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In this paper, the homotopy perturbation method (HPM) is applied to compute the Fourier trans-
form (FT) of functions on R. The basic properties of the Fourier transform are again obtained by
HPM and examples assuring the applicability of HPM are presented.
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1. Introduction

In recent years, the homotopy perturbation method
(HPM), first proposed by He [1, 2], has successfully
been applied to solve many types of linear and nonlin-
ear functional equations. This method, which is a com-
bination of homotopy, in topology, and classic pertur-
bation techniques, provides a convenient way to obtain
analytic or approximate solutions to a wide variety of
problems arising in different fields, see [3 – 8] and the
references therein.

In this work, we intend to use HPM for computing
the Fourier transform (FT) of functions defined on R.
Consider the ordinary differential equation, with com-
plex coefficients, as follows:

u′(x)−2π isu(x) = f (x), (1)

where i2 =−1, s∈R, and f (x) is a real valued function
on R. The general solution to this equation is given by

u(x)e−2π isx =
∫

f (x)e−2π isxdx, (2)

which leads to

{u(x)e−2π isx}∞
x=−∞ =

∫ ∞

−∞
f (x)e−2π isxdx. (3)

The right hand side of the above equation is the well-
known Fourier transform of function f . So we can con-
clude that for computing F(s) =

∫ ∞
−∞ f (x)e−2π isxdx, the

Fourier transform of f , we can use

F(s) = {u(x)e−2π isx}∞
x=−∞, (4)
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where u(x) is the solution to (1). We solve (1) via HPM
and then apply (4) to obtain the Fourier transform of f .

2. HPM for Computing FT

Since the method is, by now, well-known we go
straight to our subject. The interested reader can re-
fer to He’s works [1, 2] for details, furthermore recent
developments can be found in [9 – 12].

According to HPM, (1) would have a ‘homotopy
equation’ as follows:

2π is(φ(x;q)− v0(x))

+ q
(
− ∂

∂x
φ(x;q)+ f (x)+ 2π isv0(x)

)
= 0,

(5)

where v0 is an initial guess to the solution of (1) and q∈
[0,1] is an embedding parameter. φ(x;q) is represented
as

φ(x;q) = u0(x)+ u1(x)q + u2(x)q2 + · · · . (6)

When q = 0 we have φ(x;0) = v0 and the exact solution
is obtained for q = 1, i. e.

u(x) = φ(x;1) = u0(x)+u1(x)+u2(x)+ · · · . (7)

For obtaining this solution series, the HPM proposes
to transform (5) to a system of linear equations (which
are easy to solve) and then iteratively compute the ui
for i = 1,2, · · · . To do so, substituting (6) into the ho-
motopy equation (5) and equating like powers of q we
would have

u0(x) = v0(x),
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u1(x) =
1

2π is
(u′0(x)− f (x)+ 2π isv0(x)),

u2(x) =
u′1(x)
(2π is)

,

...

un(x) =
u′n−1(x)
(2π is)

,n = 3,4, · · · .

Then the solution to (1) is obtained by (7). Finally, sub-
stituting this solution in expression (4), we can easily
compute the FT.

Here we are free to choose the initial guess v0. If we
set v0 = 0 then the solution, according to HPM, would
be of the form

u(x) =
∞

∑
n=1

− f (n−1)(x)
(2π is)n .

So the FT is obtained by

F(s) =

{
∞

∑
n=1

− f (n−1)(x)
(2π is)n e−2π isx

}∞

x=−∞

. (8)

In the following we present some examples.

Example 1: Let f (x) =
{

e−x, x > 0
0, x < 0 , where the

corresponding FT is 1
1+2π is . Taking v0(x) = 0, as the

initial guess, we would have

un(x) =
(−1)n f (x)
(2π is)n , n = 1,2, · · · .

Applying (7), the solution series has the form

u(x) =
∞

∑
n=1

(−1)n

(2π is)n f (x).

If we restrict s to be s < 1
2π , then the solution series

would converge to u(x) = − f (x)
1+2π is .

Employing (4) one has

F(s) =
{ − f (x)

1 + 2π is
e−2π isx

}∞

x=−∞

=
−1

1 + 2π is
{ f (x)e−2π isx}∞

x=0

=
1

1 + 2π is
.

Example 2: Let f (x) =
{

1, −1
2 < x < 1

2
0, otherwise

,

which the FT should be sin(πs)
πs . Taking the initial guess

to be v0(x) = 0, one has

u1(x) =
− f (x)
2π is

,

un(x) = 0, n ≥ 2.

According to (7), the solution series has the form

u(x) =
− f (x)
2π is

.

Employing (4) one has

F(s) =
{− f (x)

2π is
e−2π isx

}∞

x=−∞

=
−1

2π is
{e−2π isx}

1
2
−1
2

=
sin(πs)

πs
,

which is the desired result.

Example 3: Let f (x) =
{

1−|x|,−1 < x < 1
0, otherwise ,

which its FT is
(

sin(πs)
πs

)2
. Taking the initial guess to

be v0(x) = 0, we have

u1(x) =
− f (x)
(2π is)

,

u2(x) =
− f ′(x)
(2π is)2 ,

un(x) = 0, n ≥ 3.

Applying (7), the solution series has the form

u(x) =
− f (x)
(2π is)

+
− f ′(x)
(2π is)2

=
−1

2π is




1 + x +
1

2π is
, −1 < x < 0

1− x +
−1

2π is
, 0 < x < 1

0, otherwise

.

Employing (4), one has

F(s) = {u(x)e−2π isx}∞
x=−∞ = {u(x)e−2π isx}1

−1

= lim
ε→0+

({u(x)e−2π isx}−ε
−1 +{u(x)e−2π isx}1

ε)

=
−1

2π is

{
2−2cos(2πs)

2π is

}

=
−4sin2 πs
(2π is)2 =

(
sin(πs)

πs

)2

,

which is the desired FT.
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3. Basic Properties of FT Revisited

In Fourier analysis there is no need to calculate the
transform for every function, instead some fundamen-
tal rules are used to relate the new function with the
transforms at hand. Here we present some well-known
properties of the FT and prove them in the frame-
work of HPM. Throughout this section f , f1, f2, and g
will be functions on R with the corresponding Fourier
transforms F , F1, F2, and G. If we obtain g from some
modification of f , there will be a corresponding mod-
ification of F that produces G. Likewise, if we obtain
g from some combination of f1 and f2, then there will
be a corresponding combination of F1 and F2 that pro-
duces G.

3.1. Linearity

Let α be any real number, we verify that f1(x) +
α f2(x) has the FT: F1(s) + αF2(s). According to (8)
we have

G(s) =

{
∞

∑
n=1

−( f1(x)+ α f2(x))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

−( f (n−1)
1 (x)+ α f (n−1)

2 (x))
(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

− f (n−1)
1 (x)

(2π is)n e−2π isx

}∞

x=−∞

+ α

{
∞

∑
n=1

− f (n−1)
2 (x)

(2π is)n e−2π isx

}∞

x=−∞

= F1(s)+ αF2(s).

3.2. Reflection and Conjugation

We verify the reflection rule

g(x) = f (−x) has the FT G(s) = F(−s)

by writing

G(s) =

{
∞

∑
n=1

−( f (−x))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

(−1)n f (n−1)(−x)
(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

f (n−1)(−x)
(2π i(−s))n e−2π i(−s)(−x)

}∞

x=−∞

,

where a change of variable results in

G(s) =

{
∞

∑
n=1

f (n−1)(t)
(2π i(−s))n e−2π i(−s)t

}−∞

t=∞

=

{
∞

∑
n=1

− f (n−1)(t)
(2π i(−s))n e−2π i(−s)t

}∞

t=−∞

= F(−s).

The conjugation rule

g(x) = f (x) has the FT G(s) = F(−s)

is easily verified in the same way.

3.3. Translation and Modulation

Let x0 be any real number, then the translation rule
which is stated as

g(x) = f (x−x0) has the FT G(s) = e−2π isx0F(s),

can be verified by writing

G(s) =

{
∞

∑
n=1

−( f (x− x0))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

− f (n−1)(x− x0)
(2π is)n e−2π is(x−x0)e−2π isx0

}∞

x=−∞

,

which by a change of variable results in

G(s) =

{
∞

∑
n=1

− f (n−1)(t)
(2π is)n e−2π ist

}∞

t=−∞

e−2π isx0

= F(s)e−2π isx0 .

Let s0 be a real parameter, then the modulation rule

g(x) = e2π is0x f (x) has the FT G(s) = F(s− s0)

can be verified by writing

G(s) =

{
∞

∑
n=1

−(e2π is0x f (x))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=
{ ∞

∑
n=1

−1
(2π is)n

[n−1

∑
k=0

(
n−1

k

)
(2π is0)k f (n−k−1)(x)

]

· e−2π i(s−s0)x
}∞

x=−∞
.
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Rearranging the terms according to the order of deriva-
tives of f we have

G(s) =
{

e−2π i(s−s0)x

(
f (x)

{
1

2π is
+

2π is0

(2π is)2

+
(2π is0)2

(2π is)3 + · · ·
}

+ f ′(x)
{

1
(2π is)2 +

2(2π is0)
(2π is)3

+
3(2π is0)2

(2π is)4 + · · ·
}

+ f ′′(x)
{

1
(2π is)3 +

3(2π is0)

(2π is)4

+
6(2π is0)2

(2π is)5 + · · ·
}
· · ·
)}∞

x=−∞

=
{

e−2π i(s−s0)x
(

f (x)
{

1
2π i(s− s0)

}

+ f ′(x)
{

1
(2π i(s− s0))2

}

+ f ′′(x)
{

1
(2π i(s− s0))3

}
· · ·
)}∞

x=−∞

=
{ ∞

∑
n=1

− f (n−1)(x)
(2π i(s− s0))n e−2π i(s−s0)x

}∞

x=−∞
= F(s− s0).

3.4. Dilation

Let a 
= 0 be a real parameter. We verify the dilation
rule

g(x) = f (ax) has the FT G(s) =
1
|a|F

( s
a

)

by writing

G(s) =

{
∞

∑
n=1

−( f (ax))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

−an−1 f (n−1)(ax)
(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

−a−1 f (n−1)(ax)
(2π i s

a)n e−2π i s
a (ax)

}∞

x=−∞

,

where by a simple change of variable one has

G(s) =
1
|a|

{
∞

∑
n=1

− f (n−1)(t)
(2π i s

a)n e−2π i s
a (t)

}∞

t=−∞

=
1
|a|F

( s
a

)
.

3.5. Derivative and Power Scaling

Let f be a differentiable function. We verify the
derivative rule

g(x) = f ′(x) has the FT G(s) = 2π isF(s)

by writing

G(s) =

{
∞

∑
n=1

−( f ′(x))(n−1)

(2π is)n e−2π isx

}∞

x=−∞

=

{
∞

∑
n=1

− f (n)(x)
(2π is)n e−2π isx

}∞

x=−∞

,

if we add and subtract f (x), then the above can be writ-
ten as follows:

G(S) =
{(

f (x)+ 2π is
{
− f (x)

2π is
− f ′(x)

(2π is)2

− f ′′(x)
(2π is)3 + · · ·

})
e−2π isx

}∞

x=−∞

=
{(

f (x)+ 2π is
∞

∑
n=0

− f (n)(x)
(2π is)n+1

)
e−2π isx

}∞

x=−∞

=
{

f (x)e−2π isx
}∞

x=−∞

+ 2π is
{ ∞

∑
n=0

− f (n)(x)
(2π is)n+1 e−2π isx

}∞

x=−∞
,

where the first expression is zero because we suppose
that f has a Fourier transform (so it should vanish at
±∞), so it leads to

G(s) = 2π isF(s).

To establish the power scaling rule

g(x) = x f (x) has the FT G(s) =
−1
2π i

F ′(s)

we write

G(s) =
{ ∞

∑
n=1

−(x f (x))(n−1)

(2π is)n e−2π isx
}∞

x=−∞
=

{(−x f (x)
(2π is)

+
∞

∑
n=2

−1
(2π is)n

{
x f (n−1)(x)+ (n−1)

· f (n−2)(x)
})

e−2π isx
}∞

x=−∞
=
{(

−
∞

∑
n=2

(n−1)

· f (n−2)(x)
(2π is)n −

∞

∑
n=1

x f (n−1)(x)
(2π is)n

)
e−2π isx

}∞

x=−∞
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and a change in the index results in

G(s) =
{ ∞

∑
n=1

(
− n f (n−1)(x)

(2π is)n+1 − x f (n−1)(x)
(2π is)n

)
e−2π isx

}∞

x=−∞
.

The latter expression can be written as follows:

G(s) =
−1
2π i

{ ∞

∑
n=1

−
(

n f (n−1)(x)(−2π i)
(2π is)n+1 +

(−2π ix) f (n−1)(x)
(2π is)n

)
e−2π isx

}∞

x=−∞
=

−1
2π i

F ′(s).

4. Conclusion and Suggestions

The homotopy perturbation method is an elegant
method which is easy to use. Its applicability in
computing integral transforms such as Laplace trans-
form [13] and Sumudu Transform [14] have been
proved by scientists. In this paper, we have verified its
efficiency in computing the Fourier transform, which
is the most important integral transform. The classic
calculation of Fourier transforms involves a computa-
tion of an infinite range definite integral. Instead, the
proposed method based on HPM uses differentiations,
so it can be used as an alternative. We have also ver-

ified the basic properties of the Fourier transform in
this new frame work. Using these properties and the
presented examples, it would be easy to calculate the
Fourier transform of a large number of functions.

It would be a good idea to use HPM to eval-
uate more integral transforms and specially two-
dimensional cases of the mentioned ones.
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