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For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is
investigated in terms of approximate symmetry reduction approach. The formal coherence of simi-
larity reduction solutions and similarity reduction equations of different orders enables series reduc-
tion solutions. For the weak dissipation case, zero-order similarity solutions satisfy the Painlevé II,
Painlevé I, and Jacobi elliptic function equations. For the weak dispersion case, zero-order similarity
solutions are in the form of Kummer, Airy, and hyperbolic tangent functions. Higher-order similarity
solutions can be obtained by solving linear variable coefficients ordinary differential equations.
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1. Introduction

Nonlinear problems arise in many fields of science
and engineering. Lie group theory [1 – 3] greatly sim-
plifies many nonlinear partial differential equations.
Exact analytical solutions are nevertheless difficult to
study in general. Perturbation theory [4 – 6] was thus
developed and it plays an essential role in nonlinear
science, especially in finding approximate analytical
solutions to perturbed partial differential equations.

The integration of Lie group theory and perturba-
tion theory yields two distinct approximate symme-
try reduction methods. The first method due to Baikov
et al. [7, 8] generalizes symmetry group generators to
perturbation forms. For the second method proposed
by Fushchich and Shtelen [9], dependent variables are
expanded in perturbation series and the approximate
symmetry of the original equation is decomposed into
an exact symmetry of the system resulted from the per-
turbation. The second method is superior to the first
one according to the comparison in [10, 11].

The well-known Korteweg-de Vries-Burgers (KdV-
Burgers) equation

ut + 6uux + µuxxx + νuxx = 0, (1)

with µ and ν constant coefficients, is widely used
in many physical fields especially in fluid dynamics.
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The effects of nonlinearity (6uux), dispersion (µuxxx),
and dissipation (νuxx) are incorporated in this equation
which simulates the propagation of waves on an elastic
tube filled with a viscous fluid [12], the flow of liquids
containing gas bubbles [13], and turbulence [14,15],
etc.

Johnson [12] inspected the travelling wave solutions
of the weak dissipation (ν � 1) KdV-Burgers equa-
tion (1) in the phase plane by a perturbation method
and developed a formal asymptotic expansion for the
solution. Tanh function method was applied to (1) in
the limit of weak dispersion (µ � 1) in a perturbative
way [16]. In [17, 18], perturbation analysis was also
applied to the perturbed KdV equations

ηt +6ηηx+ηxxx+αc1ηxx+αc2ηxxxx+αc3(ηηx)x =0,

α � 1, (2)

and

ut + uux + uxxx = εαu + εβ uxx, ε � 1, (3)

respectively.
Equation (1) can also be manipulated by means of

the approximate symmetry reduction approach. Sec-
tion 2 and Section 3 are devoted to apply this method
to (1) under the case of weak dissipation (ν � 1) and
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weak dispersion (µ � 1), respectively. Section 4 in-
cludes conclusion and discussion of the results.

2. Approximate Symmetry Reduction Approach to
Weak Dissipation KdV-Burgers Equation

According to the perturbation theory, solutions of
perturbed partial differential equations can be ex-
pressed as series solutions with respect to all powers
of a small parameter. Specifically, we suppose that the
weak dissipation (ν � 1) KdV-Burgers equation (1)
has the solution

u =
∞

∑
k=0

νkuk, (4)

where uk are functions of x and t, and solve the follow-
ing system

uk,t + 6
k

∑
i=0

uk−iui,x + µuk,xxx + uk−1,xx = 0,

(k = 0,1, · · ·)
(5)

with u−1 = 0, which is obtained by inserting (4)
into (1) and vanishing the coefficients of different pow-
ers of ν .

The next crucial step is to study the symmetry re-
duction of the above system via the Lie symmetry ap-
proach [19]. For this purpose, we construct the Lie
point symmetry transformations

σk = Xuk,x + Tuk,t −Uk, (k = 0,1, · · ·), (6)

where X , T , and Uk are functions with respect to x, t,
and ui, (i = 0,1, · · · ). The linearized equations for (5)
are

σk,t +6
k

∑
i=0

(σk−iui,x + uk−iσi,x)+µσk,xxx+σk−1,xx = 0,

(k = 0,1, · · ·) (7)

with σ−1 = 0. (7) means that (5) is invariant under the
transformations uk → uk + εσk (k = 0,1, · · · ) with an
infinitesimal parameter ε .

There exist an infinite number of equations (5)
and (7) and an infinite number of arguments in X , T ,
and Uk (k = 0,1, · · · ). To simplify the problem, we start
the discussion for a finite number of equations.

Confining the range of k to {k|k = 0,1,2} in (5),
(6), and (7), we see that X , T , U0, U1, and U2 are func-
tions with respect to x, t, u0, u1, and u2. In this case,

the determining equations can be obtained by substitut-
ing (6) into (7), eliminating u0,t , u1,t , and u2,t in terms
of (5) and vanishing all coefficients of different partial
derivatives of u0, u1, and u2. Some of the determining
equations read

Tx = Tu0 = Tu1 = Tu2 = 0,

from which we have T = T (t). Considering this condi-
tion, we choose the simplest equations for X :

Xu0 = Xu1 = Xu2 = 0,

from which we have X = X(x, t). Considering this con-
dition, we choose the simplest equations for U0, U1,
and U2:

U0,xu2 = U0,u0u0 = U0,u0u1 = U0,u0u2

= U0,u1u1 = U0,u1u2 = U0,u2u2 = 0,

U1,u0u0 = U1,u0u1 = U1,u0u2 = U1,u1u1

= U1,u1u2 = U1,u2u2 = 0,

U2,u0u0 = U2,u0u1 = U2,u0u2 = U2,u1u1

= U2,u1u2 = U2,u2u2 = 0

of which the solutions are

U0 = F1(x, t)u0 + F2(x, t)u1 + F3(t)u2 + F4(x, t),

U1 = F5(x, t)u0 +F6(x, t)u1 +F7(x, t)u2 +F8(x, t),

U2 = F9(x, t)u0 +F10(x, t)u1 +F11(x, t)u2 +F12(x, t).

Under these relations, the determining equations are
simplified to

Xxx = F2 = F3 = F5 = F7 = F8 = F9 = F10 = F12

= F1,x = F4,xx = F4,t = F6,x = F11,x = 0,

Tt = 3Xx, Xt = 6F4, F1,t = −6F4,x,

F6,t = −6F4,x, F11,t = −6F4,x,

Tt = Xx −F1, Tt = 2Xx −F1 + F6,

Tt = Xx + F11−2F6, Tt = 2Xx −F6 + F11,

which provide us with

X = 6at + cx + x0, T = 3ct + t0,

U0 = −2cu0 + a, U1 = −cu1, U2 = 0,

where a, c, x0, and t0 are arbitrary constants.
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Similarly, limiting the range of k to {k|k = 0,1,2,3}
in (5), (6), and (7), where X , T , U0, U1, U2, and U3 are
functions with respect to x, t, u0, u1, u2, and u3, we
repeat the calculation as before and obtain:

X = 6at + cx + x0, T = 3ct + t0, U0 = −2cu0 + a,

U1 = −cu1, U2 = 0, U3 = cu3,

where a, c, x0, and t0 are arbitrary constants.
With more similar calculation considered, we see

that X , T , and Uk (k = 0,1, · · · ) are formally coherent,
i. e.,

X = 6at + cx + x0, T = 3ct + t0,

Uk = (k−2)cuk + aδk,0, (k = 0,1, · · ·), (8)

where a, c, x0, and t0 are arbitrary constants. The no-
tation δk,0 satisfying δ0,0 = 1 and δk,0 = 0 (k �= 0) is
adopted in the following text. Subsequently, solving
the characteristic equations

dx
X

=
dt
T

,
du0

U0
=

dt
T

,
du1

U1
=

dt
T

, · · · ,
duk

Uk
=

dt
T

, · · ·
(9)

leads to the similarity solutions of (5) which can be
distinguished in the following two subcases.

2.1. Symmetry Reduction of the Painlevé II Solutions

If c �= 0, for brevity of the results, we rewrite the
constants a, x0, and t0 as ca, cx0, and ct0, respectively.
Solving dx

X = dt
T in (9) leads to the invariant

I(x, t) = ξ = (x−3at +x0−3at0)(3t + t0)−
1
3 . (10)

In the same way, we get other invariants

I0(x, t,u0) = P0 =
1
2
(3t + t0)

2
3 (2u0 −a) (11)

and

Ik(x, t,uk) = Pk = uk(3t +t0)−
1
3 (k−2), (k = 1,2, · · · )

(12)

from du0
U0

= dt
T , and duk

Uk
= dt

T (k = 1,2, · · · ), respectively.
Viewing Pk (k = 0,1, · · · ) as functions of ξ , we get the
similarity solutions to (5):

uk = (3t + t0)
1
3 (k−2)Pk(ξ )+

1
2

aδk,0, (k = 0,1, · · · )
(13)

with the similarity variable

ξ = (x−3at + x0 −3at0)(3t + t0)−
1
3 . (14)

Accordingly, the series reduction solution of (1) is
derived

u =
a
2

+
∞

∑
k=0

νk(3t + t0)
1
3 (k−2)Pk(ξ ), (15)

and the related similarity reduction equations are

µPk,ξ ξ ξ + 6
k

∑
i=0

Pk−iPi,ξ − ξ Pk,ξ +(k−2)Pk

+ Pk−1,ξ ξ = 0, (k = 0,1, · · ·)
(16)

with P−1 = 0. If k = 0, (16) is equivalent to the Painlevé
II type equation. The nth (n > 0) similarity reduction
equation is actually a third order linear variable coeffi-
cients ordinary differential equation of Pn if the previ-
ous P0, P1, · · · , Pn−1 are known, since (16) is just

µPk,ξ ξ ξ + 6(P0Pk,ξ + PkP0,ξ )− ξ Pk,ξ

+(k−2)Pk = fk(ξ ), (k = 1,2, · · ·), (17)

where fk is only a function of {P0,P1, · · · ,Pk−1}:

fk(ξ ) = −6
k−1

∑
i=1

Pk−iPi,ξ −Pk−1,ξ ξ . (18)

To see the behaviour of the series solution (15), we
simply take the first six polynomial solutions of (16):

P0 = P1 = 0, P2 = c2,0, P3 = c3,1ξ , P4 = c4,2ξ 2,

P5 = c5,0 − 1
6µ

(2c4,2 + 6c2,0c3,1 + 3c5,0)ξ 3,
(19)

Fig. 1. Plots of truncated series solutions ∑k
i=0 ui of (13)

and (19) for k = 3 (dotted line), k = 4 (dashed line), and
k = 5 (solid line) with ν = 0.1, a = x0 = t0 = µ = c2,0 =
c3,1 = c4,2 = c5,0 = 1, and t = 0.
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where c2,0, c3,1, c4,2, and c5,0 are arbitrary constants. In
Figure 1, the truncated series solutions ∑3

i=0 ui (dotted
line), ∑4

i=0 ui (dashed line), and ∑5
i=0 ui (solid line) are

specified by taking ν = 0.1, a = x0 = t0 = µ = c2,0 =
c3,1 = c4,2 = c5,0 = 1, t = 0 of (13) and (19). If t is
fixed, infinite point is an essential singular point of the
series solution (15) which is divergent. As t increases,
the convergence is even worse, since the factor (3t +
t0)

1
3 (k−2) in the series solution grows dramatically if

k is large enough.

2.2. Symmetry Reduction of the Painlevé I Solutions

If c = 0 and t0 �= 0, we rewrite a and x0 as at0
and x0t0, respectively. The similarity solutions are

uk = (at +
x0

6
)δk,0 +Pk(ξ ), (k = 0,1, · · ·), (20)

with ξ = −x + 3at2 + x0t. Hence, the series reduction
solution of (1) is

u = at +
x0

6
+

∞

∑
k=0

νkPk(ξ ), (21)

in which Pk(ξ ) satisfies

µPk,ξ ξ +3
k

∑
i=0

Pk−iPi−Pk−1,ξ−aδk,0ξ +Ak =0,

(k = 0,1, · · ·),
(22)

where P−1 = 0 and Ak are arbitrary integral constants.
If k = 0, (22) is equivalent to the Painlevé I type

equation provided that a �= 0.
If k = 0, a = 0, and A0 = 4

3 µ2 p4
1(m

2 − 1 − m4),
(22) can be solved by the Jacobi elliptic function

P0 =
2
3

µ p2
1(1−2m2)+2µm2 p2

1cn2(p1ξ + p2,m),

(23)

where p1, p2, and m are arbitrary constants.
If k > 0, an equivalent form of (22) is

µPk,ξ ξ + 6PkP0 = gk(ξ ), (k = 1,2, · · ·), (24)

where gk(ξ ) is a function of {P0,P1, · · · ,Pk−1} as fol-
lows:

gk(ξ ) = −3
k−1

∑
i=1

Pk−iPi + Pk−1,ξ −Ak. (25)

From (24), we see that (22) is a second-order lin-
ear variable coefficients ordinary differential equation
of Pk and can be integrated out step by step if a = 0.
The results read

Pk = P0,ξ

[
Ck + µ−1

∫
P−2

0,ξ

(
Bk +

∫
P0,ξ gkdξ

)
dξ

]
,

(26)

with arbitrary integral constants Bk and Ck.
The compact form of the general solution above is

nevertheless not capable of producing a formal com-
pact solution of (22), since the computation of integra-
tion often fails. We just find the first four polynomial
solutions of (22):

P0 = 0,

P1 = c1,0 + c1,1ξ + c1,2ξ 2,

P2 = c2,0 + c2,1ξ + c2,2ξ 2 +
1

3µ
(c1,2 −3c1,0c1,1)ξ 3

− 1
4µ

(c2
1,1+2c1,0c1,2)ξ 4− 3

10µ
c1,1c1,2ξ 5− 1

10µ
c2

1,2ξ 6,

P3 = c3,0 + c3,1ξ + c3,2ξ 2 +
1

3µ

(
c2,2 −3c1,1c2,0

−3c1,0c2,1

)
ξ 3 − 1

12µ2

(
6c1,0c2,2µ + 3c1,0c1,1

+6c1,1c2,1µ + 6c1,2c2,0µ − c1,2

)
ξ 4− 1

20µ2

(
6c1,1c2,2µ

+c2
1,1 + 4c1,0c1,2 + 6c1,2c2,1µ −6c2

1,0c1,1

)
ξ 5

− 1
60µ2

(
7c1,1c1,2 −15c1,0c2

1,1 −6c2
1,0c1,2

+12c1,2c2,2µ)ξ 6 +
1

420µ2

(
15c3

1,1 + 108c1,0c1,1c1,2

−26c2
1,2

)
ξ 7 +

3
560µ2 c1,2

(
12c1,0c1,2 + 11c2

1,1

)
ξ 8

+
1

30µ2 c1,1c2
1,2ξ 9 +

1
150µ2 c3

1,2ξ 10, (27)

if a = A0 = 0, A1 =−2c1,2µ , A2 = c1,1−3c2
1,0−2c2,2µ ,

A3 = c2,1 − 2c3,2µ − 6c1,0c2,0, and c1,0, c1,1, c1,2, c2,0,
c2,2, c3,0, c3,1, and c3,2 are arbitrary constants.

From (20) and (27), taking ν = 0.1, x0 = µ = c1,0 =
c1,1 = c1,2 = c2,0 = c2,1 = c2,2 = c3,0 = c3,1 = c3,2 = 1,
we construct the truncated series solutions u0 + u1,
u0 +u1 +u2, and u0 +u1 +u2 +u3, which are displayed
for −5 < x < 6 and t = 0 in Figure 2, where the dot-
ted line, the dashed line, and the solid line represent
u0 + u1, u0 + u1 + u2, and u0 + u1 + u2 + u3, respec-
tively. It is easily seen that the superposition fraction
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Fig. 2. Plots of truncated series solutions u0 +u1, u0 +u1 +
u2, and u0 +u1 +u2 +u3 of (20) and (27) with ν = 0.1, x0 =
µ = c1,0 = c1,1 = c1,2 = c2,0 = c2,1 = c2,2 = c3,0 = c3,1 =
c3,2 = 1, and a = t = 0.

for the curves of truncated series solutions u0 +u1 +u2
and u0 + u1 + u2 + u3 is larger than that of u0 + u1 and
u0 + u1 + u2, implying that more terms in the trun-
cated series solutions means better approximation of
the exact solutions. Infinite point is an essential singu-
lar point of the series solution (21) if t is specified.

3. Approximate Symmetry Reduction Approach
to Weak Dispersion KdV-Burgers Equation

We search for series reduction solutions to weak dis-
persion (µ � 1) KdV-Burgers equation (1). The pro-
cess is similar to Section 2. A system of partial differ-
ential equations

uk,t + 6
k

∑
i=0

uk−iui,x + νuk,xx + uk−1,xxx = 0,

(k = 0,1, · · ·),
(28)

with u−1 = 0, is obtained by plugging the perturbation
series solution

u =
∞

∑
k=0

µkuk (29)

into (1) and vanishing the coefficients of different pow-
ers of µ .

The linearized equations related to (28) are

σk,t + 6
k

∑
i=0

(σk−iui,x + uk−iσi,x)+νσk,xx+σk−1,xxx =0,

(k = 0,1, · · ·), (30)

with σ−1 = 0. The Lie point symmetry transforma-
tions (6) satisfy the above linearized equations under
the approximate equations (28). Restricting the range
of k to {k|k = 0,1,2} in (6), (28), and (30), we see
that X , T , U0, U1, and U2 are functions with respect
to x, t, u0, u1, and u2. The determining equations are
derived by substituting (6) into (30), eliminating u0,t ,
u1,t , and u2,t in terms of (28) and vanishing coefficients
of different partial derivatives of u0, u1, and u2. Some
of the determining equations are

Tx = Tu0 = Tu1 = Tu2 = 0,

from which we get T = T (t). Considering this condi-
tion, the simplest equations for X in the determining
equations are

Xu0 = Xu1 = Xu2 = 0,

from which we get X = X(x,t). Considering this con-
dition, we select the simplest equations for U0 and U1:

U0,u0u0 = U0,u0 = U0,u2 = 0,

U1,xu0 = U1,u0u0 = U1,u0u1 = U1,u1u1 = U1,u2 = 0,

with the solution U0 = F1(x,t)u0 + F2(x, t) and U1 =
F3(t)u0 +F4(x, t)u1 +F5(x, t). In the reduced determin-
ing equations, the simplest equations for U2 read as

U2,u0u0 = U2,u0u1 = U2,u0u2 = U2,u1u1 = U2,u1u2 =
U2,u2u2 = 0,

leading to U2 = F6(x, t)u0 + F7(x, t)u1 + F8(x, t)u2 +
F9(x, t).

Combined with these conditions, the determining
equations are simplified to

Xxx = F3 = F5 = F6 = F7 = F9 = F1,x = F2,xxx =
F4,x = F8,x = 0,

Tt = 2Xx, Xt = 6F2, F1,t = −6F2,x,

F2,t = −νF2,xx, F4,t = −6F2,x, F8,t = −6F2,x,

Tt = Xx −F1, Tt = Xx −2F4 + F8,

Tt = 3Xx −F1 + F4, Tt = 3Xx −F4 + F8.

It is easily seen that

X = 6at + cx + x0, T = 2ct + t0, U0 = −cu0 + a,

U1 = −2cu1, U2 = −3cu2,

where a, c, x0, and t0 are arbitrary constants.
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In the same manner, we obtain

X = 6at + cx + x0, T = 2ct + t0, U0 = −cu0 + a,

U1 = −2cu1, U2 = −3cu2, U3 = −4cu3,

where a, c, x0, and t0 are arbitrary constants.
Repeating similar calculation several times, we

summarize the solutions of the determining equations

X = 6at + cx + x0, T = 2ct + t0,

Uk = −(k + 1)cuk + aδk,0, (k = 0,1, · · ·), (31)

where a, c, x0, and t0 are arbitrary constants. The sim-
ilarity solutions of (28) from solving the characteristic
equations (9) are discussed in the following two sub-
cases.

3.1. Symmetry Reduction of the Kummer Function
Solutions

If c �= 0, for brevity of the results, we rewrite the
constants a, x0, and t0 as ca, cx0, and ct0, respectively.
Solving dx/X = dt/T in (9) results in the invariant

I(x, t) = ξ = (x−6at−6at0 +x0)(2t + t0)−
1
2 . (32)

Likewise, we get other invariants

I0(x, t,u0) = P0 = (2t + t0)
1
2 (u0 −a) (33)

and

Ik(x, t,uk)= Pk = uk(2t +t0)
1
2 (k+1), (k=1,2, · · ·), (34)

from du0/U0 = dt/T and duk/Uk = dt/T (k = 1,2, · · · ),
respectively. Consequently, we get the similarity solu-
tions of (28)

uk = (2t +t0)−
1
2 (k+1)Pk(ξ )+aδk,0, (k = 0,1, · · ·) (35)

with ξ =(x−6at−6at0+x0)(2t +t0)−
1
2 , and the series

reduction solution of (1) is

u = a +
∞

∑
k=0

µk(2t + t0)−
1
2 (k+1)Pk(ξ ), (36)

where Pk(ξ ) conform to

νPk,ξ ξ + 6
k

∑
i=0

Pk−iPi,ξ − ξ Pk,ξ − (k + 1)Pk

+ Pk−1,ξ ξ ξ = 0, (k = 0,1, · · ·),
(37)

with P−1 = 0.

If k = 0, (37) has the Kummer function solution

P0 =
{

(3C1 −1)ν
[

3C1C2K1

(
3
2
(1−C1),

3
2
,

ξ 2

2ν

)

− 2K2

(
3
2
(1−C1),

3
2
,

ξ 2

2ν

)]}/
{

6ξ
[
C2K1

(
1
2
(1−3C1),

3
2
,

ξ 2

2ν

)

+ K2

(
1
2
(1−3C1),

3
2
,

ξ 2

2ν

)]}
+

C1ν
ξ

,

(38)

where C1 and C2 are arbitrary constants, and the two
types of Kummer functions K1(p,q,z) and K2(p,q,z)
solve the differential equation

zy′′(z)+ (q− z)y′(z)− py(z) = 0.

If k > 0, we rearrange the terms in (37) as

νPk,ξ ξ + 6(P0Pk,ξ + PkP0,ξ )− ξ Pk,ξ − (k + 1)Pk

= −6
k−1

∑
i=1

Pk−iPi,ξ −Pk−1,ξ ξ ξ , (k = 1,2, · · ·), (39)

which is a second order linear variable coefficients or-
dinary differential equation of Pk if the previous P0, P1,
· · · , Pk−1 are known.

The first six polynomial solutions of (37) are

P0 =
ξ
3

, P1 = c1,0, P2 = c2,1ξ ,

P3 = c3,2ν + 3c1,0c2,1 + c3,2ξ 2,

P4 = 3(c4,3ν + 2c1,0c3,2 + c2
2,1)ξ + c4,3ξ 3,

P5 = 9c1,0c2
2,1 + 9c2

1,0c3,2 +
3
2

c4,3 + 3c5,4ν2

+(9c1,0c4,3 + 6c2,1c3,2)ν
+(9c1,0c4,3 + 9c2,1c3,2 + 6c5,4ν)ξ 2 + c5,4ξ 4,

(40)

where c1,0, c2,1, c3,2, c4,3, and c5,4 are arbitrary con-
stants.

From (35) and (40), taking µ = 0.1, a = ν = x0 =
t0 = c1,0 = c2,1 = c3,2 = c4,3 = c5,4 = 1, we construct
truncated series solutions ∑3

i=0 ui, ∑4
i=0 ui, and ∑5

i=0 ui,
which are displayed for −50 < x < 50 and t = 0,1 in
Figure 3, where the dotted line, the dashed line, and the
solid line correspond to ∑3

i=0 ui, ∑4
i=0 ui, and ∑5

i=0 ui,
respectively. In Figure 3, the superposition fraction for
the curves of truncated series solutions grows if t goes
from 0 to 1, in other words, the convergence region of
the series solution (36) extends as t increases, which is
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t = 0

t = 1

Fig. 3. Plots of truncated series solutions ∑k
i=0 ui from (35)

and (40) for {k|k = 3,4,5} with µ = 0.1, a = ν = x0 = t0 =
c1,0 = c2,1 = c3,2 = c4,3 = c5,4 = 1.

due to the fact that the powers of the terms containing t
in the truncated series solutions are nonpositive. The
singularity of infinite point for the series solution (36)
is an essential singularity if we fix t.

3.2. Symmetry Reduction of Airy Function and
Hyperbolic Tangent Function Solutions

If c = 0 and t0 �= 0, we rewrite the constants a and x0
as at0 and x0t0, respectively. It is easily seen that the
similarity solutions are

uk = (at +
x0

6
)δk,0 +Pk(ξ ), (k = 0,1, · · ·), (41)

with ξ = −x + 3at2 + x0t, and the series reduction so-

lution of (1) is

u = at +
x0

6
+

∞

∑
k=0

µkPk(ξ ) (42)

with Pk(ξ ) satisfying

νPk,ξ −3
k

∑
i=0

Pk−iPi −Pk−1,ξ ξ + aδk,0ξ + Ak =0,

(k = 0,1, · · ·),
(43)

where P−1 = 0 and Ak are integral constants.
If k = 0 and a ≡−b, we get the Airy function solu-

tion of (43)

P0 =
{

(3bν)
1
3

[
C1Ai

(
1,3

1
3 (bν)−

2
3 (A0 −bξ )

)

+ Bi
(

1,3
1
3 (bν)−

2
3 (A0 −bξ )

)]}/
{

3
[
C1Ai

(
3

1
3 (bν)−

2
3 (A0 −bξ )

)

+ Bi
(

3
1
3 (bν)−

2
3 (A0 −bξ )

)]}
,

(44)

where C1 is an arbitrary constant. The Airy wave func-
tions Ai(z) and Bi(z) are linearly independent solu-
tions for y(z) in the equation y′′(z)−zy(z) = 0. Ai(n,z)
and Bi(n,z) are the nth derivatives of Ai(z) and Bi(z)
evaluated at z, respectively.

The hyperbolic tangent function solution of travel-
ling wave form

P0 = −
√

3
3

p tanh[
√

3
ν

p(ξ + d)] (45)

with d an arbitrary constant, can be obtained from a =
0 and p =

√
A0.

If k > 0, an equivalent form of (43) is

νPk,ξ −6P0Pk = gk(ξ ), (k = 1,2, · · ·), (46)

where

gk(ξ ) = 3
k−1

∑
i=1

Pk−iPi + Pk−1,ξ ξ −Ak. (47)

From (46), it is easily seen that the kth similarity re-
duction equation in (43) is a first order linear variable
coefficients ordinary differential equation of Pk. Fur-
thermore, all equations in (46) can be solved step by
step. The results read

Pk = exp
(

6
ν

∫
P0dξ

)

·
[

1
ν

∫
gk exp

(
− 6

ν

∫
P0dξ

)
dξ + Bk

]
,

(k = 1,2, · · · ),

(48)

where Bk are arbitrary integral constants.



X. Jiao et al. · Approximate Symmetry Reduction Approach 683

Fig. 4. Plots of truncated series solutions u0 +u1, u0 +u1 +
u2, and u0 +u1 +u2 +u3 of (41) and (49) with µ = 0.1, x0 =
ν = c1,0 = c1,1 = c2,0 = c2,1 = c3,0 = c3,1 = 1, and a = t = 0.

We can find polynomial solutions for the first four
similarity equations in (43):

P0 = 0, P1 = c1,0 + c1,1ξ ,

P2 = c2,0 + c2,1ξ +
3
ν

c1,0c1,1ξ 2 +
1
ν

c2
1,1ξ 3,

P3 = c3,0 + c3,1ξ +
3

ν2 (c1,1c2,0ν + c2
1,1 + c1,0c2,1ν)ξ 2

+
2

ν2 c1,1(c2,1ν + 3c2
1,0)ξ

3 +
6

ν2 c1,0c2
1,1ξ 4

+
6

5ν2 c3
1,1ξ 5, (49)

with a = A0 = 0, A1 =−c1,1ν , A2 = 3c2
1,0−c2,1ν , A3 =

6c1,0c2,0 − c3,1ν + 6
ν c1,0c1,1, and c1,0, c1,1, c2,0, c2,1,

c3,0, and c3,1 are arbitrary constants.
Figure 4 demonstrates the truncated series solutions

u0 + u1 (dotted line), u0 + u1 + u2 (dashed line), and
u0 + u1 + u2 + u3 (solid line) when we take µ = 0.1,
x0 = ν = c1,0 = c1,1 = c2,0 = c2,1 = c3,0 = c3,1 = 1,
t = 0 from (41) and (49). It is easily seen that the series
solution (42) with respect to all powers of ξ is diver-
gent except that |ξ | is small enough. The singularity of
infinite point for the series solution (42) is an essential
singularity when t is specified.

4. Conclusion and Discussion

In summary, by applying the approximate symmetry
reduction approach to (1+1)-dimensional KdV-Burgers

equation under the condition of weak dispersion and
weak dissipation, we found that the similarity reduc-
tion solutions and similarity reduction equations of dif-
ferent orders are coincident in their forms. Therefore,
the series reduction solutions and general formulas for
the similarity equations are summarized.

For the weak dissipation case, the zero-order simi-
larity solutions are equivalent to Painlevé II, Painlevé I
type, and Jacobi elliptic function solutions. For the
weak dispersion case, the zero-order similarity solu-
tions are in the form of Kummer function, Airy func-
tion, and hyperbolic tangent function solutions.

k-order similarity reduction equations are lin-
ear variable coefficients ordinary differential equa-
tions with respect to Pk(ξ ). Especially, for the pe-
riod solutions (expressed by Jacobi elliptic func-
tions) with solitary waves as a special case under
weak dissipation, Airy function and hyperbolic tan-
gent function solutions under weak dispersion, higher-
order similarity solutions are expressed as general
formulas.

We investigated truncated series solutions graphi-
cally from the polynomial solutions of similarity re-
duction equations. For symmetry reduction of the
Painlevé I solutions under weak dissipation, approxi-
mation of the exact solutions can be improved by in-
creasing terms in the truncated series solutions. For
symmetry reduction of the Kummer function solu-
tions under weak dispersion, larger value of t means
wider convergence region for the truncated series
solutions.

The approximate symmetry reduction approach can
be used to search for similar results of other perturbed
nonlinear differential equations and it is worthwhile
to summarize a general principle for the perturbed
nonlinear differential equations holding analogous
results.
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