size trapped bolus decreases.

Appendix

L1 = − 12(h1 −h2 + q0)
(h1 −h2)3(1 + λ1)

, L2 =
6(h2

1 −h2
2 +(h1 + h2)q0)

(h1 −h2)3(1 + λ1)
, L3 = − (h3

1 −h3
2)+ 3h1h2(h1 −h2)+ 6h1h2q0

(h1 −h2)3 ,

L4 =
(h1 + h2)(2h1h2(h1 −h2)− (h2

1 −4h1h2 + h2
2)q0)

2(h1 −h2)3 , L5 = (1 + λ1)L1, L6 = (1 + λ1)L2,
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Fig. 11. Streamlines for different values of β = 0.1, 0.2, 0.3, 0.4 (panels l1 to m1). The other parameters are Ec = 0.1, Pr = 0.1,
a = 0.5, b = 0.5, d = 1, φ = 0.0, and λ1 = 0.2.

L7 = −EcPrL2
5, L8 = −2EcPrL5L6, L9 = −EcPrL2

6, L10 =
L7

12
, L11 =

L8

6
, L12 =

L9

2
,

L13 =
1

(h1 −h2)
(1 + L10(h4

1 −h4
2)+ L11(h3

1 −h3
2)+ L12(h2

1 −h2
2)), L14 = −L10h4

1 −L11h3
1 −L12h2

1 −L13h1,

L15 = L10L5, L16 = L11L5 + L10L6, L17 = L12L5 + L11L6, L18 = L13L5 + L12L6, L19 = L14L5 + L13L6,

L20 = L14L6, L21 =
L15

42
, L22 =

L16

30
, L23 =

L17

20
, L24 =

L18

12
, L25 =

L19

6
, L26 =

L20

2
,

L27 = − 12(h1 −h2 + q1)
(h1 −h2)3(1 + λ1)

+
6((h1 −h2)3R27 +(h1 −h2)2R28 + 18(h1−h2)R29 + R30)

7(h1 −h2)5(1 + λ1)

L28 =
1

(h1 −h2)3(1 + λ1)
(2((h1 −h2)3(4h5

1L21 + h4
1(16h2L21 + 3L22)+ 2h3

1(11h2
2L21 + 6h2L22 + L23)

+ 4h1h2(4h3
2L21 + 3h2

2L22 + 2h2L23 + L24)+ h2
2(4h3

2L21 + 3h2
2L22 + 2h2L23 + L24)

+ h2
1(22h3

2L21 + 15h2
2L22 + 8h2L23 + L24)−L26)+ 3(h1 + h2)q1)),

L29 = − 1
(h1 −h2)3 (h1h2((h1 −h2)3(8h4

1L21 + h3
1(17h2L21 + 6L22)+ 4h2

1(5h2
2L21 + 3h2L22 + L23)

+ 2h2(4h3
2L21 + 3h2

2L22 + 2h2L23 + L24)+ h1(17h3
2L21 + 17h2

2L22 + 7h2L23 + 2L24))+ 6q1)),
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L30 = h2
1h2

2(4h3
1L21 + 4h3

2L21 + 3h2
2L22 + 3h2

1(2h2L21 + L22)+ 2h2L23 + 2h1(3h2
2L21 + 2h2L22 + L23)

+ L24 − (h1 + h2)(h2
1 −4h1h2 + h2

2)q1

2(h1 −h2)3 ,

L31 = L25 +
L27

6
(1 + λ1), L32 = L26 +

L28

2
(1 + λ1), L33 = 6L31, L34 = 2L32, L35 = L2

15,

L36 = 2L15L16, L37 = 2L15L17 + L2
16, L38 = 2L15L18 + 2L16L17, L39 = 2L15L33 + 2L16L18 + L2

17,

L40 = 2L15L34 + 2L16L33 + 2L17L18, L41 = 2L16L34 + 2L17L33 + L2
18, L42 = 2L17L34 + 2L18L33,

L43 = 2L18L34 + L2
33, L44 = 2L33L34, L45 = L2

34, L46 = L10L2
5, L47 = 2L5L6L10 + L11L2

5,

L48 = 2L5L6L11 + L12L2
5 + L2

6L10, L49 = L11L2
6 + 2L5L6L12 + L13L2

5, L50 = L12L2
6 + 2L5L6L13 + L14L2

5,

L51 = 2L5L6L14 + L13L2
6, L52 = L14L2

6,

R1 = EcPrL35, R2 = −EcPrL36, R3 = −EcPrL37, R4 = −EcPrL38, R5 = −EcPrL39 + EcPrL46,

R6 = −EcPrL40 + EcPrL47, R7 = −EcPrL41 + EcPrL48, R8 = −EcPrL42 + EcPrL49,

R9 = −EcPrL43 + EcPrL50, R10 = −EcPrL44 + EcPrL51, R11 = −EcPrL45 + EcPrL52,

R12 =
R1

132
, R13 =

R2

110
, R14 =

R3

90
, R15 =

R4

72
, R16 =

R5

56
, R17 =

R6

42
, R18 =

R7

30
, R19 =

R8

20
,

R20 =
R9

12
, R21 =

R10

6
, R22 =

R11

2
,

R23 = R12h12
1 + R13h11

1 + R14h10
1 + R15h9

1 + R16h8
1 + R17h7

1 + R18h6
1 + R19h5

1 + R20h4
1 + R21h3

1 + R22h2
1,

R24 = R12h12
2 + R13h11

2 + R14h10
2 + R15h9

2 + R16h8
2 + R17h7

2 + R18h6
2 + R19h5

2 + R20h4
2 + R21h3

2 + R22h2
2,

R25 =
R24 −R23

h1 −h2
, R26 = −R23 −R25h1, R27 = 7 + 6EcPr, R28 = (7 + 18EcPr)q0, R29 = EcPrq3

0,

R30 = 6EcPr)q3
0.
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