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In this paper, a generalized (G’ /G)-expansion method, combined with suitable transformations, is
used to construct exact solutions of the nonlinear Schrédinger equation with variable coefficients. As
a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions with
parameters are obtained. When the parameters are taken as special values, some solutions including
the known kink-type solitary wave solution and the singular travelling wave solution are derived
from these obtained solutions. It is shown that the generalized (G’/G)-expansion method is direct,
effective, and can be used for many other nonlinear evolution equations with variable coefficients in

mathematical physics.
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1. Introduction

Seeking exact solutions of nonlinear evolution equa-
tions (NLEEs) is of important significance in math-
ematical physics and becomes one of the most ex-
citing and extremely active areas of research inves-
tigation. In the past several decades, many effec-
tive methods for obtaining exact solutions of NLEEs
have been presented, such as the inverse scattering
method [1], Hirota’s bilinear method [2], Bicklund
transformation [3], Painlevé expansion [4], sine-cosine
method [5], homogeneous balance method [6], homo-
topy perturbation method [7], variational method [8],
asymptotic methods [9], Adomian decomposition
method [10], mapping approach [11], tanh-function
method [12 — 15], algebraic method [16, 17], Jacobi el-
liptic function expansion method [18, 19], F-expansion
method [20 - 22], auxiliary equation method [23 —25],
and Exp-function method [26 —28].

However, to our knowledge, most of aforemen-
tioned methods are related to the constant-coefficient
models. Recently, the study of variable-coefficient
NLEEs has attracted much attention [8,28 —32] be-
cause most of real nonlinear physical equations pos-
sess variable coefficients. Wang et al. [33] proposed
a new method called the (%)-expansion method to

look for travelling wave solutions of NLEEs. The (%)-
expansion method is based on the assumptions that the

travelling wave solutions can be expressed by a poly-
nomial in (%), and that G = G(&) satisfies a second
order linear ordinary differential equation (LODE):

G'"+AG +uG=0, (1)

where G' =dG(€)/dE, G" = d>G(E) /dE2, E =x— Vi,
and V is a constant. The degree of the polynomial can
be determined by considering the homogeneous bal-
ance between the highest order derivative and non-
linear terms appearing in the given NLEE. The co-
efficients of the polynomial can be obtained by solv-
ing a set of algebraic equations resulted from the pro-
cess of using the method. By using the (%)-expansion
method, Wang et al. [33,34] and Bekir [35] have
successfully obtained more travelling wave solutions
of some important NLEEs. More recently, Zhang et
al. [36,37] proposed a generalized (%)-expansion
method to improve and extend Wang et al.’s work [33]
for solving variable-coefficient equations and high-
dimensional equations.

The present paper is motivated by the desire
to further extend the generalized (%)—expansion
method [36] to other types of NLEEs. With this pur-
pose, we will consider the nonlinear Schrodinger equa-
tion with variable coefficients:
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where u = u(z,t) is a real or complex valued function
of zand 7, 0t(z), B(z), and ¥(z) are all arbitrary func-
tions of the indicated variable.

The rest of this paper is organized as follows: In
Section 2, we briefly describe the generalized (%)—
expansion method. In Section 3, we use the general-
ized ( ) -expansion method and several suitable trans-
formatlons to solve equation (2). In Section 4, some
conclusions are given.

/
2. Description of the Generalized (%)-Expansion
Method

For a given NLEE with independent variables X =

(x,,2,...,t) and dependent variable u:
F(uauhux»uyauza'“ ,uxtauyt»uzt cee autt»uxmuyy»uzzr")
0, (3)

we suppose its solution can be expressed by a polyno-

mial in (% ) as follows:

/ i
M—Z(x, ( ) +op(X), (X)) #0, (4)
where ap(X), o(X) (i=1,2,--- ,m),and & = &(X) are
all functions of X to be determined later, G = G(&) sat-

isfies equation (1). To determine u explicitly, we take
the following four steps:

Step 1. Determine the integer m by balancing the
highest order nonlinear term(s) and the highest order
partial derivative of u in (3).

Step 2. Substitute (4) along with (1) into (3) and
collect all terms with the same order of (% ) together,
the left hand side of (3) is converted into a polynomlal
in ( ) Then set each coefficient of this polynomial to
Zero to derive a set of over-determined partial differen-
tial equations for oy (X), o;(X), and &.

Step 3. Solve the system of over-determined par-
tial differential equations obtained in Step 2 for o (X),
0;(X), and £ by use of Mathematica.

Step 4. Use the results obtained in the above steps
to derive a series of fundamental solutions of (3) de-
pending on (%) since the solutions of equation (1)
have been well known for us, then we can obtain exact
solutions of (3).
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3. Exact Solutions of Equation (2)

In order to obtain the exact solution of equation (2),
firstly we make the transformation

u(z,t) =V(z,t)exp(i6(z,1)), (5)
where V(z,¢) and 0(z,t) are amplitude and phase func-
tions, respectively. Substituting (5) into (2) and sepa-
rating the real and imaginary parts, we obtain

V.4 BV —VE) +aV =0, ©)

1
Ve+ Eﬁ(Z)(ZVIG,—l—VGH) —y(z)V =0. 7

Balancing Vj, and V3 in (6), we have m = 1. We as-
sume that (6) and (7) have the following formal solu-

tions:
!

v=a1(z)<%)+ao(z), (@) £0,  ®

0 = ()i + I (2)t + 2(2), ©)
where G = G(&) satisfies equation (1), & = p(2)r +
q(z), & (2), ai1(z), P(2), I'(z), 2(z), p(z), and ¢(z)
are differentiable functions to be determined.

Substituting (8) and (9) into (6) and (7) and col-
lecting all terms with the same order of ( ) together,
the left-hand sides of (6) and (7) are converted into
two polynomials in t/( ) (j =0,1,2). Setting each
coefficient of the polynomlals to zero, we derive a

set of over-determined differential equations for &(z),
01(z), P(2), I'(2), 2(z), p(z) and ¢(z) as follows:

AP a@eo+ S HnEBE)
—zo«xz)ﬁ()r%) @(2)2'(2) =
AN 30RO E 3P EmEBE)
P @B - %m( BECE
—a(2)Q'(2) =0,
UCA R WEIERTE
F3P e (B =0,
AEp: a0 @+ PO EpE =0
HEP: 20@BEr QPR —aEI () =0,
HE) 2aEBErEeE - aEr e =o,
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AN 2@ - w@@ (@) =0,
AEN: 2u@BEE - @)@ =0,
to(%’)o L —a0(2)7(2) — up(@ e (BRI (2)
+ (B EP() — o (' (2)
+0g(2) =0,

M) —a@r) - mp @O
+01(2)B(2)P(2) — pau (2)4' (2)
+ai(z) =0,

AEP: pE@mEBErE - (@) =0,

MEY: @ EBEE
—pay(2)p'(z) =0,

A&y 2w EBEE
—Aau(2)p'(2) =0,

MEP: 2p@a@BEE - a@pE) =0.

Solving the set of over-determined partial differen-
tial equations by use of Mathematica, we get the fol-
lowing two cases:

Case 1.
) = garhexp ([ M0,
) =mveso ( [ 16a).

D(z) =0, p(z)=42 TI(z)=43,

a(z) = —Aas [ B(E)AE+4s

~ 723+ 430~ 4] [ B(O)AC +4s,

o)
—
~N
&

Il

B =~ hatresn (2 [ v0az).

where A, Ay, Az, A4, and As are arbitrary constants.

Case 2.
a0(e) = gAsh! Gewp ( [ 121az )
() =Ac} @exo ( [ 1000 ).

D(z) = P(z), plz) =A7P(z), I'(z)=As3P(2),

1
q(z) = §A7A8¢(Z) + Ay,

Q(2) = 243+ A2(A2 — 4p)| () + Ao,

8
A3D'(z)exp (2 [*y(£)dE)

o(g) == 2A20(2) ’
_ 2@

Bla)= C292(z)’

where Ag, A7, Ag, Ag, and Ao are arbitrary con-
stants, @(z) is an arbitrary function of z and @'(z) =
d®(z)/dz.

Substituting Case 1 into (8) and (9), and using (5),
we have the first fundamental solution of equation (2):

‘= [AICXP (/ Y(Qdc) (%) (10)

+ %Allexp </Z y(C)dC)] exp[i(Ast +Q(z))],

where G = G(€), & = Aot — Aghs [*B(0)dC +
As, Q(2) = 1243 + A3(A2 — 4)] [* B(L)AE + As.

2
B(z) =~ Fa()-exp 2 7(£)dE).

Substituting the general solutions of equation (1)
into (10), we have three types of exact solutions of
equation (2) as follows:

When A2 — 4 > 0, we obtain a hyperbolic function
solution:

= e ([ 000
Cisinh (@5) +Cycosh (@g)

C) cosh (7@1 5) + Gy sinh (# 5)
-exp[i(Ast + Q2(z2))], (1

—_—

)

where & = Aot — ArAz [*B(8)dE + Ay, Q(2)
—112A% + A3(A% — 4p)] [*B($)dS + As, B(2)
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—;%a(z)exp (2 [*y(8)dE), Ci and C, are arbitrary
constants.

If Ci, C;, A, and u are taken as special values,
some known results can be rediscovered. For exam-
ple, setting C; =0, u = #, A=A —ﬁ,Az =
V—C2A12, Ay =0, A5 =0, ¢; < 0, and ¢4 > 0, then
solution (11) can be written as

M_A”\/?exp </ZY(C)dC> tanh(6) ;)

-exp [i(Asr + 2(2))],

where & = \/—cAn(r — A3 [*B(£)dE), Q(z) =
(2AT, — 5A3) [FB(0)AS, B(z) = —[A;/24%,cd]
a(z)exp (2 [*y(£)dE). Solution (12) is the known
kink-type solitary wave solution (15) found by Zong
et al. in [38].
When 12 —
tion solution:

u=1A1/an— Texp ( / ZY(C)dC
—C) sin <\/u—l§> +Czcos ‘/—5)

C) cos (\/#—l§> +Cysin \/—5)
-exp [i(Ast + Q(z))], (

where é = At — A2A3fzﬁ(C)dC + Ay, .Q(Z) =
—3[243 + AS(A7 — 4p)| [FB(£)dC + As. B(z) =
—[A2/A3a(z)exp (2 [*y()dE), €1 and C; are arbi-
trary constants.

IfwesetCy, =0, u= #,Al
tion (13) becomes

4u < 0, we have a trigonometric func-

13)

= —Aj3, then solu-

o=avew ( [ 76t )t (@)

- exp {1<A3t+ %(ZA%—A%)/Zﬁ(C)dC-Hxsﬂ7 (1

whete & = Axt — Aoz [*B(O)AS + As, () =
—':—'%305(1) exp (2 [*y(£)dE). Solution (14) is equiva-

lent to the trigonometric function solution (37) given
by Zhang et al. in [39].
When A2 —4u = 0, we get a rational solution:

U= Ajexp </ZY(C)dC) (qfizczg (15)

-exp[i(Asr +Q(2))],
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where £ = Aot — Aods [FB(C)AL + As, Q(2) =
—3A3[FB(O)AL + As. Bz) = —[A7/Ada(z)
exp (2 [*y(£)dE), C) and C; are arbitrary constants.

Substituting Case 2 into (8) and (9), and using (5),
we have the second fundamental solution of equa-
tion (2):

o= asot e ([ 00c) ()
—i—%AdL(I)%(z)exp (/Zy(g)dgﬂ (16)

-expli(@(2)* + As@(2)t + L2(2))],

where G = G(§), & = A7D(2)t + 1A7A3D(2) + Ao,
Q) = gPA3 + A3A* — 4p)]P(x) + A,
a(z) = A3/ (z)exp (=2 [*¥(£)dE) /245 ®(2), B(2) =
~P'(2)/29%(2).

Substituting the general solutions of (1) into (16),

we have other three types of exact solutions of equa-
tion (2) as follows:

When A% — 41 > 0, we obtain a hyperbolic function
solution:
1 1 z
u= Ao/} (exp ( / y(:)dc)

Cy sinh <\/’122T4“ éj) +Ccosh (@ 5)
==

a7

2_4
Clcosh< 12 B

é) + G, sinh <
-exp[i(P(2)1* +AsP(2)t + 2(2))],

where & = A;P(z)t + 1AA3P(z) + Ao,
Q(z) = g[245 + AZ(A% — 4p)|P(2) + Aj, a(z) =
AF/(z) exp(—2 [*¥(§)dL)] /243D (2), B(z) = —P'(2)

/2®2(z), C; and C; are arbitrary constants.
IfwesetC; =0, U= #, then solution (17) gives

u=ac@t@esp ([ HOL Jeomie)
~exp (@) + AP () +2(2))],

where & = A7P(2)t + 1A743P(2) + Ao, Q(z) = L [AZ+
243](2) + Ao, (2) = A () exp (2 Y(C)d)/
2A420(z), B(z) = —P'(z)/2P*(z). Solution (18) is a
singular travelling wave solution.
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When A2 —4u < 0, we have a trigonometric func-
tion solution:

u=2ao\/an— 0 exp ( A y(é)dc)

~Cysin (Wg—* 5) +Ccos (W a;)
) o ()

Cjcos < 5

- expi(P(2)r* +AgP(2)t + Q(2))],

where & = A7®(2)t + $A7A3 P (2) + Ao, 2(2) = §[2A3
+ A%(Az - 4[.1)]‘1’(Z) + Ao, OZ(Z) %
exp (=2 [*¥($)d) 2439 (2), B(2)=—D' () [2®*(2),
C1 and C, are arbitrary constants.

When A2 —4u = 0, we get a rational solution:

U= As®3 (2) exp (/ZV(C)dC> (leiZCEé) (20)

-expli(@(2)* + As@(2)t + Q(2)))],

where & = A7®(2)t + $A7A3P(2) + Ao, Q(z) =
3AFP(2) A, a(2) = 30 (2)exp (-2 [*¥(§)dC)/
2A20(z), B(z) = —P'(z) /2@ (z), C) and C; are arbi-
trary constants.

Remark 1. All solutions presented in this paper
have been checked with Mathematica by putting them
back into the original equation (2).

Remark 2. To the best of our knowledge, solu-
tions (11), (13), (15), (17)—(20) are new and they have
not been reported in [23,38 —45].
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