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Theoretical investigation of the polaron effects on the third-order susceptibility associated with the
intersubband transition in the conduction band in a CdSe/ZnS quantum dot quantum well is presented.
Contributions from the confined longitudinal optical (LO) and surface optical phonon modes are
considered and the wave function is derived under the frame work of the perturbation theory. We
carried a detailed calculation of third-harmonic generation (THG), Quadratic electro-optic effects
(QEOE), and electro-absorption (EA) process on such a quantum dot as a function of pump photon
energy with different incident photon energy and under different sizes. The results reveal that the
polaron effects are quite important especially around the peak value of the third-order susceptibility.
By increasing the size of the quantum dots, the peaks of χ(3)

THG, χ(3)
QEOE, and χ(3)

EA will shift to the
lower energy, and the intensities of the peaks will increase.

Key words: Core-Shell Quantum Dot; Nonlinear Optical Susceptibility; Polarons.
PACS numbers: 73.21.La; 42.65.-k; 74.20.Mn

1. Introduction

In the past decade there has been considerable in-
terest in the nonlinear optical properties of semicon-
ductor quantum dots (QDs) structures, due to their po-
tential applications in optoelectronic and photonic de-
vices [1 – 4]. In these zero-dimensional structures the
electron motion is quantized in all three dimensions
and this leads to discrete electron energy levels. Be-
cause of a δ -like density of states, large optical non-
linearities associated with intersubband transitions oc-
curred in semiconductor quantum dots compared with
bulk semiconductor. A great deal of theoretical and
experimental work has been done on the study of
these zero-dimensional semiconductor systems [5 – 6].
Nowadays, with the development of nano-material fab-
rication, many methods such as metal-organic chemi-
cal vapor deposition (MOCVD), molecular beam epi-
taxy (MBE), Sol-gel, and molecular imprinted poly-
mer (MIP) are used to synthesize all kinds of quan-
tum dots, including spherical, cylindrical, and pyrami-
dal quantum dots. Among these quantum dots, a syn-
thesized inhomogeneous spherical quantum dot with a
core in center and one or several layers of shells called
core-shell structure quantum dot or quantum dot quan-
tum well (QDQW), attracts many scientists’ interest.
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CdSe/ZnS quantum dots are one of the most studied
quantum dot quantum wells.

It is well known that the electron-optical phonon in-
teraction plays an important part in physical properties
of polar crystals, such as the binding energy of impu-
rities, carrier transportation, and linear and nonlinear
optical properties [7 – 10]. As we all know, in the low-
dimensional quantum systems, phonons are confined.
So the phonon modes are more complicated than those
in the bulk materials and the bulk phonon modes are
no longer suitable [11]. Many researchers have made
great contributions in studying the phonon modes and
the electron-phonon interaction in low-dimensional
semiconductor structures. The electron-phonon inter-
action in a dielectric confined system was first stud-
ied by Lucas et al. [12] and Licari and Evrard [13]
under the dielectric continuum model. Wendler and
Haupt [14, 15] constructed a complete theory of long-
wavelength optical phonons and polar-type electron-
phonon interaction for any confined system within the
framework of the standard dielectric continuum (DC).
The electron-phonon interaction Hamiltonian and the
optical-phonon modes in a quantum well were pro-
vided by Mori and Ando [16]. Many authors stud-
ied polaron effects of QDs. Li and Chen obtained
the longitudinal-optical (LO) phonon modes and two
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types of surface-optical (SO) phonon mode of a free-
standing cylindrical QD [17]. Zhang et al. have derived
the Fröhlich electron-phonon interaction Hamiltonian
in HgS/CdS quantum dot quantum well (QDQW) [11].
The polaron effects on the third-order nonlinear optical
susceptibility in a GaAs quantum disk have been stud-
ied by Cui-Hong Liu et al. [18].

There are many analyses about the influence of LO
phonon and SO phonon on the energy of an electron
in a quantum confined system [8, 9]. The Hamiltonian
that describes the coupling of these phonons with elec-
trons and holes was derived by Klein et al. [19]. How-
ever, there are few studies treating the electron-phonon
interaction on the optical nonlinearities in a core-shell
quantum dot. Most researches just focused on a spher-
ical quantum dot that consist of one material. Or they
didn’t maily investigate the influence of the polaron ef-
fect on nonlinear optics. So in this paper, by employ-
ing the effective mess approximation methods, we will
study the influence of polaron on the third-order non-
linear susceptibilities in a CdSe/ZnS core-shell quan-
tum dot by employing the QDQW phonon modes [11].

2. Theory

2.1. Electron, Phonon and Electron-Phonon
Interaction Hamiltonian

We consider an isolated CdSe/ZnS quantum dot
quantum well with inner radius R1 and outer radius R2

Fig. 1. Two-dimensional projective model and the potential
schematic diagram of the CdSe/ZnS quantum dot quantum
well.

(Fig. 1). Actually, the potential difference of the two
materials formed a well and a barrier. The potential in
the core is used as the zero reference energy in this pa-
per. The band-gap of the shell layer is wider than that
of the core layer, so Vc > 0. Under the framework of
effective-mass approximation, the Hamiltonian of the
system associated with the electron-phonon interaction
can be written as

H = He + Hph + He-ph. (1)

The first term in (1) is the Hamiltonian of the electron
He, it is given by

He = − h̄2

2m∗
i

2 +Vi(r), (2)

where m∗
i is the effective mass of an electron in the ith

region, Vi(r) is the potential. They both depend on the
position in the hetero-structure and are expressed as

m∗
i =

{
m∗

1, r ≤ R1

m∗
2, R1 < r ≤ R2

(3)

and

Vi(r) =




0, 0 < r ≤ R1

Vc, R1 < r ≤ R2

∞, r > R2

. (4)

The second term is the free phonon Hamiltonian,

Hph = HLO + HIO,SO

= HLO1 + HLO2 + HIO,SO ,
(5)

where HLO1 and HLO2 are the Hamiltonian of confined
LO phonon modes in the core and in the shell, re-
spectively, HIO,SO is the Hamiltonian of the interface
phonon and surface phonon modes. Using the method
in [11], the phonon modes and the Hamiltonian can
easily be written as:

HLO1 = ∑
lmn

h̄ωLO1

[
a+

lmnalmn +
1
2

]
, (6)

HLO2 = ∑
lmn

h̄ωLO2

[
b+

lmnblmn +
1
2

]
, (7)

HIO,SO = ∑
lm

h̄ω
[

c+
lmclm +

1
2

]
, (8)
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where a+
lmn (almn), b+

lmn (blmn), and c+
lm (clm) are cre-

ation (annihilation) operators for these three phonon
modes. They satisfy the commutative rules for bosons.
The last term of (1) stands for the electron-phonon in-
teraction Hamiltonian

He-ph = He-LO1 + He-LO2 + He-IO,SO. (9)

He-LO1 denotes the Hamiltonian of the electron inter-
action with LO phonon in the core.

He-LO1 =

−∑
lmn

[
Γ LO1

l,n jl

(
αl,n

R1
r
)

Ylm(θ ,ϕ)a+
lmn + H.c.

]
,

(10)

where

|Γ LO1
l,n |2 =

4πe2h̄ωLO1

α2
l,nR1 j2

l+1(αl,n)

(
1

ε1∞
− 1

ε10

)
. (11)

jl(x) is the spherical Bessel function of the lth order,
Ylm is the spherical harmonics, and αl,n is the nth zero
of jl(x). ε10, ε1∞ are the static and high-frequency di-
electric constants in the core layer of the quantum dot,
respectively.

Correspondingly, He-LO2 is the Hamiltonian of the
electron interaction with LO phonon in the shell.

He-LO2 =

−∑
lmn

[
Γ LO2

l,n Tl

(
al,n

R1
r
)

Ylm(θ ,ϕ)b+
lmn + H.c.

]
,

(12)

with

|Γ LO2
l,n |2 =

4πe2h̄ωLO2

a2
l,nR1

[Tl−1(al,n)Tl+1(al,n)

−γ3Tl−1(γal,n)Tl+1(γal,n)]−1
(

1
ε2∞

− 1
ε20

)
,

(13)

where

γ = R2/R1, (14)

Tl

(
al,n

R1
r
)

= jl

(
al,n

R1
r
)

+bl,nnl

(
al,n

R1
r
)

. (15)

ε20, ε2∞ are the static and high-frequency dielec-
tric constants in the shell layer of the quantum dot.
nl(x) is the spherical Neumann function of the lth or-
der. Tl(al,nr/R1) satisfies the boundary conditions

Tl

(
al,n

R1
r
)∣∣∣

r=R1
= jl(al,n)+ bl,nnl(al,n) = 0,

Tl

(
al,n

R1
r
)∣∣∣

r=R2
= jl

(
al,n

R1
R2

)
+ bl,nnl

(
al,n

R1
R2

)
= 0.

(16)

From these two equations, al,n and bl,n can be obtained.
n in the radial function Tl(al,nr/R1) denotes the num-
ber of zeros within the region of R1 ≤ r ≤ R2. In [11],
it has been proved that Tl(al,nr/R1) is orthogonalized
in the shell region.

In (9), the last term He-IO,SO is the Hamiltonian of
the electron interaction with IO/SO phonon

He-IO,SO =−∑
lm

Γ IO,SO
l (r)[Ylm(θ ,ϕ)c+

lm +H.c.], (17)

where the electron-IO or electron-SO phonon radial
coupling function is

Γ IO,SO
l (r) = Nl ×




( 1
R2

γ−l − 1
R1

γ l
)

for r ≤ R1,[( 1
R2

γ−l −β−l−1 fl(ω)
)

rl

+
( 1

R2
γ−l fl(ω)−β l

)
r−l−1

]
for R1 < r ≤ R2,( 1

R2
γ−l − 1

R1
γ l

)
fl(ω)r−l−1

for r > R2,

(18)

|Nl |2 = 2πe2h̄ω
(( 1

ε1 − ε10
− 1

ε1 − ε1∞

)−1

· l(γ−l−1 − γ l)2R2l−1
1 +

{
l
[γ−l

R2
−β−l−1 fl(ω)

]2

· (γ2l+1 −1)R2l+1
1 − (l + 1)

[ 1
R2

γ−l fl(ω)−β l
]2

· (γ−2l−1 −1)R−2l−1
1

}( 1
ε2 − ε20

− 1
ε2 − ε2∞

)−1
)−1

,

(19)

where β is defined as

β = R1 ·R2. (20)

Other than the LO modes, the dielectric func-
tions ε1(ω) and ε2(ω) of the IO or SO phonon don’t
equal zero. They are given by light scattering topogra-
phy (LST) relations and written as

ε1(ω) = ε1∞
ω2 −ω2

LO1

ω2 −ω2
TO1

,

ε2(ω) = ε2∞
ω2 −ω2

LO2

ω2 −ω2
TO2

.

(21)

Together with the boundary conditions [11] at r =
R1 and r = R2, the frequencies of the IO and SO
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phonons can be derived by solving a sixth-order equa-
tion for ω . Once ω is worked out, it is easy to get the
values of ε1(ω) and ε2(ω).

And fl(ω) reads

fl(ω) = −[
γ−l lRl−2

2 ε2 + β l(l + 1)R−l−2
2 ε2

]/
[−β−l−1lRl−1

2 ε2 − γ−l(l + 1)R−l−3
2 ε2

+(γ−l − γ l+1)(l + 1)R−l−3
2 εd

]
.

(22)

2.2. Wave Function and Third-Order Susceptibilities

The wave function and eigenenergy of an electron
can be obtained from the Schrödinger equation of an
electron when Ee > Vc:

Φe
nlm(r,θ ,ϕ) = Rnl(r)Ylm(θ ,ϕ)

=




A1 jl(knl,1r)Ylm(θ ,ϕ), for r ≤ R1,

[A2 jl(knl,2r)+ B2nl(knl,2r)]Ylm(θ ,ϕ),
for R1 < r ≤ R2,

(23)

where nl is the lth Neumann function. A1, A2, and
B2 are normalized constants, and

knl,1 =
√

2m∗
1Ee/h̄2, (24)

knl,2 =
√

2m∗
2(Ee −Vc)/h̄2. (25)

At the boundaries r = R1 and r = R2, the continuity
of the wave function and the probability current, to-
gether with the normalization condition, can give the
coefficients A1, A2, B2, and the eigenenergy of the elec-
tron Ee.

We limit our consideration to weak coupling and
treat the electron-phonon interaction as a perturbation.
The unperturbed energy and wave function are turned
out to be

Ei = Ei
e + ∑

lmn
NLO1

lmn h̄ωLO1 + ∑
lmn

NLO2
lmn h̄ωLO2

+ ∑
lm

Nlmh̄ωSO,
(26)

|Φi〉 = |ni, li,mi,NLO1
lmn ,NLO2

lmn ,Nlm〉

=




A1 jl(knl,1r)Ylm(θ ,ϕ)|NLO1
lmn ,NLO2

lmn ,Nlm〉,
for r ≤ R1,

[A2 jl(knl,2r)+ B2nl(knl,2r)]

·Ylm(θ ,ϕ)|NLO1
lmn ,NLO2

lmn ,Nlm〉,
for R1 < r ≤ R2,

(27)

where |NLO1
lmn 〉, |NLO2

lmn 〉, and |Nlm〉 are the eigenstates of
the LO and SO phonon modes in the population pre-
sentation. We assumed that the system is at low tem-
perature (T → 0), so the initial state is the phonon vac-
uum state. Also, in the course of photon transition, only
one-phonon absorption (emission) is considered. Un-
der the framework of perturbation theory, the system
wave function can be worked out:

|Ψi〉 = |Φi〉+ ∑
j 	=i


He-ph� ji

Ei −E j − ε
|Φi〉, (28)

where ε = h̄ωLO or h̄ωsp.
Using the density matrix method [20, 21], the third-

order nonlinear susceptibility tensor is

χ (3)(ωp + ωq + ωr) =
Ne4

ε0h3 ∑
a,b,c,d

µabµbcµcd µda
/

[(ω∗
ba −ωr −ωq −ωp)(ω∗

ca −ωq −ωp)(ω∗
da −ωp)]

+
µabµbcµcd µda

(ω∗
ba + ωr)(ω∗

ca −ωq −ωp)(ω∗
da −ωp)

+
µabµbcµcd µda

(ω∗
ba + ωr)(ω∗

ca + ωq + ωp)(ω∗
da −ωp)

+
µabµbcµcd µda

(ω∗
ba + ωr)(ω∗

ca + ωq + ωp)(ω∗
da + ωr + ωq + ωp)

,

(29)

where µi j = 〈Ψi|r|Ψj〉, ωi j = (E j −Ei − iΓji)/h̄, N is
the density of electron in QDs, e the electronic charge,
ε0 the vacuum permittivity, and Γji the relaxation rate.
Then

µi j = 〈Φi|r|Φ j〉+
∞

∑
α 	=i

〈Φα |He-LO1|Φi〉
Ei −Eα − h̄ωLO1

〈Φ j|r|Φα 〉

+
∞

∑
α 	= j

〈Φα |He-LO2|Φ j〉
E j −Eα − h̄ωLO2

〈Φi|r|Φα 〉

+
∞

∑
α 	=i

〈Φα |He-LO2|Φi〉
Ei −Eα − h̄ωLO2

〈Φ j|r|Φα 〉

+
∞

∑
α 	= j

〈Φα |He-SO|Φ j〉
E j −Eα − h̄ωsp

〈Φi|r|Φα〉

+
∞

∑
α 	=i

〈Φα |He-SO|Φi〉
Ei −Eα − h̄ωsp

〈Φ j|r|Φα 〉.

(30)

In the previous section, the unperturbed wave func-
tion, the eigenenergy, and the electron-phonon inter-
action Hamiltonian have been obtained. Substituting
them into (29) and (30), we can get χ (3).
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Table 1. Material parameters (m0 is the rest electron mass).
Material m∗/m0 h̄ωLO ε0 ε∞
CdSe [22, 23] 0.13 26 meV 9.56 6.23
ZnS [22, 24] 0.28 43.6 meV 8.1 5.14

3. Results and Discussion

If we assume ωp = ωq = ωr = ω , (29) will
give the third-order susceptibility for the third har-
monic generation (THG). And if ωp = ωq = 0 and
ωr = ω , we can obtain the optical susceptibilities
χ (3)(−ω ;0,0,ω). χ (3)

QEOE(ω) = Reχ (3)(−ω ;0,0,ω)

and χ (3)
EA(ω) = Imχ (3)(−ω ;0,0,ω) are responsible for

the direct current (DC) Kerr effect and the electro-
absorption process, respectively. In our study, the third-
order susceptibilities for THG, QEOE, and EA have
been considered.

The analysis of the preceding section is used to cal-
culate several important quantities. For simplicity we
will only report the third-order susceptibility of the
lowest energy state l = 0. In this situation, only the
LO phonon mode exist. So we mainly calculate the
influence of the LO phonon mode on THG, QEOE,
and EA. The parameters of our calculation are listed
in Table 1, taking Vc = 0.9 eV as conduction band
discontinuity, electron density N = 5× 1024 m−3, and
Γji = 1/300 fs−1.

In Figure 2, we plotted the third-order susceptibility
χ (3) for the three nonlinear optical effects THG (a),
QEOE (b), and EA (c) as a function of pump pho-
ton energy h̄ω . The size of the quantum dot is cho-
sen as R1 = 4.5 nm and R2 = 6 nm. It is seen from
Figure 2 that for a CdSe/ZnS quantum dot quantum
well the resonant χ (3) magnitudes are 10−16 m2/V2.
The curves in Figure 2a have three peaks while those
in Figure 2b and c only show one peak. As seen
from (29), the condition of triple resonance is satis-
fied for QEOE and EA, whereas only single resonance
occurs for THG. The contributions of the LO phonon
modes to the polaron effects on third-order susceptibil-
ity are demonstrated in Figure 2. It is clearly seen that
the LO phonon modes enhance χ (3), especially around
the peak value. This is due to the increment of the dipo-
lar matrix element when considering the contributions
of the electron-phonon interaction. A very interesting
feature in Figure 2b and c is that near the resonant
frequency, χ (3)

QEOE(ω) changes its sign from negative

to positive while χ (3)
EA(ω) always keeps negative. In-

creasing the frequency slightly, χ (3)
EA(ω) fast reaches

(a)

(b)

(c)

Fig. 2. Contributions of LO phonon modes to (a) THG,
(b) QEOE, (c) EA as a function of the photon energy for
the CdSe/ZnS quantum dot quantum well (R1 = 4.5 nm,
R2 = 6 nm).

a negative maximum. This is important for the fur-
ther development of quantum dots for optical nonlinear
devices.

In Figure 3 χ (3)
THG (a), χ (3)

QEOE (b), and χ (3)
EA (c) are

shown as functions of pump photon energy h̄ω for dif-
ferent outer radii R2 (4.8 nm, 5 nm, 5.2 nm) with a
fixed inner radius R1 (4.5 nm). We can find that the
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(a)

(b)

(c)

Fig. 3. χ(3)
THG (a), χ(3)

QEOE (b) and χ(3)
EA (c) versus the pump

photon energy h̄ω with fixed R1 = 4.5 nm.

nonlinear susceptibilities increase and the peaks shift
to lower energy as R2 increases. These conclusions can
be physically explained as follows [25]: as a conse-
quence of the quantum size effect, energy distances
between electronic states in the conduction band be-
come smaller when R increases; the larger the size, the
smaller the energy distance; and the larger the size, the

Fig. 4. χ(3)
THG versus the pump photon energy h̄ω with fixed

thickness ratio k = 1/10; (a): R1 = 4.5 nm, R2 = 4.95 nm;
(b): R1 = 4 nm, R2 = 4.4 nm; (c): R1 = 3.5 nm, R2 = 3.85 nm.

stronger the electron-phonon interactions; the increase
of the dipole matrix element µ becomes stronger with
the increase of the radius.

Figure 4 is a plot of χ (3)
THG versus pump photon en-

ergy h̄ω for different outer radii R2 and inner radii R1
with a fixed thickness ratio k, k = (R2 − R1)/R1. In
Figure 4, we chose k = 1/10. We can find that it is
similar to Figure 3a, under a fixed thickness ration the
χ (3)

THG enhances with the increase of quantum dot’s size.
So in order to obtain a large nonlinear susceptibility,
we should choose quantum dots with bigger radii. Of
course, if the radii of the quantum dots are beyond the
scale of nanostructure, the principle of the quantum
theory is unavailable and the optical properties of the
dots belong to the region of bulk materials.

4. Conclusion

In conclusion, the polaron effects on the nonlinear
optical susceptibility have been investigated theoreti-
cally. Numerical calculations to study the third-order
nonlinear optical susceptibilities of CdSe/ZnS quan-
tum dot quantum well by considering the influences of
electron-LO phonon interactions have been performed
in this paper. We have obtained the size dependent
third-order nonlinear optical susceptibilities for THG,
QEOE, and EA under strong confinement. The results
reveal that LO phonons enhance χ (3) especially around
the peak value. So it is necessary to consider the con-
tributions of the interaction of the electron-phonon.
When the sizes of the quantum dots are increased the
peaks of χ (3)

THG, χ (3)
QEOE, and χ (3)

EA as a function of pump
photon energy h̄ω have a red shift, and the intensities
of the peaks increase.
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Our numerical calculations don’t take into account
the influence of the SO phonon. Further work can
be done to consider this. Besides, if the potential is
changed to be parabolic, just like the study work on
quantum wells [26], the sensitivity of the results with
respect to variations in the potential can be studied,
which may be done in future.
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