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Using the semi-inverse method, a variational formulation is established for the Boussinesq wave
equation. Based on the obtained variational principle, solitary solutions in the sech-function and exp-
function forms are obtained.
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1. Introduction

The search for the exact travelling wave solutions
to nonlinear disperse wave systems plays an impor-
tant role in the study of nonlinear physical phenom-
ena. In the past few years, many effective methods
have been suggested for searching for soliton solutions
for various nonlinear wave equations, among which
the variational iteration method [1 – 5], the homotopy
perturbation method [6 – 10], the parameter-expansion
method [11 – 13], He’s variational method [8, 14, 15]
and the exp-function method [16 – 20] have been
shown to be effective, easy, and accurate for a large
class of nonlinear problems. D’Acunto [21, 22] ap-
plied He’s variational method to the determination of
limit cycles. Ozis and Yildirim [23], Zhang [24], and
the present author [25] illustrated that He’s variational
method was also valid for nonlinear wave equations.

In this paper, we will consider the Boussinesq wave
equation [26]

utt −uxx + 3(u2)xx + auxxxx = 0, (1)

which was proposed by Boussinesq to describe surface
water waves whose horizontal scale is much larger than
the depth of the water. The equation also arises in other
physical applications such as nonlinear lattice waves,
iron sound waves in a plasma, vibrations in a nonlin-
ear string, and in the percolation of water in porous
subsurface strata [27]. Recently, Wazwaz in [26] ob-
tained compactons, solitons, solitary patterns, and peri-
odic solutions of the Boussinesq wave equation (1) by
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the tanh-method. Javidi and Jalilian in [27] apply the
variational iteration method to construct solitary wave
solutions of (1).

The aim of this paper is to couple He’s semi-
inverse method [14] and the exp-function method [16]
to search for solitary solutions of the discussed prob-
lem.

2. Variational Formulation

According to He’s variational method [8] for soli-
tary solutions, a variational formulation should be first
established.

For convenience, we seek the travelling wave solu-
tion of the Boussinesq wave equation by assuming the
solution in the following form:

u(x, t) = u(ξ ), ξ = x− ct, (2)

where c is a constant to be determined.
Substitution the solution (2) into (1) gives

(c2 −1)u′′+ 3(u2)′′ + au(4) = 0, (3)

where the prime expresses the derivative with respect
to ξ . Integrating (3) twice, we have

(c2 −1)u + 3u2 + au′′ = g1ξ + g2, (4)

where g1 and g2 are the constants of integration. We
set g1 = g2 = 0 for simplicity, then (4) reduces to

(c2 −1)u + 3u2 + au′′ = 0. (5)
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The variational iteration method and the homotopy
perturbation method can be applied to (5) effectively.
Here we follow He’s variational method described
in [8], where the Korteweg-de Vries (KdV) equation
was used to illustrate the effectiveness and convenience
of the suggested method. According to [8], a varia-
tional formulation should be first established using the
semi-inverse method [26]:

J =
∫ ∞

0

[
1
2
(c2 −1)u2 + u3 − 1

2
a
( du

dξ

)2]
dξ . (6)

3. Soliton Wave Solution

3.1. The Form of Sech-Function

Following He’s variational method suggested in [8],
we first search for a solitary solution in the form

u = psech 2(qξ ), (7)

where p and q are unknown constants to be further de-
termined. Substituting (7) into (6), we have

J =
∫ ∞

0

[1
2
(c2 −1)p2 sech 4(qξ )+ p3 sech 6(qξ )

−2α p2q2 sech 4(qξ ) tanh2(qξ )
]
dξ

=
(c2 −1)p2

3q
+

8p3

15q
− 4ap2q

15
.

(8)

Making J stationary with respect to p and q results in

∂J
∂p

=
2(c2 −1)p

3q
+

8p2

5q
− 8apq

15
= 0, (9)

∂J
∂q

= − (c2 −1)p2

3q2 − 8p3

15q2 −
4ap2

15
= 0, (10)

or simplified

5(c2 −1)+ 12p−4aq2 = 0, (11)

−5(c2 −1)−8p−4aq2 = 0. (12)

Solving (11) and (12) simultaneously results in

p =
1− c2

2
, q2 =

1− c2

4a
. (13)

The solitary solution is, therefore, obtained as follows:

u1(x, t) =
1− c2

2
sech 2

[
1
2

√
1− c2

a
(x−ct)

]
, (14)

for a > 0 and c2 < 1. This is exactly the soliton solution
obtained in [26].

3.2. The Form of Simple Exp-Function

As mentioned above the exp-function method [16]
is very simple and straightforward, which is based on
the assumption that travelling wave solutions can be
expressed in the following exp-function form:

u(ξ ) =
∑d

n=−c an exp(nξ )
∑q

m=−p bm exp(mη)
,

where c, d, p, and q are positive integers which are
unknown to be further determined, an and bm are un-
known constants. In this paper we use a simplified exp-
function method, i. e., we search for a solitary solution
in the following simple exp-function form:

u = k exp(−mξ 2), (15)

where k and m are unknown constants to be further de-
termined.

Substituting (15) into (6) and using the integration
relations∫ ∞

0
undξ = kn

∫ ∞

0
exp(−mnξ 2)dξ

=
√

nπ
2n

knm− 1
2 , n ∈ N,

(16)

1
2

∫ ∞

0

(
du
dξ

)2

dξ = 2k2m2
∫ ∞

0
ξ 2 exp(−2mξ 2)dξ

=
√

2π
8

k2m
1
2 , (17)

we have

J =
1
2
(c2 −1)

∫ ∞

0
u2dξ +

∫ ∞

0
u3dξ

− 1
2

a
∫ ∞

0

(
du
dξ

)2

dξ

=
√

2π
8

(c2−1)k2m− 1
2 +

√
3π
6

k3m−1
2 −

√
2π
8

ak2m
1
2 .

(18)

Making J stationary with respect to k and m results in

∂J
∂k

=
√

2π
4

(c2 −1)km− 1
2 +

√
3π
2

k2m− 1
2

−
√

2π
4

akm
1
2 = 0,

(19)
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Fig. 1. Solitary wave solution u1,1(x,t).

Fig. 2. Solitary wave solution u2,1(x,t).

∂J
∂m

= −
√

2π
16

(c2 −1)k2m− 3
2 −

√
3π

12
k3m− 3

2

−
√

2π
16

ak2m− 1
2 = 0

(20)

or simplified
√

2(c2 −1)+ 2
√

3k−
√

2am = 0, (21)

−3
√

2(c2 −1)−4
√

3k−3
√

2am = 0. (22)

Solving (21) and (22) simultaneously results in

k =
√

6(1− c2)
5

, m =
1− c2

5a
. (23)

The solitary solution is, therefore, obtained as follows:

u2(x, t) =
√

6(1− c2)
5

exp
{
− 1− c2

5a
(x−ct)2

}
. (24)

To our knowledge the above form solitary solution is
first appeared in literature.

Figures 1 and 2 show the plots of

u1,1(x, t) =
1
8

sech 2
[

1
4

(
x−

√
3

2
t
)]

, (25)

the solution (14) with a = 1 and c =
√

3
2 , and

u2,1(x, t) =
√

6
20

exp
{
− 1

20

(
x−

√
3

2
t
)2}

, (26)

the solution (24) with a = 1 and c =
√

3
2 .

4. Conclusion

To summarize, we can conclude from the obtained
results that the variational approach to the Boussi-
nesq wave equation has been demonstrated success-
fully. This method is extremely simple in its principle
and quite easy to use. We predict the method will be-
come a powerful mathematical tool to find solitary so-
lutions of different forms for various nonlinear equa-
tions.
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