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Although the homotopy analysis method (HAM) is, by now, a well-known analytic method for
handling functional equations, there is no general proof of its applicability to all kinds of equations.
In this paper, by using this method to solve equal-width wave (EW) and modified equal-width wave
(MEW) equations, we have made a new contribution to this field of research. Our goal is to emphasize
on two points: one is the efficiency of HAM in handling these important family of equations and its
superiority over other analytic methods like homotopy perturbation method (HPM), variational itera-
tion method (VIM), and Adomian decomposition method (ADM). The other point is that although the
considered two equations have different nonlinear terms, we have used the same auxiliary elements
to solve them.
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1. Introduction

Nonlinear equations have been of considerable in-
terest among scientists because they model many sci-
entific problems arising in different fields. Although,
numerical methods have largely been applied to solve
these equations, some restrictions of numerical meth-
ods have motivated scientists to search for analytic
solutions. So there are, also, analytic techniques for
solving nonlinear problems, among the classic ones
we can consider Lyapunov’s artificial small parameter
method, perturbation techniques, and the δ -expansion
method. Recently the idea of giving analytic approx-
imations to functional equations has largely devel-
oped and some new techniques have been proposed.
Among the newly developed ones are the Adomian
decomposition method (ADM), the homotopy analy-
sis method (HAM), the variational iteration method
(VIM), the homotopy perturbation method (HPM), the
tanh method, the sine-cosine method, and the exp-
function method.

Homotopy analysis method (HAM), first proposed
by Liao [1, 2], is an elegant method which has proved
its effectiveness and efficiency in solving many types
of functional equations, see [1 – 13] and the references
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therein. In this method, Liao uses homotopy, a concept
from topology, to continuously deform the nonlinear
equation under study to a system of linear ones.

The reasons for the preference of HAM over other
analytic techniques can be listed as follows:

(i) HAM properly overcomes restrictions of pertur-
bation techniques because it doesn’t need any small or
large parameters to be contained in the equation.

(ii) Liao, in his book [2], proves that this method
is a generalization of some previously used techniques
such as δ -expansion method, artificial small parameter
method, and ADM. Also, it is shown that HPM [14] is
just a special case of HAM [10, 13, 15].

(iii) Unlike previous analytic techniques, HAM
provides us with a convenient way to adjust and con-
trol the convergence region and rate of approximation
series. This is done by using the so called h̄-curves,
see [2].

The present work concerns with the application of
HAM in solving the equal-width wave (EW) equation
and a modified form of this equation. We focus on two
points: firstly, the applicability and efficiency of HAM
in handling this family of wave-type equations and
its superiority in comparison with other techniques.
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Secondly, although the wave-type equations may have
different nonlinear terms, when applying HAM we can
treat them by using a general choice of auxiliary ele-
ments.

2. Basic Idea of HAM

For a good understanding of HAM the reader is re-
ferred to Liao’s book [2], also a general introduction
and recent developments could be found in [16]. In this
section we briefly review the basic idea of HAM. Let
us consider the following nonlinear equation in a gen-
eral form:

N[u(r, t)] = 0,

where N is a nonlinear operator, u(r,t) is an unknown
function, and r and t denote spatial and temporal in-
dependent variables, respectively. At this stage we ig-
nore initial or boundary conditions, because they are
not used, directly, in construction of the so-called ‘ho-
motopy equation’. Actually we have to refer to these
conditions for solving the resulting linear system, for
more details see [2, 16, 17]. By means of generalizing
the traditional homotopy method, Liao constructs the
so-called ‘zeroth-order deformation equation’

(1−q)L[φ(r, t;q)−v0(r,t)] = qh̄H(r,t)N[φ(r,t;q)], (1)

where q ∈ [0,1] is the embedding (or homotopy) pa-
rameter, h̄ �= 0 is a non-zero auxiliary parameter –
which recently renamed to ‘convergence-control pa-
rameter’, H(r, t) is an auxiliary function, L is an auxil-
iary linear operator, v0(r,t) is an initial guess for u(r, t),
and φ(r, t;q) is an unknown function. It is important
that we have great freedom to choose auxiliary ele-
ments in HAM [2]. Obviously, when q = 0 and q = 1
one has

φ(r, t;0) = v0(r,t), φ(r,t;1) = u(r,t).

Thus as q increases from 0 to 1, the solution φ(r, t;q)
varies from the initial guess v0(r,t) to the solu-
tion u(r, t). Expanding φ(r,t;q) in Taylor series with
respect to q, we have

φ(r, t;q) = u0(r,t)+
∞

∑
m=1

um(r,t)qm, (2)

where

um(r, t) =
1

m!
∂mφ(r,t;q)

∂qm |q=0. (3)

If the auxiliary linear operator, the initial guess,
the auxiliary parameter, and the auxiliary function are
properly chosen, the series (2) converges at q = 1 and
we have

u(r, t) = u0(r, t)+
∞

∑
m=1

um(r, t), (4)

which must be a solution to the original nonlinear
equation, this has been proved by Liao [2]. If we set
h̄ = −1 and H(r, t) = 1, equation (1) becomes

(1−q)L[φ(r, t;q)− v0(r, t)]+ qN[φ(r, t;q)] = 0,

which is a special case and is used in the homotopy
perturbation method (HPM).

According to (3), the governing equations for
um(x, t) can be deduced from the zeroth-order defor-
mation equation (1). Define the vector

�un = [u0(r, t),u1(r, t), . . . ,un(r, t)].

Differentiating equation (1) m times with respect to the
embedding parameter q, then setting q = 0 and finally
dividing by m!, we have the so-called ‘mth-order de-
formation equation’,

L[um(r, t)−χmum−1(r, t)] = h̄H(r,t)Rm(�um−1,r, t), (5)

where

Rm(�um−1,r, t) =
1

(m−1)!
∂m−1N[φ(r, t;q)]

∂qm−1 |q=0, (6)

and

χm =
{

0, m ≤ 1
1, m > 1.

Directly substituting the series (2) into the zeroth-
order deformation equation (1), equating coefficients
of like-power of the embedding parameter q, one can
get the same high-order deformation (5), as proved
in [10, 15, 16]. Equation (5) is a linear one, so we
have transformed a nonlinear equation to a set of lin-
ear ones, which can be easily solved using an iterative
procedure. After solving (5), we can substitute um(r, t)
in (4) and obtain an approximation of arbitrary order.
It worths noting that HAM, in many cases, leads to a
series which gives the exact solution, see e. g. [17], and
using the auxiliary parameter h̄ one can adjust and con-
trol the convergence region and rate of approximation
series. The discussion on how to use h̄ is made in [2].
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When we are aiming to get approximate solutions, we
can use only the few first terms in (4), without having
concern to get an exact solution series.

In HAM what we are mainly concerned about is
how to choose the initial guess (v0), the auxiliary lin-
ear operator L, and the auxiliary function H(r,t). Liao,
in his book [2], has proposed three rules for choosing
these components, actually here we get advantage of
all informations about the equation such as its physi-
cal background and boundary/initial conditions. In the
cases, like our considered equations, it’s common to
choose the auxiliary function to be H(r,t) = 1, as
used by many authors [7, 9, 17]. When we don’t have
enough information to decide on a set of base func-
tions, this choice for H seems to be a good alterna-
tive.

It seems that when we don’t emphasize on a set of
base function, for representing the solution, there is no
difference between HAM and HPM. This isn’t true be-
cause the HAM still contains the convergence-control
parameter h̄ which provides us with a simple way to ad-
just and control the convergence region and rate of the
approximation series. This advantage of HAM makes
it superior in comparison with other analytic methods
and perturbation techniques.

3. Equal-Width Wave (EW) Equation

The equal-width wave (EW) equation plays a major
role in the study of nonlinear dispersive waves since it
describes a broad class of physical phenomena such as
shallow water waves and ion acoustic plasma waves.
The EW equation, derived for long waves propagating
in the positive x-direction has the form

ut + uux−uxxt = 0, (7)

with the initial condition

u(x,0) = 3 sech2(
x−15

2
). (8)

In the fluid problem u is related to the vertical displace-
ment of the water surface, while in the plasma applica-
tion u is the negative of the electrostatic potential.

A numerical simulation and explicit solution of
the EW equation were obtained by Raslan [18]. He
used a combination of the collocation method us-
ing quadratic B-splines and the Runge-Kutta method.
Dogan applied the Galerkin method to this equa-
tion [19]. Also, Zaki used the least square finite el-

ement scheme to the EW equation [20]. An spec-
tral method, finite difference method, and cubic B-
spline collocation method also has been applied to
solve the aforementioned equation. Recently, Yusu-
foglu and Bekir solved this equation using VIM and
ADM [21].

4. Modified Equal-Width Wave Equation

The modified equal-width wave (MEW) equation is
formulated as follows:

ut + εu2ux − µuxxt = 0. (9)

This equation has a solitary wave solution of the form

u(x, t) = A sech(
1√µ

(x− ct − x0)), (10)

where A =
√

6c
ε . Authors have used various kinds of

numerical methods to solve (9). Zaki [22] used a quin-
tic B-spline collocation method to investigate the mo-
tion of a single solitary wave, interaction of two soli-
tary waves, and birth of solitons for the MEW equa-
tion. Hamdi et al. [23] derived exact solitary wave so-
lutions of the MEW. Evans and Raslan [24] solved the
MEW equation by a collocation finite element method
using quadratic B-splines to obtain the numerical solu-
tions of the single solitary wave, solitary waves inter-
action, and birth of solitons. Also, a linearized numeri-
cal scheme based on finite difference method has been
used by Esen and Kutluay [25]. Wazwaz [26] investi-
gated the MEW equation and two of its variants by the
tanh and the sine-cosine methods.

5. HAM Solutions

In this section we apply HAM to EW and MEW
equations. In both problems, we set the initial guess
to be v0(x, t) = u(x,0), i. e. the initial condition, use
the auxiliary linear operator L = ∂

∂t and put H = 1
to be the auxiliary function. These simple choices are
very effective. To show this fact we will give approxi-
mations and compute error terms. All calculations are
done with Maple 11, a simple procedure have been
written to compute the series terms. Our choices for v0,
L, and H seems valuable, because we don’t get use
of any rule of solution expression (see [2]) for repre-
senting the solution. So our choices are independent of
physical backgrounds.
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5.1. EW Equation

Considering (7) and (8) we have the zeroth-order de-
formation equation as follows:

(1−q)(φt − v0t) = qh̄(φt + φφx −φxxt). (11)

Solving the corresponding mth-order deformation

equations we have

u0(x, t) = 3sech2
(

x−15
2

)
,

u1(x, t) = −9sech4
(

x−15
2

)
tanh

(
x−15

2

)
h̄t,

u2(x, t) =
{−189

4
sech8

(
x−15

2

)
+

81
2

sech6
(

x−15
2

)}
h̄2t2

+
{

9(3h̄−1)sech4
(

x−15
2

)
tanh

(
x−15

2

)
− 135

2
sech6

(
x−15

2

)
tanh

(
x−15

2

)}
h̄t,

u3(x, t) =
{

81sech6
(

x−15
2

)
− 189

2
sech8

(
x−15

2

)
+

135
4

sech10
(

x−15
2

)
tanh

(
x−15

2

)

−24sech8
(

x−15
2

)
tanh

(
x−15

2

)}
h̄2t2 +

{
−99

2
h̄sech6

(
x−15

2

)
+

747
4

h̄sech8
(

x−15
2

)

−1161
4

h̄sech10
(

x−15
2

)
−9sech4

(
x−15

2

)
tanh

(
x−15

2

)}
h̄t

+
{

54sech4
(

x−15
2

)
tanh

(
x−15

2

)
−9h̄sech4

(
x−15

2

)
tanh

(
x−15

2

)

−15sech6
(

x−15
2

)
tanh

(
x−15

2

)
− 165

2
h̄sech6

(
x−15

2

)
tanh

(
x−15

2

)

−105h̄sech8
(

x−15
2

)
tanh

(
x−15

2

)}
h̄ . . . ,

If we set h̄ = −1 in these terms we have exactly the
terms obtained by the ADM [20], so we see that the
ADM is only a special case of HAM. We use these
four terms to construct the approximate solution

app3(x, t) = u0(x,t)+u1(x,t)+u2(x,t)+u3(x,t). (12)

According to the theory of h̄-curves, which is dis-
cussed in [2], we plot the h̄-curves corresponding
to ut(0,0), utt(0,0), and uttt(0,0), and we have the
valid region for h̄ as Rh̄ = [0.1,0.5]. Testing differ-
ent values of h̄ in this valid region Rh̄, we conclude
that the value h̄ = 0.15 has the minimum error. We
have tabulated the absolute errors of HAM approxi-
mation (12) for h̄ = 0.15 in Table 1. It is seen that,
although we have used only four terms in constructing
the approximate solution, it is very close to the exact
solution in the time interval discussed in references,
see [21].

Table 1. Absolute errors of approximation for EW equation
using HAM by h̄ = 0.15.

t x = 0 x = 5 x = 10 x = 15 x = 20 x = 25
0.001 3.66E-9 5.44E-7 8.04E-5 5.52E-8 8.05E-5 5.45E-7
0.002 7.33E-9 1.08E-6 1.60E-4 2.20E-7 1.61E-4 1.09E-6
0.003 1.09E-8 1.63E-6 2.41E-4 4.96E-7 2.41E-4 1.63E-6
0.004 1.46E-8 2.17E-6 3.21E-4 8.83E-7 3.22E-4 2.18E-6
0.01 3.65E-8 5.42E-6 8.01E-4 5.51E-6 8.08E-4 5.47E-6

For EW equation, there are three conservation laws,
corresponding to conservation of mass, momentum,
and energy; they are [20]:

I1 =
∫ b

a
udx, I2 =

∫ b

a
(u2 + u2

x)dx, I3 =
∫ b

a
u3dx.

For computational reasons we chose the interval to
be [0,80], as was chosen in [20]. The efficiency of
HAM and its superiority in comparison with VIM and
HPM can easily be checked in Table 2, where we have
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t I1 exact I1 HAM I1 HPM I1 ADM I1 VIM
0.001 11.99999633 11.99999633 11.99999633 11.99999637 11.99999636
0.002 11.99999633 11.99999633 11.99999633 11.99999637 11.99999636
0.003 11.99999634 11.99999633 11.99999633 11.99999636 11.99999636
0.004 11.99999634 11.99999633 11.99999633 11.99999636 11.99999636
0.005 11.99999634 11.99999633 11.99999633 11.99999636 11.99999636
0.01 11.99999637 11.99999633 11.99999633 11.99999636 11.99999636
t I2exact I2 HAM I2 HPM I2 ADM I2 VIM
0.001 28.80000000 28.80001839 28.80913120 28.80913169 28.80014584
0.002 28.80000000 28.80007357 28.83652503 28.83652549 28.80058191
0.003 28.79999998 28.80016554 28.88218190 28.88218237 28.80130870
0.004 28.80000001 28.80029429 28.94610254 28.94610301 28.80232622
0.005 28.80000000 28.80045984 29.02828799 29.02828846 28.80363453
0.01 28.79999999 28.80183935 29.71324466 29.71324514 28.81453942
t I3 exact I3 HAM I3 HPM I3 ADM I3 VIM
0.001 57.60000001 57.60004061 57.60863394 57.60863445 57.60009994
0.002 57.60000001 57.60016243 57.63453609 57.63453659 57.60039822
0.003 57.60000000 57.60036546 57.67770728 57.67770778 57.60089544
0.004 57.60000004 57.60064971 57.73814894 57.73814947 57.60159154
0.005 57.60000004 57.60101517 57.81586322 57.81586374 57.60248656
0.01 57.60000001 57.60406070 58.46363371 58.46363419 57.60994790

Table 2. Computed quantities
I1, I2, and I3 for EW by HAM,
HPM, ADM, and VIM.

Table 3. Absolute errors of approximation for MEW equation
using HAM by h̄ = −2/3.

t x = 20 x = 25 x = 30 x = 35 x = 40 x = 45
0.01 2.83E-8 4.202E-6 1.27E-13 4.20E-6 2.83E-8 1.91E-10
0.05 1.41E-7 2.095E-5 1.00E-10 2.10E-5 1.42E-7 9.58E-10
0.1 2.81E-7 4.170E-5 1.20E-9 4.23E-5 2.85E-7 1.92E-9
0.5 1.37E-6 2.038E-4 7.93E-7 2.16E-4 1.46E-6 9.86E-9
1 2.66E-6 3.950E-4 1.26E-5 4.47E-4 3.02E-6 2.03E-8

computed the values of I1, I2, and I3 for different values
of t, see [20].

5.2. MEW Equation

Considering (9), we study the case where µ = 1, ε =
3, and A = 0.25. Other cases can be treated in a similar
way. The initial condition is

u(x,0) =
1
4

sech(x−30). (13)

The zeroth-order deformation equation is constructed
as follows:

(1−q)(φt − v0t) = qh̄(φt + 3φ2φx −φxxt). (14)

Solving the corresponding mth-order deformation
equation we have

u0(x, t) =
1
4

sech(x−30),

u1(x, t) = − 3
64

sech3(x−30) tanh(x−30)h̄t,

u2(x, t) ={
45

2048
sech5(x−30)− 27

1024
sech7(x−30)

}
h̄2t2

+
{
− 3

64
sech3(x−30) tanh(x−30)

+
3
8

h̄sech3(x−30) tanh(x−30)

−15
16

h̄sech5(x−30) tanh(x−30)
}

h̄t,

...

We use these three terms to construct the approximate
solution

app3(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t). (15)

The maximum error occurs on point x = 30, so we
search for a value of h̄ which reduces the error at
this point (which will consequently reduce the error in
other points). From h̄-curves it is seen that h̄ = −2/3
is the most suitable value. If one chooses h̄ = −1 one
will have the HPM results, which is not as good as
our choice at the point x = 30. Choosing h̄ = −2/3
we have tabulated the absolute errors of HAM approx-
imation (15) in Table 3. The points in table are chosen
according to [25].

6. Conclusions

In this paper, we have solved the equal-width and
modified equal-width wave equations using HAM. We
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used only four and three terms, respectively, to con-
struct the approximations. These approximations are
close enough to the exact solutions as can be easily

checked in Tables 1, 2, and 3. The results are valuable
because we have a continuous approximation, which is
useful for computational purposes.
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