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In this paper, the generalized variable coefficient nonlinear Schrödinger (NLS) equation and the
cubic-quintic nonlinear Schrödinger (CQNLS) equation with variable coefficients are directly re-
duced to simple and solvable ordinary differential equations by means of a direct transformation
method. Taking advantage of the known solutions of the obtained ordinary differential equations,
families of exact nontravelling wave solutions for the two equations have been constructed. The
characteristic feature of the direct transformation method is, that without much extra effort, we cir-
cumvent the integration by directly reducing the variable coefficient nonlinear evolution equations to
the known ordinary differential equations. Another advantage of the method is that it is independent
of the integrability of the given nonlinear equation. The method used here can be applied to reduce
other variable coefficient nonlinear evolution equations to ordinary differential equations.
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1. Introduction

In the past decades, the nonlinear Schrödinger
(NLS) equation and its generalized forms have been
extensively studied [1 – 18]. Nonlinear equations of
Schrödinger type are of great interest due to their
central importance to the theory of quantum me-
chanics [7]. They arise in plasma waves and non-
linear optics, and are of importance in the develop-
ment of soliton and inverse scattering transform the-
ory [8, 19]. As an important model in optical com-
munication systems, the nonlinear Schrödinger model
with variable coefficients has directed the attention
of many researchers. Tian and Gao [11] applied a
direct method to get exact, analytic bright-solitonic
solutions for the perturbed nonlinear Schrödinger
model. In [12 – 13] the variable coefficient higher or-
der nonlinear Schrödinger equation has been stud-
ied from the viewpoint of bilinear form, Backlund
transformation, brightons and symbolic computation.
The authors in [14] discussed generation, compres-
sion and propagation of pulse trains in the non-
linear Schrödinger equation with distributed coeffi-
cients.
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On the other hand, directly seeking for exact solu-
tions of nonlinear partial differential equations (NLP
DEs) has become one of central theme of perpetual
interest in mathematical physics and many effective
methods have been presented such as inverse scat-
tering method [8, 19], Hirota’s bilinear method [20],
Backlund transformation method [21], Painleve ex-
pansion method [22], and so on. Recently, based
on the computer system like Maple or Mathematica,
many powerful algebraic methods, which include sine-
cosine method [23], the Riccati equation expansion
method [24], the Jacobi elliptic function expansion
method [25], exp method [26], and so on [27 – 31],
have been proposed and applied to derive many exact
solutions of NLPDEs. Generally speaking, exact solu-
tions of NLPDEs obtained by those algebraic methods
are written as a polynomial of special solutions which
satisfy simple and solvable nonlinear ordinary differ-
ential equations (ODEs) such as Riccati equation, the
first kind and the second kind elliptic equation, the
first-order nonlinear ODE with six degree nonlinear
terms, etc. Motivated by the idea of those algebraic
methods, in this paper, we aim to reduce the variable
coefficient nonlinear equations of Schrödinger type to
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ordinary differential equations by means of a direct
transformation method.

The paper is organized as follows: In Section 2, the
generalized variable coefficient nonlinear Schrödinger
(NLS) equation and in Section 3 the cubic-quintic
nonlinear Schrödinger (CQNLS) equation with vari-
able coefficients are chosen to illustrate our method
and families of explicit nontravelling wave solutions
are obtained which include bright and dark soliton
solutions, triangular periodic solutions, Jacobi ellip-
tic function solutions and rational function solutions.
Some conclusions and discussions are given in Sec-
tion 4.

2. Nontravelling Wave Solutions of the Generalized
Variable Coefficient NLS Equation

In this section, we study the exact nontravelling
wave solutions of the following generalized variable
coefficient NLS equation [1 – 5, 14 – 18]:

iux + b(x)utt + l(x)|u|2u + id(x)u = 0, (1)

where u(x, t) is the complex envelope of the electri-
cal field in a reference frame moving with the pulse,
x is the normalized propagation distance and z is the
retarded time. b(x) represents the group velocity dis-
persion, l(x) is the nonlinearity parameter, and d(x) is
the amplification or absorption coefficient. These are
all real functions of x. In practical applications, (1) can
be used to describe not only the amplification or ab-
sorption of optical pulses propagating in inhomoge-
neous optical fiber systems, but also the stable trans-
mission of managed solitons. Exact chirped gray soli-
ton solutions of (1) have been found in [1] by us-
ing a transformation of variables and functions. Soli-
ton solutions and the Backlund transformation for (1)
have been studied in [2] and multisoliton solutions in
terms of double Wronskian determinant for (1) have
been derived in [3]. Families of exact solutions of (1)
have been obtained in [4] by the variable coefficient F-
expansion method. Generation, compression and prop-
agation of pulse trains of (1) have been discussed
in [14]. By constructing four transformations, rela-
tions between (1) and the well-known standard NLS
equation and cylindrical NLS equation have been built
in [15]. For more details about the results of (1), the
readers are advised to see [16 – 18]. Here we try to
deal with (1) by the direct transformation method and
give a series of new exact nontravelling wave solutions
for (1).

In order to change (1) into an ordinary differential
equation, we make the first transformation

u(x, t) = v(x, t)eiw(x,t), (2)

where v(x, t) and w(x, t) are real functions. Substitut-
ing (2) into (1) and setting the real part and imaginary
part to zero, respectively, we can get

vx + 2b(x)wtvt +(b(x)wtt + d(x))v = 0, (3a)

−vwx + b(x)vtt −b(x)vw2
t + l(x)v3 = 0. (3b)

Note that (3a) is a linear equation with respect to v and
its derivatives. To get v from (3a), we make the second
transformation

w(x, t) = h1(x)t2 + h2(x)t + h3(x), (4)

where h1(x), h2(x), and h3(x) are undetermined func-
tions. It follows from (3a) that

vx +(2bh2 + 4bh1t)vt +(2bh1 + d)v = 0. (5)

Solving (5) by its corresponding characteristic equa-
tion, we get

v = U(φ)exp
[
−

∫
(2bh1 + d)dx

]
, (6)

where φ = t exp[−∫
4bh1dx] − exp

{
2bh2 exp

[−∫
4bh1dx]

}
, U(φ) is an arbitrary function. Substi-

tuting (6) into (3b) and reducing, it follows from (3b)
that

U ′′ =
−l(x)exp[

∫
4bh1dx]

bexp[
∫

2d(x)dx]
U3

+
exp[

∫
8bh1dx]
b

[
(h1x + 4bh1

2)t2

+(h2x + 4bh1h2)t +(h3x + bh2
2)

]
U.

(7)

Thus, looking for exact solutions of (3) leads to exact
solutions of (7). To reduce (7) to an ordinary differen-
tial equation, let us take the following constraint con-
ditions:

−l(x)e
∫

4bh1dx

be
∫

2d(x)dx
= 2a4, (8a)

exp[
∫

8bh1dx]
b

(h1x + 4bh1
2)t2 +(h2x + 4bh1h2)t

+(h3x + bh2
2) = a2,

(8b)
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where a2 and a4 are arbitrary constants. Under condi-
tion (8), it follows from (7) that

U ′2 = a0 + a2U2 + a4U4, (9)

where a0 is an arbitrary constant.
From (8a), we have the following constraint condi-

tion imposed on the coefficient functions of (1):

l(x) =
−2a4be

∫
2ddx∫

4bdx + G1
. (10a)

It is straightforward to solve (8b). The result reads

h1 =
1∫

4bdx + G1
, h2 =

G2∫
4bdx + G1

,

h3 =
1
4 (G2

2 −a2)∫
4bdx + G1

,

(10b)

where G1 and G2 are arbitrary constants, b and d are
the arbitrary coefficient functions,

∫
4bdx + G1 > 0.

With the help of (10a) and (10b), it follows from (4)
and (6) that

w =
1
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1
,

v = U(φ)exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

]
,

(11a)

φ =
t + 1

2 G2∫
4bdx + G1

. (11b)

In summary, the following theorem holds:

Theorem 1. If the coefficient functions b, l, and d
in (1) satisfy relation (10a), then solutions of (1) can
be expressed by

u = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]
U(φ),

(12)

where U(φ) is a solution of (9) and φ is determined
by (11b).

Taking advantage of Theorem 1 and the known solu-
tions of (9) [31], we can give exact nontravelling wave
solutions of (1) as follows:

Case A. Jacobi elliptic function solutions and com-
bined Jacobi elliptic function solutions

(A.1) a0 = 1, a2 = −(k2 + 1), a4 = k2,

uA.1.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 + 1 + k2∫

4bdx + G1

]
sn(φ),

uA.1.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 + 1 + k2∫

4bdx + G1

]
cd(φ),

(A.2) a0 = k2, a2 = −1− k2, a4 = 1,

uA.2.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 + 1 + k2∫

4bdx + G1

]
ns(φ),

uA.2.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 + 1 + k2∫

4bdx + G1

]
dc(φ),

(A.3) a0 = k2 −1, a2 = 2− k2, a4 = −1,

uA.3 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2− k2)∫

4bdx + G1

]
dn(φ),

(A.4) a0 = 1− k2, a2 = 2k2 −1, a4 = −k2,

uA.4 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2k2 −1)∫

4bdx + G1

]
cn(φ),

(A.5) a0 = −k2, a2 = −1 + 2k2, a4 = 1− k2,

uA.5 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2+4G2t+G2
2 − (−1+2k2)∫

4bdx + G1

]
nc(φ),

(A.6) a0 = −1, a2 = 2− k2, a4 = k2 −1,

uA.6 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2− k2)∫

4bdx + G1

]
nd(φ),
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(A.7) a0 = 1− k2, a2 = 2− k2, a4 = 1,

uA.7 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2− k2)∫

4bdx + G1

]
cs(φ),

(A.8) a0 = 1, a2 = 2− k2, a4 = 1− k2,

uA.8 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2− k2)∫

4bdx + G1

]
sc(φ),

(A.9) a0 = 1, a2 = 2k2 −1, a4 = k2(k2 −1),

uA.9 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2+4G2t+G2
2 − (2k2 −1)∫

4bdx + G1

]
sd(φ),

(A.10) a0 = k2(k2 −1), a2 = 2k2 −1, a4 = 1,

uA.10 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2+4G2t+G2
2 − (2k2 −1)∫

4bdx + G1

]
ds(φ),

(A.11) a0 =
1
4

, a2 =
1−2k2

2
, a4 =

1
4

,

uA.11 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − 1−2k2

2∫
4bdx + G1

]
[ns(φ)± cs(φ)],

(A.12) a0 =
1− k2

4
, a2 =

1 + k2

2
, a4 =

1− k2

4
,

uA.12 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − 1+k2

2∫
4bdx + G1

]
[nc(φ)± sc(φ)],

(A.13) a0 =
k4

4
, a2 =

k2 −2
2

, a4 =
1
4

,

uA.13 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − k2−2

2∫
4bdx + G1

]
[ns(φ)+ ds(φ)],

(A.14) a0 =
k2

4
, a2 =

k2 −2
2

, a4 =
k2

4
,

uA.14.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+ i
4

4t2 + 4G2t + G2
2 − k2−2

2∫
4bdx + G1

]
[sn(φ)± icn(φ)],

uA.14.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − k2−2

2∫
4bdx + G1

]
dn(φ)

i
√

1− k2sn(φ)±cn(φ)
,

(A.15) a0 = 1, a2 = 2−4k2, a4 = 1,

uA.15 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 − (2−4k2)∫

4bdx + G1

]
sn(φ)dn(φ)

cn(φ)
,

(A.16) a0 =
k2 −2k + 1

4A2 , a2 =
1 + k2

2
+ 3k, a4 =

A2(−1 + k)2

4
,

uA.16 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 −

(
1+k2

2 + 3k
)

∫
4bdx + G1

]

· dn(φ)cn(φ)
A(1 + sn(φ))(1 + ksn(φ))

,

(A.17) a0 =
(k + 1)2

4A2 , a2 =
1 + k2

2
− 3k, a4 =

A2(1 + k)2

4
,

uA.17 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx

+
i
4

4t2 + 4G2t + G2
2 −

(
1+k2

2 −3k
)

∫
4bdx + G1

]

· dn(φ)cn(φ)
A(1 + sn(φ))(1− ksn(φ))

,
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(A.18) a0 = −2k3 + k4 + k2, a2 = 6k− k2 −1, a4 = −4
k

,

uA.18 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − (6k− k2 −1)∫

4bdx + G1

]
kdn(φ)cn(φ)
1 + ksn2(φ)

,

(A.19) a0 = 2k3 + k4 + k2, a2 = −6k− k2 −1, a4 =
4
k

,

uA.19 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 + 6k + k2 + 1∫

4bdx + G1

]
kdn(φ)cn(φ)
ksn2(φ)−1

,

(A.20) a0 = 2 + 2k1− k2, a2 = 6k1 − k2 + 2, a4 = 4k1,

uA.20 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − (6k1 − k2 + 2)∫

4bdx + G1

]
k2sn(φ)cn(φ)
k1 −dn2(φ)

,

(A.21) a0 = 2−2k1− k2, a2 = −6k1 − k2 + 2, a4 = −4k1,

uA.21 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − (−6k1 − k2 + 2)∫

4bdx + G1

]−k2sn(φ)cn(φ)
k1 + dn2(φ)

,

(A.22) a0 =
k2 −1

4(C2k2 −B2)
, a2 =

k2 + 1
2

, a4 =
(C2k2 −B2)(k2 −1)

4
,

uA.22 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]√
B2−C2

B2−C2k2 + sn(φ)

Bcn(φ)+Cdn(φ)
,

(A.23) a0 =
k4

4(C2 + B2)
, a2 =

k2

2
−1, a4 =

C2 + B2

4
,

uA.23 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −

(
k2

2 −1
)

∫
4bdx + G1

]√
B2+C2−C2k2

B2+C2 + dn(φ)

Bsn(φ)+Ccn(φ)
,

(A.24) a0 =
2k− k2 −1

B2 , a2 = 2k2 + 2, a4 = −B2k2 −B2 −2B2k,

uA.24 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − (2k2 + 2)∫

4bdx + G1

]
ksn2(φ)−1

B(ksn2(φ)+ 1)
,

(A.25) a0 = −2k + k2 + 1
B2 , a2 = 2k2 + 2, a4 = −B2k2 −B2 + 2B2k,

uA.25 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − (2k2 + 2)∫

4bdx + G1

]
ksn2(φ)+ 1

B(ksn2(φ)−1)
,

(A.26) a0 = a4 =
1
4

, a2 =
1−2k2

2
,

uA.26.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − 1−2k2

2∫
4bdx + G1

]
dn(φ)

[
kcn(φ)± i

√
1− k2

]
,
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uA.26.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − 1−2k2

2∫
4bdx + G1

]
[ksn(φ)± idn(φ)],

uA.26.3 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − 1−2k2

2∫
4bdx + G1

]
sn(φ)

1± cn(φ)
,

uA.26.4 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − 1−2k2

2∫
4bdx + G1

]
cn(φ)√

1− k2sn(φ)±dn(φ)
,

(A.27) a0 = a4 =
k2 −1

4
, a2 =

k2 + 1
2

,

uA.27.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
dn(φ)

1± ksn(φ)
,

uA.27.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
[ksd(φ)±nd(φ)],

(A.28) a0 = a4 =
1− k2

4
, a2 =

k2 + 1
2

,

uA.28.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
cn(φ)

1± sn(φ)
,

uA.28.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
[nc(φ)± sc(φ)],

(A.29) a0 = − (1− k2)2

4
, a2 =

k2 + 1
2

, a4 =
−1
4

,

uA.29 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
[kcn(φ)±dn(φ)],

(A.30) a0 =
1
4

, a2 =
k2 + 1

2
, a4 =

(1− k2)2

4
,

uA.30 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2+1

2∫
4bdx + G1

]
sn(φ)

dn(φ)± cn(φ)
,

(A.31) a0 =
1
4

, a2 =
k2 −2

2
, a4 =

k4

4
,

uA.31 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 − k2−2

2∫
4bdx + G1

]
cn(φ)√

1− k2 ±dn(φ)
.

Case B. Soliton solutions and combined soliton solutions

(B.1) When a0 = 0, a2 > 0, a4 < 0, (1) has the following bright soliton solution:

uB.1 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√−a2

a4
sech

(√
a2φ

)
.
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(B.2) When a0 = 0, a2 > 0, a4 > 0, (1) has the following singular solution:

uB.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√
a2

a4
csch

(√
a2φ

)
.

(B.3) When a0 =
a2

2

4a4
, a2 < 0, a4 > 0, (1) has the following dark soliton solution:

uB.3 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√−a2

2a4
tanh

(√
−a2

2
φ
)

.

(B.4) When a0 = 0, a2 = 1, a4 =
1
2

, (1) has the following dark soliton solution:

uB.4 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −1∫

4bdx + G1

]±
√

2−2tanh2(G−φ)

tanh(G−φ)
.

(B.5) When k → 1, the Jacobi elliptic function solution uA.1.1 degenerates as dark soliton solution:

uB.5 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 + 2∫

4bdx + G1

]
tanh(φ).

(B.6) When k → 1 the Jacobi elliptic function solution uA.4 degenerates as bright soliton solution:

uB.6 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −1∫

4bdx + G1

]
sech(φ).

Case C. Triangular periodic solutions

(C.1) When a0 = 0, a2 < 0, a4 > 0, (1) has the following triangular periodic solutions:

uC.11 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√−a2

a4
sec

(√−a2φ
)

.

uC.12 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√−a2

a4
csc

(√−a2φ
)

.

(C.2) When a0 =
a2

2

4a4
, a2 > 0, a4 > 0, (1) has the following triangular periodic solutions:

uC.2 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −a2∫

4bdx + G1

]√
a2

2a4
tan

(√
a2

2
ξ
)

.

(C.3) When k → 0 the Jacobi elliptic function solution uA.8 degenerates as triangular periodic solution:

uC.3 = exp
[
−

∫ (
2b∫

4bdx + G1
+ d

)
dx +

i
4

4t2 + 4G2t + G2
2 −2∫

4bdx + G1

]
tan(φ),

where k (0 < k < 1) denotes the modulus of the Jacobi elliptic function, k1 =
√

1− k2, i2 = −1, G1, G2, A, B,
C (ABC �= 0), and G are arbitrary constants, the coefficient functions b and d are arbitrary functions of x, l(x) is
determined by (10a).
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As aforementioned, in a realistic optical fibre, when
the characteristic parameters of the fibre are not con-
stants, the variations of the group velocity disper-
sion, the nonlinearity, and the amplification or absorp-
tion can be described by (1). Considering the dark
soliton solution uB.5 of (1), we can see that it de-
scribes the chirped dark soliton pulse for (1), where

tanh
(

t+ 1
2 G2∫

4bdx+G1

)
represents the shape of the dark soli-

ton, −G2
2 is the center of the soliton, 1∫

4bdx+G1
are

the inverse width of the soliton and the chirp param-
eter. Similarly, we observe that the bright soliton so-
lution uB.6 describes the chirped bright soliton pulse

for (1), where sech
(

t+ 1
2 G2∫

4bdx+G1

)
represents the shape of

the bright soliton, −G2
2 is the center of the pulse, and

1∫
4bdx+G1

are the inverse width of the soliton and the
chirp parameter. From the chirped dark and bright soli-
ton solution uB.5 and uB.6, we see that the chirped term

1∫
4bdx+G1

and the amplification or absorption coeffi-
cient d(x) determine the qualities of the solitary wave.

Remark 1. When k → 1, the Jacobi elliptic func-
tion degenerates as hyperbolic function in the manner
of Appendix 1. From the Jacobi elliptic function so-
lutions obtained in Case A, we can get the other soli-
ton solutions for (1) in addition to uB.5 and uB.6. When
k → 0, the Jacobi elliptic function degenerates as trian-
gular periodic function in the manner of Appendix 1.
From the Jacobi elliptic function solutions obtained in
Case A, we can get the other triangular periodic solu-
tions for (1) in addition to uC.2. For simplicity, we omit
them here.

Remark 2. If the normalized propagation distance z
in [4] becomes x and A1 = G2, A2 = 1, A3 = 1, A4 =
A5 = 0, α(x) = 2b(x), γ(x) = −d(x), κ = 1∫

4b(x)dx+G1
,

c0 = a0, c2 = a2, and c4 = a4
2 , then the solutions ψ13,

ψ ′
13, ψ22, ψ ′

22, ψ33, and ψ ′
33 in [4] are exactly the same

as those obtained in this paper, named uA.1.1, uB.5,
uA.4, uB.6, uA.8, and uC.3, respectively. In fact, the ex-
act solutions uA.1.1 to uA.10 of (1), which are expressed
by the single Jacobi elliptic function, can all be ob-
tained in [4] with the above condition and in [16] when
the variable x becomes z and b(z) = β (z)

2 , l(z) = γ(z),
d(z) = −α(z), G1 = 0, C0 = 1

2 , C1 = G2
4 , λ = a2, and

µ = −4a4. Comparing our work with the results in [4]
and [16], we present more Jacobi doubly periodic so-
lutions and soliton solutions and our computation is
much simpler.

Remark 3. If the variable x becomes z and b(z) =
±D(z)

2 , l(z) = R(z), d(z) = Γ (z), G1 = 2
C0

, the con-
straint condition (10a) is the same as (4) in [1] and (4)
in [14], respectively. As stated in [1] and [14], (10a) is
the condition for (1) to be transformed to the standard
NLS equation. It shows that (1) can be reduced to or-
dinary differential equation (9) when it can be trans-
formed to the standard NLS equation.

3. Nontravelling Wave Solutions of the CQNLS
Equation with Variable Coefficients

In this section, we investigate the following cubic-
quintic nonlinear Schrödinger (CQNLS) equation with
variable coefficients [9 – 10]

iux +
D(x)

2
utt +R(x)|u|2u−α(x)|u|4u = 0, (13)

where u(x, t) is the complex envelope of the electrical
field in a comoving frame, D(x) represents the group
velocity dispersion, R(x) is the Kerr nonlinearity pa-
rameter and the parameter α(x) is the saturation of
the nonlinear refractive index (i. e. higher order non-
linearity). They are real functions of the normalized
propagation distance x. And t is the retarded time. The
CQNLS equation (13) describes the amplification or
absorption of pulses propagating in high optical inten-
sities or materials with high nonlinear coefficients (e. g.
semiconductor doped glasses) with distributed param-
eters. In particular, when α(x) = 0, (13) can be re-
duced to the NLS equation with variable coefficients.
And when D(x) = 1, R(x) and α(x) are constants,
(13) becomes the constant coefficient CQNLS equa-
tion, whose solutions have been found in [9]. Exact so-
lutions of the special case for (1) when R(x) = c1

2 D(x)
and α(x) = c2

2 D(x) have been studied in [10]. Here
our proposed method will give families of nontravel-
ling wave solutions for (13) in a unified way.

For our purpose, we first introduce the following
transformation:

u(x, t) = p(x, t)exp[iq(x, t)], (14)

where p(x, t) and q(x, t) are real functions. Substitut-
ing (14) into (13) and letting the real part and imagi-
nary part be zero, respectively, we can get

px + D(x)ptqt +
D(x)

2
pqtt = 0, (15a)
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−pqx +
D(x)

2
ptt − D(x)

2
pqt

2 +R(x)p3−α(x)p5 = 0.

(15b)

Note that (15a) is a linear equation with respect to p
and its derivatives. To get p from (15a), we choose

q(x, t) = q1(x)t2 + q2(x)t + q3(x), (16)

where q1(x), q2(x) and q3(x) are undetermined func-
tions of x. Substituting (16) into (15a), it follows that

p = W (θ )exp
[∫

−Dq1dx
]
, (17)

where the argument θ = t exp[−∫
2Dq1dx] −∫

Dq2 exp[−∫
2Dq1dx]dx and W (θ ) is an arbitrary

function. Substituting (17) into (15b) and reducing,
(15b) is simplified to

W ′′ =
2exp[

∫
4Dq1dx]
D

[
(q1x + 2Dq1

2)t2

+(q2x + 2Dq1q2)t +
(

q3x +
D
2

q2
2
)]

W

− 2R
D

exp
[∫

2Dq1dx
]
W 3 +

2α
D

W 5.

(18)

Up to now, seeking for solutions of (13) has been trans-
formed to finding solutions of (18). In order to re-
duce (18) to an ordinary differential equation, let us
take the following constraint conditions:

2exp[
∫

4Dq1dx]
D

[
(q1x + 2Dq1

2)t2 +(q2x + 2Dq1q2)t

+
(

q3x +
D
2

q2
2
)]

= c2, (19a)

−2R
D

exp
[∫

2Dq1dx
]

= 2c4,
2α
D

= 3c6, (19b)

where c2, c4 and c6 are arbitrary constants. Under
the constraint conditions (19a) and (19b), it follows
from (18) that

W ′2 = c0 + c2W 2 + c4W 4 + c6W 6, (20)

where c0 is an arbitrary constant.
From (19b), the relations between the coefficient

functions of (13) are expressed as follows:

α =
3D
2

c6, R =
−c4D∫

2Ddx + H2
. (21)

It is simple to solve (19a). The result reads:

q1 =
1∫

2Ddx + H2
, q2 =

H1∫
2Ddx + H2

,

q3 =
1
4 (H1

2 − c2)∫
2Ddx + H2

+ H3,

(22)

where H1, H2 and H3 are arbitrary constants, D is the
arbitrary coefficient function,

∫
2Ddx+H2 > 0. Substi-

tuting (21) and (22) into (16) and (17), we get

p =
W (θ )√∫
2Ddx + H2

, θ =
t + 1

2 H1∫
2Ddx + H2

,

q =
t2 + H1t + 1

4(H1
2 − c2)∫

2Ddx + H2
+ H3.

(23)

In summary, we can arrive at the following theorem.

Theorem 2. If the coefficient functions D, R and α
in (13) satisfy relations (21), then solutions of (13) can
be expressed by

u =
exp[iq]√∫
2Ddx + H2

W (θ ), (24)

where W (θ ) is a solution of (20), q and θ are deter-
mined by (23).

Using Theorem 2 and the known solutions of (20) [31], we can give exact nontravelling wave solutions of (13)
as follows.

Case 1. Soliton solutions and combined soliton solutions
(1.1) c0 = 0, c2 > 0, c4 < 0, c6 < 0, c4

2 −4c2c6 > 0,

u1.11 =
exp[iq]√∫
2Ddx + H2

√√√√√ 2c2sech2
(√

c2θ
)

2
√

c42 −4c2c6 −
(√

c42 −4c2c6 + c4

)
sech2

(√
c2θ

) ,

u1.12 =
exp[iq]√∫
2Ddx + H2

√√√√√ 2c2csch2
(
±√

c2θ
)

2
√

c42 −4c2c6 +
(√

c42 −4c2c6 − c4

)
csch2

(
±√

c2θ
) ,
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(1.2) c0 = 0, c6 =
c4

2

4c2
, c2 > 0, c4 < 0,

u1.21 =
exp[iq]√∫
2Ddx + H2

√−c2

c4

(
1 + tanh

(
±√

c2θ
))

, u1.22 =
exp[iq]√∫
2Ddx + H2

√−c2

c4

(
1 + coth

(√
c2θ

))
,

(1.3) c0 = 0, c2 > 0,

u1.31=
exp[iq]√∫
2Ddx+H2

√√√√√√
−c2c4sech2

(√
c2θ

)

c42−c2c6

(
1±tanh

(√
c2θ

))2 , u1.32=
exp[iq]√∫
2Ddx+H2

√√√√√√
c2c4csch2

(√
c2θ

)

c42−c2c6

(
1±coth

(√
c2θ

))2 ,

(1.4) c0 = 0, c2 > 0, c6 > 0,

u1.41 =
exp[iq]√∫
2Ddx + H2

√√√√√ −c2sech2
(√

c2θ
)

c4 ±2
√

c2c6 tanh
(√

c2θ
) , u1.42 =

exp[iq]√∫
2Ddx + H2

√√√√√ c2csch2
(√

c2θ
)

c4 ±2
√

c2c6 coth
(√

c2θ
) ,

(1.5) c0 =
8c2

2

27c4
, c6 =

c4
2

4c2
, c2 < 0, c4 > 0,

u1.51=
exp[iq]√∫
2Ddx + H2

√√√√√√
−8c2 tanh2

(√
−c2

3 θ
)

3c4

[
3 + tanh2

(
±

√
−c2

3 θ
)] , u1.52=

exp[iq]√∫
2Ddx + H2

√√√√√√
−8c2 coth2

(√
−c2

3 θ
)

3c4

[
3 + coth2

(
±

√
−c2

3 θ
)] ,

(1.6) c0 = 0, c2 > 0, c4
2 −4c2c6 > 0,

u1.6 =
exp[iq]√∫
2Ddx + H2

√√√√ 2c2

±
√

c42 −4c2c6 cosh
(

2
√

c2θ
)
− c4

,

(1.7) c0 = 0, c2 > 0, c4
2 −4c2c6 < 0,

u1.7 =
exp[iq]√∫
2Ddx + H2

√√√√ 2c2

±
√
−c42 + 4c2c6 sinh

(
2
√

c2θ
)
− c4

,

Case 2. Triangular periodic solutions

(2.1) c0 = 0, c2 < 0, c4 ≥ 0, c6 < 0, c4
2 −4c2c6 > 0,

u2.11 =
exp[iq]√∫
2Ddx + H2

√√√√√ −2c2sec2
(√−c2θ

)

2
√

c42 −4c2c6 −
(√

c42 −4c2c6 − c4

)
sec2

(√−c2θ
) ,

u2.12 =
exp[iq]√∫
2Ddx + H2

√√√√√ 2c2csc2
(
±√−c2θ

)

2
√

c42 −4c2c6 −
(√

c42 −4c2c6 + c4

)
csc2

(
±√−c2θ

) ,
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(2.2) c0 = 0, c2 < 0, c4
2 −4c2c6 > 0,

u2.21 =
exp[iq]√∫
2Ddx + H2

√√√√ 2c2

±
√

c42 −4c2c6 cos
(

2
√−c2θ

)
− c4

,

u2.22 =
exp[iq]√∫
2Ddx + H2

√√√√ 2c2

±
√

c42 −4c2c6 sin
(

2
√−c2θ

)
− c4

,

(2.3) c0 = 0, c2 < 0, c6 > 0,

u2.31=
exp[iq]√∫
2Ddx + H2

√√√√√ −c2sec2
(√−c2θ

)

c4 ±2
√−c2c6 tan

(√−c2θ
) , u2.32=

exp[iq]√∫
2Ddx + H2

√√√√√ −c2csc2
(√−c2θ

)

c4 ±2
√−c2c6 cot

(√−c2θ
) ,

(2.4) c0 =
8c2

2

27c4
, c6 =

c4
2

4c4
, c2 > 0, c4 < 0,

u2.41 =
exp[iq]√∫
2Ddx + H2

√√√√√ 8c2 tan2
(
±

√
c2
3 θ

)

3c4

[
3− tan2

(
±

√
c2
3 θ

)] , u2.42 =
exp[iq]√∫
2Ddx + H2

√√√√√ 8c2 cot2
(
±

√
c2
3 θ

)

3c4

[
3− cot2

(
±

√
c2
3 θ

)] ,

Case 3. Rational function solutions

(3.1) c0 = 0, c2 > 0,

u3.1 =
exp[iq]√∫
2Ddx + H2

·

√√√√√√
16c2 exp

[
±2

√
c2θ

]
(

exp
[
±2

√
c2θ ]−4c4

)2 −64c2c6

,

(3.2) c0 = 0, c2 > 0, c4 = 0,

u3.2 =
exp[iq]√∫
2Ddx + H2

√√√√√ ±16c2 exp
[
±2

√
c2θ

]

1−64c2c6 exp
[
±4

√
c2θ

] ,

where q and θ are determined by (23), the coefficient
function D is an arbitrary function of x, α and R are
determined by (21).

Remark 4. The results for (13) in this paper are
different from that in [10]. To our best knowledge, all
solutions for (13) obtained in this paper have not been
shown in the existent literature, so they are completely
new.

Remark 5. All the solutions obtained in this paper
for (1) and (13) have been checked by Maple software.

Auxilary Table. Limits of Jacobi elliptic functions when
k → 1 or k → 0.
Jacobi elliptic functions Jacobi elliptic functions
degenerate as hyperbolic degenerate as hyperbolic
functions when k → 1 functions when k → 0
sn(ξ ) tanh(ξ ) sn(ξ ) sin(ξ )
cn(ξ ) sech(ξ ) cn(ξ ) cos(ξ )
dn(ξ ) sech(ξ ) dn(ξ ) 1
sc(ξ ) sinh(ξ ) sc(ξ ) tan(ξ )
sd(ξ ) sinh(ξ ) sd(ξ ) sin(ξ )
cd(ξ ) 1 cd(ξ ) cos(ξ )
ns(ξ ) coth(ξ ) ns(ξ ) csc(ξ )
nc(ξ ) cosh(ξ ) nc(ξ ) sec(ξ )
nd(ξ ) cosh(ξ ) nd(ξ ) 1
cs(ξ ) csch(ξ ) cs(ξ ) cot(ξ )
ds(ξ ) csch(ξ ) ds(ξ ) scs(ξ )
dc(ξ ) 1 dc(ξ ) sec(ξ )

4. Conclusions and Discussions

In summary, a direct transformation method is de-
veloped to find exact solutions of variable coefficient
NLPDEs. By means of the proposed method, we have
been able to reduce two variable coefficient nonlinear
equations of Schrödinger type to two ordinary differen-
tial equations under some constraint conditions. Based
on the solutions of the ordinary differential equations,
we find varieties of exact nontravelling wave solu-
tions for the two equations: the generalized variable
coefficient NLS equation (1) and the variable coeffi-
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cient CQNLS equation (13). These solutions include
bright and dark soliton solutions, triangular periodic
solutions, Jacobi doubly periodic solutions and ratio-
nal function solutions. We have also shown that soliton
solutions and triangular periodic solutions can be es-
tablished as the limits of the Jacobi elliptic function
solutions. The soliton solutions of (1) and (13), which
contain some arbitrary functions and some arbitrary
constants, which lead one to discuss the behaviour of
solutions and also provide enough freedom to construct
solutions that may be related to a real physical problem
and can help optical engineers to devise appropriate

optical fibre for realizing long distance soliton com-
munication. The transformation technique used in this
paper can also be extended to other variable coefficient
nonlinear evolution equations.
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