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By introducing the generalized Jacobi elliptic function, a new improved Jacobi elliptic function
method is used to construct the exact travelling wave solutions of the nonlinear partial differen-
tial equations in a unified way. With the help of the improved Jacobi elliptic function method
and symbolic computation, some new exact solutions of the combined Korteweg-de Vries-modified
Korteweg-de Vries (KdV-mKdV) equation are obtained. Based on the derived solution, we investi-
gate the evolution of doubly periodic and solitons in the background waves. Also, their structures are
further discussed graphically.
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1. Introduction

Many phenomena in physics and engineering are
described by nonlinear partial differential equations
(NLPDEs). When we want to understand the phys-
ical mechanism of phenomena in nature, described
by NLPDEs, exact solutions for the NLPDEs have to
be explored. Thus methods for deriving exact solu-
tions for the governing equations have to be devel-
oped. Studying exact solutions of NLPDEs has be-
come one of the most important topics in mathemati-
cal physics. For instances, the nonlinear wave phenom-
ena observed in fluid dynamics, plasma, and optical
fiber are often modeled by the bell-shaped sech solu-
tions and the kink-shaped tanh solutions. The availabil-
ity of these exact solutions for those nonlinear equa-
tions can greatly facilitate the verification of numer-
ical solutions. The stability analysis of the solutions
of NLPDEs has a wide array of applications in many
fields, which describe the motion of isolated waves, lo-
calized in a small part of space, such as in physics, in
which applications extend over magneto fluid dynam-
ics, water surface gravity waves, electromagnetic ra-
diation reactions, and ion acoustic waves in plasmas.
And also applications in biology, chemistry, and sev-
eral other fields. These solutions may well describe
various phenomena in physics and other fields, such
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as solitons and propagation with a finite speed, and
thus they may give more insight into the physical as-
pects of the problems. The development of soliton the-
ory clarifies the importance of seeking for exact solu-
tions of NLPDEs. There has been noticeable progress
in the study of soliton theory. In recent studies many
powerful approaches were presented, such as the in-
verse scattering transform method [1], the Bäcklund
transformation (BT) [2], the Darboux transformation
(DT) [3, 4], the Hirota’s bilinear homogeneous bal-
ance method [5, 6], the Jacobi elliptic function method
[7 – 9], the tanh-function method [10 – 12], the varia-
tional iteration method [13], the sine-cosine method
[14 – 16], the F-expansion method [17, 18], the Lucas
Riccati method, the triangular Fibonacci method, the
extended projective Riccati equation method [19], and
so on. An important approach is the so-called mapping
transformation method. The basic idea of the algorithm
is that: for a given NLPDE

P(u,u1,uxi ,uxix j , . . .) = 0, (1)

where P is in general a polynomial function of its argu-
ment, and the subscripts denote the partial derivatives.
By using the travelling wave transformation, (1) pos-
sesses the following ansatz,

u = u(ξ ), ξ =
m

∑
i=0

kixi, (2)
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where ki, i = 0,1,2, . . . ,m are all arbitrary constants.
Substituting (2) into (1) yields an ordinary differen-
tial equation (ODE): O(u(ξ ),u(ξ )ξ ,u(ξ )ξ ξ , . . .) = 0.
Then u(ξ ) is expanded into a polynomial in g(ξ )

u(ξ ) = F(g(ξ )) =
n

∑
i=0

aigi(ξ ), (3)

where ai are constants to be determined and n is fixed
by balancing the linear term of the highest order with
the nonlinear term in (1). If we suppose g(ξ ) = tanhξ ,
g(ξ ) = sechξ , and g(ξ ) = snξ or g(ξ ) = cnξ , re-
spectively, then the corresponding approach is usu-
ally called the tanh-function method, the sech-function
method, and the Jacobian-function method. Although
the Jacobian elliptic function method is more improved
than the tanh-function method and the sech-function
method, the repeated calculations are often tedious
since the different function g(ξ ) should be treated in a
repeated way. The main idea of the mapping approach
is that g(ξ ) is not assumed to be a specific function,
such as tanh, sech, sn and cn, etc., but a solution of a
mapping equation such as the Riccati equation (gξ =
g2 +a0), or a solution of the cubic nonlinear Klein Gor-
don equation (g2

ξ = a4g4 + a2g2 + a0), or a solution
of the general elliptic equation (g2

ξ = ∑4
i=0 aigi), where

ai, (i = 0,1, . . . ,4) are all arbitrary constants. Using the
mapping relation (3) and the solutions of these map-
ping equations, one can obtain many explicit and exact
travelling wave solutions of (1).

Nowadays, many exact solutions of NLPDEs can
be written as a polynomial in several elementary or
special functions which satisfy a first-order nonlin-
ear ordinary differential equation (NLODE) with a
sixth-degree nonlinear term. Recently, after Fan’s uni-
fied algebraic method [20], which was based on a
NLODE with a fourth-degree nonlinear term, Haung
and Zhang [21] further extend Fan’s unified algebraic
method to a more general form, which possesses a
sixth-degree nonlinear term, and derive more new ex-
act solutions of NLPDEs. The aim of this paper, mo-
tivated by references [22 – 24], is to perform a first-
order NLODE with sixth-degree nonlinear term which
is, in nature, an extension of a type of elliptic equation
into a new algebraic method to seek exact solutions for
NLPDEs.

The rest of this paper is organized as follows: in the
following section, we give the definition and proper-
ties of the generalized Jacobi elliptic functions. In sec-
tions 3 and 4, we describe the generalized improved Ja-

cobi elliptic function method and apply this method to
the combined KdV-mKdV equation. Finally, we con-
clude the paper and give some outlooks and comments.

2. Definition and Properties of Generalized Jacobi
Elliptic Functions

In this section, we introduce the generalized Jacobi
elliptic functions (GJEFs) and study some properties of
these functions. We consider the hyper elliptic integral

y(x,k1.k2) =
∫ x

0

dt√
(1− t2)(1− k2

1t2)(1− k2
2t2)

. (4)

We define the generalized Jacobi elliptic sine func-
tion as the inverse function x = s(y,k1,k2), where y is
an independent variable and k1, k2 (0 ≤ k2 ≤ k1 ≤ 1)
are two modulus of the generalized Jacobi ellip-

tic functions. Similarly,
√

1− x2,
√

1− k2
1x2, and√

1− k2
2x2 are defined as the generalized Jacobi ellip-

tic cosine function, the generalized Jacobi elliptic func-
tion of the third kind and the generalized Jacobi elliptic
function of the fourth kind. They are expressed as

√
1− x2 = c(y,k1,k2),√
1− k2

1x2 = d1(y,k1,k2),√
1− k2

2x2 = d2(y,k1,k2).

(5)

The generalized Jacobi elliptic functions possess the
following properties of the triangular functions (we
use the abbreviated notations s(y)≡ s(y,k1,k2), c(y)≡
s(y,k1,k2), . . . , etc.):

c2(y) = 1− s2(y), d2
1(y) = 1− k2

1s2(y),

d2
2(y) = 1− k2

2s2(y),

k2
1d2

2(y)− k2
2d2

1(y) = k2
1 − k2

2,

d2
i (y)− k2

i c2(y) = 1− k2
i , (i = 1,2).

(6)

The first derivatives of these functions are given by

s′(y) = c(y)d1(y)d2(y),

c′(y) = −s(y)d1(y)d2(y),

d′
1(y) = −k2

1s(y)c(y)d2(y),

d′
2(y) = −k2

2s(y)c(y)d1(y),

(7)
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Moreover, in the limiting case k2 → 0, the generalized
Jacobi elliptic function reduced to the usual Jacobi el-
liptic functions

s(y,k1,0) → sn(y,k1),
c(y,k1,0) → cn(y,k1),
d1c(y,k1,0) → dn(y,k1), and

d2(y,k1,0) → 1.

(8)

If k1 → 1, k2 → 0, we have

s(y,1,0) → tanh(y),

c(y,1,0) and d1(y,1,0) → sech(y), and

d2(y,1,0) → 1.

(9)

Also, in the limiting case k1 → 0, k2 → 0, we have

s(y,0,0) → sin(y), c(y,0,0) → cos(y),

d1(y,0,0), and d2(y,0,0) → 1.
(10)

The generalized Jacobi elliptic functions can be ex-
pressed in terms of the standard Jacobi elliptic func-
tions:

s(y,k1,k2) =
sn(k′2y,k)√

1− k2
2 + k2

2sn2(k′2y,k)
,

c(y,k1,k2) =
k′2cn(k′2y,k)√

1− k2
2cn2(k′2y,k)

,

d1(y,k1,k2) =

√
k2

1 − k2
2dn(k′2y,k)√

k2
1 − k2

2dn2(k′2y,k)
,

d2(y,k1,k2) =

√
k2

1 − k2
2√

k2
1 − k2

2dn2(k′2y,k)
,

(11)

with k′2 =
√

1− k2
2, k =

√
(k2

1 − k2
2)/(1− k2

2). From the
double periodic properties of the Jacobi elliptic func-
tions one can see that the generalized Jacobi elliptic
functions are quasi-double periodic:

s
(

y +
4K(k)

k′2

)
= s

(
y +

2iK(k′)
k′2

)

= ±s(y),

c
(

y +
4K(k)

k′2

)
= c

(
y +

2K(k)+ 2iK(k′)
k′2

)

= ±c(y),

d1

(
y +

2K(k)
k′2

)
= d1

(
y +

4iK(k′)
k′2

)

= ±d1(y),

d2

(
y +

2K(k)
k′2

)
= d2

(
y +

2iK(k′)
k′2

)

= ±d2(y),

(12)

where K(k) is the complete elliptic integral of the first
kind and k′ =

√
1− k2 [25 – 27].

3. Description of the Generalized Improved Jacobi
Elliptic Function Method

The main idea of this method is to take full advan-
tage of the elliptic equation that the generalized Jacobi
elliptic functions satisfy. The desired elliptic equation
read

F ′(ξ ) =
√

A0 + A2F2(ξ )+ a4F4(ξ )+ A6F6(ξ ),

′ ≡ d
dξ

,
(13)

where ξ ≡ ξ (x, t) and A0, A2, A4, A6 are constants.

Case 1: If A0 = 1, A2 = −(1 + k2
1 + k2

2), A4 =
k2

1 + k2
2 + k2

1k2
2, and A6 = −k2

1k2
2 then (13) has a solu-

tion s(ξ ,k1,k2).
Case 2: If A0 = 1 − k2

1 − k2
2 + k2

1k2
2, A2 = 2k2

1 +
2k2

2 −3k2
1k2

2 −1, A4 = 3k2
1k2

2 −k2
1 −k2

2, and A6 =−k2
1k2

2
then (13) has a solution c(ξ ,k1,k2).

Case 3: If A0 = k2
1 −1−k2

2 +k2
2k−2

1 , A2 = 2k2
2 +2−

k2
1 − 3k2

2k−2
1 , A4 = 3k2

2k−2
1 − k2

2 − 1, and A6 = −k2
2k−2

1
then (13) has a solution d1(ξ ,k1,k2).

Case 4: If A0 = k2
2 −1−k2

1 +k2
1k−2

2 , A2 = 2k2
1 +2−

k2
2 −3k2

1k−2
2 , A4 = 3k2

1k−2
2 − k2

1 −1, and A6 = − k2
1k−2

2
then (13) has a solution d2(ξ ,k1,k2).

For a given NLPDE with u in two independent vari-
ables x, t, (1), we seek the travelling wave solution
of (1) in the form ξ = k(x + ωt) where k is the wave
number and ω the wave velocity. Then (1) is trans-
formed to the ODE (3). We expand u(x, t) = u(ξ ) into
a new polynomial of F(ξ ) in the form

u(ξ ) = a0 +
n

∑
i=1

[aiFi(ξ )+biFi−1(ξ )F ′(ξ )]. (14)

The processes take the following steps.
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Step 1: Determine n in (14) by balancing the linear
term(s) of the highest order with the nonlinear term(s)
in (3).

Step 2: Substituting (14) with (13) into (3), then the
left-hand side of (3) can be converted into a polynomial
in F(ξ ). Setting each coefficient of the polynomial to
zero yields a system of algebraic equations for a0 a1,
. . . , an, b1, . . . , bn, k, and ω .

Step 3: Solving this system obtained in step 2, then
a0 a1, . . . , an, b1, . . . , bn, k, and ω can be expressed by
A0, A2, A4, A6. Substituting these into the generalized
improved Jacobi elliptic function method (14), a gen-
eral form of travelling wave solution of (1) can be ob-
tained. In the following section, we apply this method
to the combined KdV-mKdV equation to obtain new
quasi-doubly periodic solution.

4. Application to the Combined KdV-mKdV
Equation

We consider here the combined KdV-mKdV equa-
tion

ut + 6αuux + 6β u2ux + γuxxx = 0, (15)

where α , β and γ are constants. This equation is widely
used in various fields of physics such as solid-state
physics, plasma physics, fluid physics and quantum
field theory. Lou and Chen [28] found solitary wave
solutions and sinusoidal wave solutions of (15) by us-
ing the mapping approach. Zhao et al. [29] got soliton-
like solutions of (15) by applying the extended tanh
method. Very recently Zhao et al. [30] and Siren-
daoreji [31] obtained travelling wave solutions by
means of new Riccati equation expansion method and
a new auxiliary method.

According to step 1, we get n = 2 for u. In order to
search for explicit solutions, we assume that (15) has
the following formal solution:

u(ξ ) = a0 + a1F + a2F2 + b1F ′ + b2FF ′, (16)

in which a0, a1, a2, b1, and b2 are real constants to be
determined. With the aid of Maple, substituting (16)
along with (13) into (15) and setting each coefficient
of FiF ′ j ( j = 0,1; i = 1,2, . . .) to zero, we get a set of
over determined equations for a0, a1, a2, b1, k, and ω .
Solving the system by the use of Maple, we obtain the
following results:

Case 1:

a1 = b1 = b2 = 0,

a0 =
−αA6 ± kA4

√−A6γβ
2A6β

,

a2 = ±2k

√
−A6γ

β
,

ω =
k(3A6α2 + k2β γ(3A2

4 −8A6A6)
2A6β

.

(17)

Case 2:

a0 = − α
2β

, a1 = ±k

√
−A4γ

β
,

a2 = b1 = b2 = 0, ω =
k(3α2 −2k2A2β γ)

2β
.

(18)

Equations (17) and (18) together with (16) are the solu-
tions of the combined KdV-mKdV equation (15) if the
appropriate parameters A0, A2, A4, A6 are given. We
obtain the following solution of the combined KdV-
mKdV equation (15):

u1 =
αk1k2 ± k(k2

1 + k2
2 + k2

1k2
2)

√
γβ

−2k1k2β
±2kk1k2

√
γ
β

s2(ξ ,k1,k2), (19)

with ξ = k
[
x + 1

2β [−3α2 + k2β γ(3(k2
1k−2

2 + k2
2k−2

1 + k2
1k2

2)−2(1 + k2
1 + k2

2))]t
]
,

u2 = − α
2β

± k

√
− (k2

1 + k2
2 + k2

1k2
2)γ

β
s(ξ ,k1,k2), (20)

with ξ = k
[
x + 1

2β [3α2 + 2k2β γ(1 + k2
1 + k2

2)]t
]
,

u3 =
αk2k1 ± k(3k2

1k2
2 − k2

1 − k2
2)

√
γβ

−2k2k1β
±2kk2k1

√
γ
β

c2(ξ ,k1,k2), (21)
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with ξ = k
[
x− 1

2β [−3α2 + k2β γ(3k2
1k−2

2 + k−2
1 k2

2 + k2
1k2

2)−2(k2
1 + k2

2 + 3))]t
]
,

u4 = − α
2β

± k

√
− (3k2

1k2
2 − k2

1 − k2
2)γ

β
c(ξ ,k1,k2), (22)

with ξ = k
[
x + 1

2β [3α2 −2k2β γ(2k2
1 + 2k2

2 −3k2
1k2

2 −1)]t
]
,

u5 =
αk2

2 ± k(k1(1−2k2
2)+ 3k2

2k−2
1 )

√
γβ

−2k2
2β

± 2kk2

k1

√
γ
β

d2
1(ξ ,k1,k2), (23)

with ξ = k
[
x− 1

2β [−3α2 + k2k2
1k−2

2 β γ(3(1 + k4
2 + k−4

1 k4
2)−2k2

2(1 + k−2
1 + k2

2))]t
]
,

u6 = − α
2β

± k

√
− (3k2

2k−2
1 − k2

2 −1)γ
β

d1(ξ ,k1,k2), (24)

with ξ = k
[
x + 1

2β [3α2 −2k2β γ(2k2
2 + 2− k2

1 −3k2
2k−2

1 )]t
]
,

u7 =
αk2

1 ± k(k2(1−2k2
1)+ 3k2

1k−2
2 )

√
γβ

−2k2
1β

± 2kk1

k2

√
γ
β

d2
2(ξ ,k1,k2), (25)

with ξ = k
[
x− 1

2β [−3α2 + k2k2
2k−2

1 β γ(3(1 + k4
1 + k−4

2 k4
1)−2k2

1(1 + k−2
2 + k2

1))]t
]
,

u8 = − α
2β

± k

√
− (3k2

1k−2
2 − k2

1 −1)γ
β

d2(ξ ,k1,k2), (26)

with ξ = k[x+[3α2−2k2β γ(2k2
1 +2−k2

2 −3k2
1k−2

2 )]t/(2β )]. The evolution graph of the quasi periodic solutions
u2, u4, u6, and u8 with the positive sign are shown in Figures 1 – 4.

For k2 → 0, the above solutions degenerate to the well-known Jacobi elliptic wave solutions (doubly-periodic
waves)

u9 = − α
2β

± kk1

√
− γ

β
sn

(
k
[

x +
1

2β
[3α2 + 2k2(1 + k2

1)β γ]t
]
,k1

)
, (27)

u10 = − α
2β

± kk1

√
γ
β

cn
(

k
[

x +
1

2β
[3α2 −2k2(k2

1 −1)β γ]t
]
,k1

)
, (28)

u11 = − α
2β

± k
√

γ
β

dn
(

k
[

x +
1

2β
[3α2 −2k2(2− k2

1)β γ]t
]
,k1

)
. (29)

For k2 → 0, k1 → 1, the above solutions degenerate to the well-known solitary wave solutions (kink-shaped tanh
and bell-shaped sech solutions)

u13 = − α
2β

± k
√
− γ

β
tanh

(
k
[

x +
1

2β
[3α2 + 4k2β γ]t

])
, (30)

u14 = − α
2β

± k
√
− γ

β
sech

(
k
[

x +
1

2β
[3α2 −2k2β γ]t

])
. (31)
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Fig. 1. Evolution graph of u2 with
the selection α = β = −γ = k =
1, k1 = 0.2, k2 = 0.1.

Fig. 2. Evolution graph of u4 with
the selection α = β = γ = k = 1,
k1 = 0.5, k2 = 0.3.

Fig. 3. Evolution graph of u6 with
the selection α = β = γ = k = 1,
k1 = 0.5, k2 = 0.3.

Fig. 4. Evolution graph of u8 with
the selection α = β = −γ = k =
1, k1 = 0.2, k2 = 0.1.

5. Conclusion

There is no systematic way for solving (13). Never-
theless, this ansatz with four arbitrary parameters A0,
A2, A4, and A6 is reasonable since its solution can be
expressed in terms of functions, such as generalized
Jacobi elliptic functions, that appear only in the non-
linear problems. In addition, these functions go back,
in some limiting cases, to sn, cn, dn, tanh, and sech
that describe the double periodic, solitary, and shock
wave propagation. The values of the constants a1 (i =

0,1,2, . . . ,n) and b1 (i = 1,2, . . . ,n) in (14) depend cru-
cially on the nature of differential equations whereas
different types of their solutions can be classified in
terms of A0, A2, A4, and A6 as shown in Cases 1 – 4. In
this work, using generalized Jacobi elliptic functions
and their limit cases, the quasi-periodic, periodic wave,
and soliton solutions for the combined KdV-mKdV
equation are obtained. Some of the properties of them
are shown graphically. We believe one can apply this
method to many other nonlinear differential equations
in mathematical physics.
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